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The search for extra-solar planets has led to the surprising discovery of many

Jupiter-like planets in very close proximity to their host star1, the so-called “hot

Jupiters.” Even more surprisingly, many of these hot Jupiters have orbits that

are eccentric or highly inclined with respect to the equator of the star, and

some (about 25%) appear to be in retrograde orbits2. How they get so close

to the star in such orbits remains an open question. Slow migration though a

protoplanetary disk3,4 would produce orbits with low eccentricities and inclina-

tions. Some models7,8 invoke a companion star in the system, which perturbs

the inner orbit and can produce increases in eccentricity and inclination but not

retrograde orbits. Here we show that the presence of an additional, moderately

inclined and eccentric massive planet in the system can naturally explain close,

inclined, eccentric, and even retrograde orbits. We provide a complete and ac-

curate treatment of the secular dynamics including both the key octupole-order

effects and tidal friction. The flow of angular momentum from the inner orbit to

the orbit of the perturber can lead to both high eccentricities and inclinations,

and even flip the inner orbit. Previous treatments of the secular dynamics fo-

cusing on stellar-mass perturbers would not allow for such an outcome. In our

treatment the component of the inner orbit’s angular momentum perpendicular

to the stellar equatorial plane can change sign; a brief excursion to very high
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eccentricity during the chaotic evolution of the inner orbit can then lead to rapid

“tidal capture,” forming a retrograde hot Jupiter.

Despite many attempts7−12, there is no model that can account for all the properties

of the known hot Jupiter (HJ) systems. One model suggests that HJs formed far away

from the star and slowly spiraled in, losing angular momentum and orbital energy to the

protoplanetary disk3,4. This “migration” process should produce planets with low orbital

inclinations and eccentricities. However, many HJs are observed to be on orbits with high

eccentricities, and misaligned with respect to the rotation axis of the star (as measured

through the Rossiter–McLaughlin effect5) and some of these (8 out of 32) appear to be in

retrograde orbits. Secular perturbations from a distant binary star companion can produce

increases in the eccentricity and inclination of a planetary orbit6, but they cannot produce a

retrograde orbit. During the evolution to high eccentricity, tidal dissipation near pericenter

can force the planet’s orbit to decay, potentially forming a HJ7,8. Another mechanism

to produce a tilted orbit is via planet–planet scattering9, possibly combined with other

perturbers and tidal friction13.

In our new treatment we allow for the magnitude and orientation of both orbital angular

momenta to change (see Figure 1). The additional body (either an outer planet or a brown-

dwarf companion) gravitationally perturbs the inner planet on time scales long compared to

the orbital period (i.e., we consider the secular evolution of the system). We define the orien-

tation of the inner orbit so that a prograde (retrograde) orbit has i1 < 90◦ (i1 > 90◦), where

i1 is the inclination of the inner orbit with respect to the total angular momentum, assumed

parallel to the stellar rotation axis1. We assume a hierarchical configuration, with the outer

1The directly observed parameter is actually the projected angle between the spin axis of

the star and the planet’s angular momentum. However, for simplicity we focus here on the

physical angle i1.
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perturber in a much wider orbit than the inner one. In the secular approximation the orbits

may change shape and orientation but the semi-major axes (SMA) are strictly conserved in

the absence of tidal dissipation14,15. In particular, the Kozai-Lidov mechanism16 ,17,18 pro-

duces large-amplitude oscillations of the eccentricity and inclination when the initial relative

inclination between the inner and outer orbits is sufficiently large ( 40◦ ∼< i ∼< 140◦).

We have derived the secular evolution equations to octupole order using Hamiltonian

perturbation theory19,20,14. In contrast to previous derivations of “Kozai-type” evolution,

our treatment allows for changes in the z-components of the orbital angular momenta (i.e.,

the components along the total angular momentum) Lz,1 and Lz,2 (see supplementary ma-

terial). The octupole-order equations allow us to calculate more accurately the evolution

of systems with more closely coupled orbits and with planetary-mass perturbers. The

octupole-level terms can give rise to fluctuations in the eccentricity maxima to arbitrar-

ily high values14,20, in contrast to the regular evolution in the quadrupole potential7,8,18,

where the amplitude of eccentricity oscillations is constant. Many previous studies of secular

perturbations in hierarchical triples considered a stellar-mass perturber, for which Lz,1 is

very nearly constant7,8,18. Moreover, the assumption that Lz,1 is constant has been built

into previous derivations21−24. However, this assumption is only valid as long as L2 ≫ L1,

which is not the case in comparable-mass systems (with two planets). Unfortunately, an im-

mediate consequence of this assumption is that a prograde orbit can never be turned into a

retrograde orbit. Figure 1 shows the evolution of a representative system (here without tidal

effects for simplicity): the inner planet oscillates between prograde and retrograde orbits as

angular momentum flows back and forth between the two orbits.

Previous calculations of planet migration through “Kozai cycles with tidal friction”

(KCTF)7,8,15,18 produced a slow, gradual spiral-in of the inner planet. Instead, our more

accurate treatment shows that the eccentricity can occasionally reach a much higher value
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than in the regular “Kozai cycles” calculated to quadrupole order. Thus, the pericenter

distance will occasionally shrink on a short time scale (compared to the Kozai period), and

the planet can then suddenly be tidally captured by the star. We propose to call this “Kozai

capture”. Kozai capture provides a new way to form HJs. If the capture happens after the

inner orbit has flipped the HJ will appear in a retrograde orbit. This is illustrated in Figure 2.

During the evolution of the system the inner orbit shrinks in steps (Fig. 2c) whenever the

dissipation becomes significant, i.e., near unusually high eccentricity maxima. The inner

orbit can then eventually become tidally circularized. This happens near the end of the

evolution, on a very short time scale (see Fig. 2, right panels). In this final step, the inner

orbit completely and quickly decouples from the outer perturber, and the orbital angular

momenta then become constant. Therefore, the final SMA for the HJ is ≈ 2rp, where rp is

the pericenter distance at the beginning of the capture phase25.

The same type of evolution shown in Figure 2 is seen with a broad range of initial con-

ditions. Our mechanism requires that the outer perturber’s orbit start with high inclination

(i2 ∼> 50◦). The particular configuration in Figure 2 has a very wide outer orbit similar to

those of directly imaged planets such as Fomalhaut b26 and HR 8799b27. In this case the

inner Jupiter could have formed in its original location in accordance with the standard core

accretion model28. An alternative path to such a configuration involves strong planet–planet

scattering in a closely packed initial system of several giant planets13. Independent of any

particular planet formation mechanism, we predict that systems with misaligned HJs should

also contain a much more distant massive planet on an inclined orbit.
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Fig. 1.— Dynamical evolution of a representative planet and brown dwarf system in the point-

mass limit (i.e., with no tidal dissipation). Here the star has mass 1M⊙, the inner planet 1MJ

and the outer brown dwarf 40MJ. The inner orbit has SMA a1 = 6AU and the outer orbit has

SMA a2 = 100AU. The initial eccentricities are e1 = 0.001 and e2 = 0.6 and the initial relative

inclination i = 65◦. We show from top to bottom: (a) the inner orbit’s inclination (i1); (b) the

eccentricity of the inner orbit (as 1 − e1); (c) and (d) the z-component of the inner- and outer-

orbit’s angular momentum, normalized to the total angular momentum (where the z-axis is defined

to be along the total angular momentum). The thin horizontal line in (a) marks the 90◦ boundary,

separating prograde and retrograde orbits. The initial mutual inclination of 65◦ corresponds to an

inner and outer inclination with respect to the invariable plane (perpendicular to z) of 64.7◦ and

0.3◦, respectively. During the evolution, eccentricity and inclination of the inner orbit oscillate, but,

in contrast to what would be predicted from evolution equations truncated to quadrupole order

[shown by the thin curves in panels (a) and (b)], the eccentricity of the inner orbit can occasionally

reach extremely high values and its inclination can become higher then 90◦. The outer orbit’s

inclination always remains near its initial value. We note that more compact systems usually do

not exhibit the same kind of regular oscillations between retrograde and prograde orbits illustrated

here, as nonlinear effects become more important and are revealed at octupole order (see Fig. 2).
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Fig. 2.— Dynamical evolution of a representative two-planet system with tidal dissipation in-

cluded. The inner planet becomes retrograde at 82 Myr, and remains retrograde after circularizing

into a Hot Jupiter. Here the star has mass 1M⊙, the inner planet 1MJ and the outer planet

3MJ. The inner orbit has SMA a1 = 5AU and the outer orbit has SMA a2 = 51AU. The initial

eccentricities are e1 = 0.001 and e2 = 0.6 and the initial relative inclination i = 74.5◦. We show:

(a) the inner orbit’s inclination (i1); (b) the eccentricity of the inner orbit (as 1 − e1); (c) the

SMA, peri-, and apo-center distances for the inner orbit and the peri- and apo-center distance for

the outer orbit; (d) the magnitude of the angular momentum of the inner orbit; and, in (e) and

(f) the z-components of the inner and outer orbit’s angular momentum, normalized to the total

angular momentum. The initial mutual inclination of 74.5◦ corresponds to inner- and outer-orbit

inclinations of 67.6◦ and 6.9◦, respectively. During each excursion to very high eccentricity for the

inner orbit [marked with vertical lines in panels (b) and (c)], tidal dissipation becomes significant.

Eventually the inner planet is tidally captured by the star and its orbit becomes decoupled from

the outer body. After this point the orbital angular momenta remain nearly constant. The final

SMA for the inner planet is at 0.024AU, typical of a hot Jupiter. The thin curve in panel (a) shows

the evolution in the quadrupole approximation (but including tidal friction), demonstrating that

the octupole-order effects lead to a qualitatively different behavior. For the tidal evolution in this

example we assume tidal quality factors Q⋆ = 5.5× 106 for the star and QJ = 5.8× 106 for the hot

Jupiter (see supplementary material). We monitor the pericenter distance of the inner planet to

ensure that it always remains outside the Roche limit29.
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Supplementary material

1. Octupole-order Evolution Equations and Angular Momentum Conservation

Our new derivation corrects an error in previous Hamiltonian derivations of the secular evo-

lution equations.

We consider a hierarchical triple system consisting of an inner binary (m1 and m2) and a third

body (m3) in a wider exterior orbit. We describe the system using canonical variables, known as

Delaunay’s elements, which provide a particularly convenient dynamical description of our three-

body system. The coordinates are chosen to be the mean anomalies, l1 and l2, the longitudes

of ascending nodes, h1 and h2, and the arguments of periastron, g1 and g2, where subscripts 1, 2

denote the inner and outer orbits, respectively. Their conjugate momenta are:

L1 =
m1m2

m1 +m2

√

k2(m1 +m2)a1 , (1)

L2 =
m3(m1 +m2)

m1 +m2 +m3

√

k2(m1 +m2 +m3)a2 ,

G1 = L1

√

1− e21 , G2 = L2

√

1− e22 , (2)

and

H1 = G1 cos i1 , H2 = G2 cos i2 , (3)

where G1 and G2 are the absolute values of the angular momentum vectors (G1 and G2), and H1

and H2 are the z-components of these vectors.

We choose to work in a coordinate system where the total initial angular momentum of the

system lies along the z axis. The transformation to this coordinate system is known as the elimi-

nation of the nodes30,16; the x-y plane in this coordinate system is known as the invariable plane.

Figure 3 shows the resulting configuration of the orbits. We obtain simple relations between H1,

H2, G1 and G2, using Gtot = G1 +G2:

cos i =
G2

tot −G2
1 −G2

2

2G1G2
, (4)

H1 =
G2

tot +G2
1 −G2

2

2Gtot
, (5)
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Fig. 3.— The angular momenta of the bodies after the elimination of the nodes (see also Ref. 14).

Note that all three vectors are in the same plane. The mutual inclination i = i1 + i2 is the angle

between G1 and G2.

H2 =
G2

tot +G2
2 −G2

1

2Gtot
, (6)

where the relation for H1 comes from setting G2 = Gtot−G1 (and similarly for H2). Because total

angular momentum is conserved by the evolution of the system, we must have G1(t) + G2(t) =

Gtot = Gtotẑ, implying that

h1(t) = h2(t)− π. (7)

The Hamiltonian for the three-body system can be transformed into the form

H = H
K
1 (L1) +H

K
2 (L2) +H12, (8)

where HK
1 and HK

2 represent the Keplerian interaction between bodies 1 and 2 and the central

body, and H12 represents the interaction between body 1 and body 2. The Kepler Hamiltonians

depend only on the momenta L1 and L2, while the interaction Hamiltonian, H12, depends on all

the coordinates and momenta. Due to the rotational symmetry of the problem, H12 depends on

h1 and h2 only through the combination h1 − h2. Because we are interested in secular effects, we

average the Hamiltonian over the coordinates (angles) l1 and l2, obtaining the secular Hamiltonian

H̄ = H
K
1 (L1) +H

K
2 (L2) + H̄12, (9)
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where

H̄12 =
1

4π2

∫ 2π

0
dl1

∫ 2π

0
dl2 H12. (10)

For simplicity we first focus on the quadrupole approximation, where the error is more easily

shown; it is then straightforward to see its effects at all orders in the hierarchical triple system’s

secular dynamics expansion. The quadrupole Hamiltonian results from expanding H̄12 to second

order2 in a1/a2:

H̄12 = H̄
(2)
12 +O

(

a1
a2

)3

. (11)

The resulting quadrupole-order Hamiltonian, H̄
(2)
12 , depends only on the coordinates g1, h1, and h2,

with the latter two appearing only in the combination h1 − h2:

H̄
(2)
12 = H̄

(2)
12 (g1, h1 − h2). (12)

Previous calculations16 ,19 eliminated h1 and h2 from the Hamiltonian using eq. (7), obtaining a

quadrupole Hamiltonian that depends only on g1. But, this is incorrect! Such a Hamiltonian

would imply that all quantities in eq. (5) are constant except G1, i.e. that eq. (5) is incorrect.

Thus the previously used formalism did not conserve angular momentum. The initial Hamiltonian

is spherically symmetric, and therefore does conserve angular momentum; the correct quadrupole

Hamiltonian does as well. Because the correct quadrupole Hamiltonian depends on h1 and h2

through the combination h1 − h2, we have

Ḣ1 = −Ḣ2, (13)

or

H1 +H2 = Gtot = const. (14)

The mathematical error affects all orders in secular perturbations. The independence of the

secular quadrupole Hamiltonian on h1,2 was the source16 of the famous relation cos i1,2
√

1− e21,2 =

2The first order term in a1/a2 averages to zero, so the quadrupole term is the first term

to contribute to H̄12
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const. In the correct derivation, this relation does not always hold. However, in a certain limit, it

does. From eq. (5), we see that

Ḣ1 =
G1

Gtot
Ġ1 −

G2

Gtot
Ġ2. (15)

When G2 ∼ Gtot ≫ G1, we have

Ḣ1 ≈ −
G2

Gtot
Ġ2. (16)

At the quadrupole level H̄
(2)
12 is independent of g2, so Ġ2 = 0, implying

Ḣ1 ≈ 0, (17)

when G2 ∼ Gtot ≫ G1. This is precisely the limit considered in previous works16,19, so their

conclusion that H1,2 = cos i1,2
√

1− e21,2 = const is correct (though not for the reason they claim),

but the limit where G2 ≫ G1 is not sufficient for our work.

In some later studies, the assumption that H1 = const was built into the calculations of secular

evolution for various astrophysical systems21,22,23,24, even when the condition G2 ≫ G1 was not

satisfied. Moreover many previous studies simply set i2 = 0, which is repeating the same error.

In fact, given the mutual inclination i, the inner and outer inclinations i1 and i2 are set by the

conservation of total angular momentum:

cos i1 =
G2

tot +G2
1 −G2

2

2GtotG1
, (18)

cos i2 =
G2

tot +G2
2 −G2

1

2GtotG2
. (19)

2. Tidal Friction

We adopt the tidal evolution equations of Eggleton, Kiseleva & Hut (1998), which are based

on the equilibrium tide model of Hut (1981). The complete equations can be found in Fabrycky &

Tremaine (2007, eqs A1–A5). Following their approach (see their eq. A10) we set the tidal quality

factors Q1,2 ∝ Pin [see also Hansen 2010, eq. (11)]. This means that the viscous times of the star

and planet remain constant; the representative values we adopt here are 5 yr for the star and 1.5 yr

for the planet, which correspond to Q⋆ = 5.5 × 106 and QJ = 5.8 × 106, respectively, for a 1-day

period.
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3. Comparison to Observations

The observable parameter from the Rossiter–McLaughlin effect is the projected angle between

the star’s spin and the orbital angular momentum (the projected obliquity)5. Here instead we focus

on the true angle between the orbital angular momentum of the inner planet and the invariable

plane. Projection effects can cause these two quantities to differ in magnitude, or even sign.

Moreover, several mechanisms have been proposed in the literature that could, under certain

assumptions, directly affect the spin axis of the star. These mechanisms can re-align the stellar spin

axis through tidal interactions with either a slowly spinning star29 or with the outer convective layer

of a sufficiently cold star10. Additionally, a magnetic interaction between the star and a significantly

charged protoplanetary disk with negligible accretion could also lead to misalignment between the

stellar spin and the disk12.

These effects can potentially complicate the interpretation of any specific observation. Never-

theless, if hot Jupiters are produced by the simple mechanism described here, many of their orbits

should indeed be observed with large projected obliquities.
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