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ABSTRACT

Aims. We report on a detailed study of the optical afterglow of GRB 061121 with our original time-series photometric data. In conjunction with
X-ray observations, we discuss the origin of its optical andX-ray afterglows.
Methods. We observed the optical afterglow ofSwift burst GRB 061121 with the Kanata 1.5-m telescope at Higashi-Hiroshima Observatory.
Our observation covers a period just after an X-ray plateau phase. We also performed deep imaging with the Subaru telescope in 2010 in order to
estimate the contamination of the host galaxy.
Results. In the light curve, we find that the optical afterglow also exhibited a break as in the X-ray afterglow. However, our observation suggests a
possible hump structure or a flattening period before the optical break in the light curve. There is no sign of such a hump inthe X-ray light curve.
Conclusions. This implies that the emitting region of optical was distinct from that of X-rays. The hump in the optical light curve was possibly
caused by the passage of the typical frequency of synchrotron emission from another forward shock distinct from the early afterglow. The observed
decay and spectral indices are inconsistent with the standard synchrotron-shock model. Hence, the observation requires a change in microphysical
parameters in the shock region or a prior activity of the central engine. Alternatively, the emission during the shallowdecay phase may be a
composition of two forward shock emissions, as indicated bythe hump structure in the light curve.
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1. Introduction

Gamma-ray bursts (GRBs) and their afterglows are widely be-
lieved to be emission from relativistically expanding shells (e.g.,
Zhang & Mészáros 2004; Mészáros 2006). GRBs, or prompt
emissions are considered to arise from internal shocks caused
by collisions between the shells. After the collisions, theshell
keeps expanding and generates an external shock colliding with
the interstellar medium. As a result, synchrotron emissionfrom
the shocked region is observed as afterglows. This synchrotron-
shock model successfully reproduces the observed temporalevo-
lution of spectral energy distributions (SEDs) of late afterglows.
According to this model, the flux of the synchrotron emission
from afterglows is described with a power-law form, that is,
fν(t) ∝ t−αν−β, whereα andβ are a decay index and a spec-
tral slope, respectively (Sari et al., 1998). A jet geometrywas
suggested by an achromatic break observed in light curves of
afterglows (e.g., Rhoads, 1997; Sari et al., 1999). This hasre-
cently been called into question because chromatic breaks were
detected at the time when the jet scenario predicts achromatic
ones (Willingale et al., 2007).

Owing to quick identifications and notifications of GRBs by
theSwift satellite, the number of observations of early afterglows
has been increasing in all wavelengths (Gehrels et al., 2004). X-
ray light curves of early afterglows, in particular, turnedout to
have more complicate profiles than those previously expected
from the standard synchrotron-shock model. Although a simple
power-law decay was expected in the standard model, the early
X-ray light curves actually consist of three stages with different
decay indices; the initial steep decay (α ∼ 3 − 5), the shallow
decay (α ∼ 0.5 − 1.0), and the normal decay phases (α ∼ 1)
(Nousek et al. 2006; O’Brien et al. 2006). While the steep decay

phase is likely a high-latitude emission of the prompt emission
(Kumar, Panaitescu 2000; Yamazaki et al. 2006; Liang et al.
2006; Zhang et al. 2006), the origin of the shallow decay phase
is currently unknown. Several models have been proposed for
this phase, for example, the late energy injection into the
shocked region, the time-dependent microphysics in the shock,
or prior outflow emission (Sari, Meszaros 2000; Nousek et al.
2006; Zhang, Mészáros 2001; Panaitescu et al. 2006; Toma et al.
2006; Ioka et al. 2006; Dado et al. 2006; Yamazaki 2009).

Each of those models predicts distinct behaviors of SED
variations in early afterglows. Simultaneous multiwavelengths
observations are required to provide crucial clues on the na-
ture of the early afterglow phase. Panaitescu et al. (2006) re-
ported that the early break after the shallow decay phase is chro-
matic on the basis of 6 afterglows. Yost et al. (2007) addition-
ally reported that GRB 051109A also exhibited a clear chro-
matic break. Panaitescu et al. (2006) proposed that the observed
light curves require the temporal evolution of microphysical pa-
rameters in the emitting region of early and late afterglows. On
the other hand, some afterglows apparently exhibited achromatic
breaks after the X-ray shallow decay phase. Krühler et al. (2009)
reported on optical—IR and X-ray light curves of GRB 080710,
in which an achromatic break was observed. Blustin et al. (2006)
reported another example of a possible achromatic break in
GRB 050525A, while X-ray flares make difficult to accurately
determine a break time (also see, Klotz et al. 2005). In some
of past cases, optical observations were too sparse to determine
break times and to catch the detailed behavior on either sideof
the breaks. We definitely need new observations in which break
times can be determined accurately both in X-ray and optical
light curves.

http://arxiv.org/abs/1011.2616v1
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GRB 061121 was detected by theSwift Burst Alert Telescope
(BAT) at 15:22:29 (UT) 21 November 2006 (Page et al. 2006).
Swift also reported the discovery of a bright optical afterglow
with Ultraviolet/Optical Telescope (UVOT), which was soon
confirmed at 14.9 mag1 by ground-based telescopes (Yost et al.
2006). Its redshift was estimated to bez = 1.314 by spectro-
scopic observations of the optical afterglow (Bloom et al. 2006).
This bright burst is a typical GRB following a well-known em-
pirical relationship betweenEp and Eiso (Amati et al. 2006).
The early X-ray light curve has several breaks as other systems
observed in theSwift era (Nousek et al. 2006). Prompt onsets
of multiwavelengths observations for GRB 061121 provided a
unique opportunity to study the temporal evolution of X-ray
and optical afterglows (Yost et al. 2006; Melandri et al. 2006;
Uemura et al. 2006). Page et al. (2007) reported on multiwave-
length data during the prompt and afterglow phase of this GRB.
According to them, both X-ray and optical flux monotonically
decayed, which can be described with an early exponential rise
followed by a power-law decay phase.

Here we report on our optical and infrared observations using
the Kanata 1.5-m telescope. Our continuous time-series obser-
vations enabled us to reveal the optical behavior near the X-ray
shallow decay phase. We describe the details of our observations
in section 2. Combined with other published data, we report the
temporal evolution of the optical and X-ray afterglows in sec-
tion 3. In section 4, we discuss the nature of the variations in
the light curves using the synchrotron-shock model. Finally, we
summarize our results in section 5.

2. Observation and Data Analysis

2.1. Optical observations

Our observation started at 16:37 (UT) 21 November 2006,
4.6× 103 s after the GRB trigger time, and ended at 19:57 (UT).
The observation was performed with TRISPEC attached to the
Kanata 1.5-m telescope at Higashi-Hiroshima Observatory of
Hiroshima University. TRISPEC is a simultaneous imager and
spectrograph with polarimetry covering both optical and near-
infrared wavelengths (Watanabe et al. 2005). We used the imag-
ing mode for the observation of GRB 061121 and obtained 77
sets ofRc, J, andKs band images. The exposure time of aRc-
band image was 123 s. During the 123 s exposure, short expo-
sures of a few seconds were taken for NIR arrays, and yielded
net exposures of 120 and 96 s for eachJ- andKs-band image,
respectively.

The central wavelength of the TRISPEC’sRc system is∼
620 nm, slightly shifted from the standard one (= 645 nm). The
difference in magnitude between these systems is expected to be
0.008 mag when a power law spectrum with a spectral index of
1.0 is assumed. In the following discussion, we neglect thissmall
difference.

We show an example of the obtained images in the right
panel of figure 1. We also show the same field in the Second
Palomer Sky Survey (POSS2) in the left panel for compari-
son. The afterglow is the object marked with the black bars.
After making dark-subtracted and flat-fielded images, we ob-
tained magnitudes of the afterglow and comparison stars us-
ing a Java-based PSF photometry package. For a comparison
star, we used USNO-B1.0 0768-0239968 (R.A.= 9h48m54s.78,
Dec.= −13◦1′17′′.9; Rc = 18.02). The comparison star was
constant within 0.02 mag during our observation, checked

1 Mag show Vega magnitude in this paper.

Table 1. Results of our photometric observation.

Time (s)∗ R∗∗c mag. R′c mag†. error N‡

4699 18.16 18.17 0.03 3
5283 18.23 18.24 0.15 4
6261 18.40 18.42 0.08 2
6675 18.53 18.55 0.09 5
7501 18.63 18.66 0.09 6
8427 18.74 18.76 0.18 7
9466 18.77 18.80 0.10 8

10632 18.92 18.95 0.10 9
11941 19.18 19.22 0.09 10
13409 19.49 19.55 0.23 11
15056 19.10 19.14 0.21 12

* Time since the GRB trigger.
** Raw Rc magnitude.
† Rc magnitude (host corrected).
‡ Number of images in each bin

by USNO-B1.0 0767-0229365 (R.A.= 09h49m05s.080, Dec.=
−13◦13′22′′.21). Using neighbor USNO stars, we checked sys-
tematic errors of magnitudes depending on comparison stars,
and found that it is smaller than 0.2 mag. The compari-
son star is the same as that used in Halpern et al. (2006a),
Halpern and Armstrong (2006a), and Halpern and Armstrong
(2006b) which present observations in a late stage of the after-
glow. In the following section, we performed an analysis of our
light curve in conjunction with those late-time observations.

Additionally, table 1 containsRc-magnitudes obtained by our
optical observations. In this table, the magnitudes are averages in
equally spaced bins in the logarithmic scale of the time. While
we obtainedJ and Ks band images using TRISPEC, IR after-
glows were not significantly detected. Typical 3-sigma upper
limits of each frame are 16.0 and 13.7 mag inJ andKs bands,
respectively.

For deep photometry of the host galaxy component, we
obtained Rc-band images with the 8.2-m Subaru Telescope
and the Faint Object Camera and Spectrograph (FOCAS;
Kashikawa et al. 2002) on 2010 May 7 (UT). The total expo-
sure time was 240 s. We can easily recognize the host galaxy
as a point source at the GRB afterglow position in the obtained
image. Using the same comparison star as mentioned above, we
derived the magnitude of the host galaxy to beRc = 22.99±0.03.

2.2. Data analysis of the Swift data

We analyzed public data of GRB 061121 observed with X-
Ray Telescope (XRT) and UVOT onSwift. We processed the
XRT all orbits of data, adopting the standard screening with
the XRT pipeline FTOOLxrtpipeline (Version: 0.10.3). We ex-
tracted light curve and spectra with a rectangular 40×20-pixel
region for the Windowed Timing (WT) mode, and 40-pixel ra-
dius region for the Photon Counting (PC) mode from the source
position, respectively. The background was also extractedfrom
40×20-pixel region for the WT mode, and 40-pixel radius region
for the PC mode, far from the source, respectively. While begin-
ning of GRB for WT mode data and PC mode data, we found
that the count rate is high enough to cause the pile-up effect,
and we adopted the standard pile-up correction as describedby
Romano et al. (2006) and Vaughan et al. (2006).
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Fig. 1. Optical images of the field of GRB 061121 in POSS2 (left panel)and observed with the Kanata 1.5-m telescope (right
panel). The field of view is 4′ × 3′ and the top is north. The afterglow is an object marked with the black bars in the right panel.

In the following section, the unit of time is set to be seconds
from the GRB trigger. Optical and X-ray parameters are indi-
cated by subscripts of “O” and “X”, respectively.

3. Results

3.1. Optical and X-ray light curves

We show the X-ray and optical light curves of GRB 061121
in figure 2. Our optical observations and X-ray obser-
vations by XRT are indicated by the filled circles and
crosses, respectively. The open circles and squares are
optical observations withRc, V/“White light” (UVOT)
bands reported to GCN, respectively (Page et al. 2007;
Yost et al. 2006; Melandri et al. 2006; Sonoda et al. 2006;
Marshall et al. 2006; Golenetskii et al. 2006; Halpern et al.
2006b; Cenko 2006; Halpern et al. 2006a; Efimov et al. 2006a;
Halpern and Armstrong 2006a,b; Efimov et al. 2006b). About
the optical flux, the contribution of the host galaxy is subtracted.
The flux density of the host galaxy is 2.14µJy in Rc, which was
estimated based on our Subaru observation as described in sec-
tion 2. The flux density was corrected for the Galactic extinction
of E(B − V) = 0.04 (Schlegel et al. 1998). The absolute magni-
tude of the host galaxy is−21.86 mag inRc.

According to Page et al. (2007), the X-ray light curve of
GRB 061121 is divided into 4 phases depending on their decay
indices. In this paper, we follow their definition of the phases
for the X-ray light curves, that is, an initial flare, a plateau
(αX1 = 0.38± 0.06), a shallow decay (αX2 = 1.07± 0.05), and
a normal decay phases (αX3 = 1.53± 0.03). The errors of these
parameters, as well as other parameters given in this paper,rep-
resent 1-σ.

In the optical light curve, we can see a possible flare in a
very early phase att = 76 s. This implies that the optical flux
may be associated with the prompt emission in X-rays andγ-
rays in this phase (Page et al., 2007). In the X-ray plateau phase,
the optical light curve can be described with a simple power-law
decay. UsingV-band observations by UVOT from 240 to 2000 s,
we calculated the power-law decay index to beαO1 = 0.72±0.08.

During the subsequent shallow decay phase, our observation
revealed a monotonic fading of the optical afterglow. The light
curve can be described with a simple power-law having a decay
index ofαO2 = 0.96±0.06. Page et al. (2007) reported aV-band
decay index of 0.66 ± 0.04 from the onset of the fading to a
break at∼ 2.5× 104 s. This decay index was estimated based on

the exponential–to–power-law model, which assumes a mono-
tonic fading during the fading stage of the afterglow. TheαO2
estimated from our time-series photometry is, however, signifi-
cantly larger than that reported in Page et al. (2007). We tried to
fit a simple power-law model to the optical light curve from 240 s
to 16 ks including our data. For the fitting, ourV-band data was
shifted to correspondingRc-band magnitude. TheV − Rc of the
afterglow was estimated from two almost simultaneousV- and
Rc-band observations, that is,t ∼ 280 and∼ 6300 s. The aver-
age color of the afterglow is calculated to beV − Rc = 0.05. The
best-fitted parameters yield a chi-square/d.o.f of 76.3/15. This
value is too high to conclude that the afterglow decayed witha
simple power-law form from 240 s to 16 ks, and rather suggests
that there is a sub-structure around the termination of the X-ray
plateau phase.

The optical light curve, then, exhibit another break around
3×104 s, which is followed by the normal decay phase described
with αO3 = 1.58±0.03. By fitting a broken power-law model, we
calculated a break time of 4.6+4.5

−2.3 × 104 s. About the last break
from the shallow decay to the normal decay phase, no signifi-
cant time lag is detected between the X-ray and optical breaks,
while the errors of break times are quite large; 3.2+2.1

−0.6×104 s and
4.6+4.5
−2.3×104 s for the X-ray and optical break times, respectively.

It is noteworthy that the optical decay index is almost same as
the X-ray one after this break. According to the standard syn-
chrotron shock model, this strongly indicates the passage of the
cooling frequency of the synchrotron emission within the optical
band at the break time.

We searched possible correlations between X-ray and opti-
cal short-term variations. We calculated cross-correlations using
3 segments in which simultaneous optical and X-ray data are
available. The optical data was divided into the following parts;
i) 4.8×103 s< t < 7.5×103 s, ii) 1.0×104 s< t < 1.4×104 s, and
iii) 1 .6×104 s< t < 1.9×104 s. The resultant cross-correlations
are shown in figure 3. The correlation functions are flat and show
no prominent feature. We cannot detect any significant correla-
tions between optical and X-ray short-term variations.

3.2. Spectral energy distribution

Figure 4 shows infrared–X-ray SEDs. The figure contains 5 pan-
els in which simultaneous optical and X-ray observations are
shown for the 5 phases. We fitted a power-law model with a sin-
gle absorption component for the X-ray spectra. All 5 spectra
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Fig. 2. Optical and X-ray light curves of GRB 061121 afterglows. Theabscissa denote the time since the GRB trigger in seconds. In
the top panel, the ordinate denote the flux density in mJy for optical data and the count rate for X-ray data observed with XRT. Our
observations and X-ray observations by XRT are indicated bythe filled circles and crosses, respectively. Open circles and squares
are optical observations withRc andV/White light (UVOT) bands reported to GCN or taken by UVOT, respectively. The solid lines
are 95 % confidence regions of the best fitted power-law modelsfor optical light curves. The labels, (a),(b),(c),(d), and(e), represent
the time intervals for the SED analysis (see section 3.2). Inthe bottom panel, the ordinate denote the ratio of the observed flux
density to the best-fitted model of the plateau phase.V band points are shifted by−0.05 to match theRc band points.
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Fig. 3. X-ray/optical cross correlations for short-term variations. Thesolid, dashed, and dotted lines were calculated from the data
of 4.8× 103 s< t < 7.5× 103 s, 1.0× 104 s< t < 1.4× 104 s, and 1.6× 104 s< t < 1.9× 104 s, respectively. The upper and lower
panels show correlation functions in long and short time scales, respectively. No significant correlation can be seen.

in figure 4 can be described with absorption models with a hy-
drogen column density ofNH = 2.2± 0.15×1021 cm−2 in the
observer’s frame, which corresponds toNH = 9.2×1021 cm−2 in
the rest-frame. The solid lines in the figure indicate the best fit-
ted unabsorbed power-law component of X-ray spectra. As can
be seen from the figure, spectral slopesβ ( fν ∝ ν−β) were slightly
larger in the plateau phase (panel b) and a phase just after the op-

tical break (panel c) than those in later phases. Table 2 contains
results of our best fitted parameters in each period.

In the figure, the optical flux was corrected for the galac-
tic and extragalactic extinctions. The correction for the extra-
galactic extinction was performed with the relationship between
the visual extinctionAV and the hydrogen column densityNH
for the “Q2” model in Maiolino et al. (2001) (NH/AV = 3.3 ×
1021 cm−2). We estimated theNH from the best-fitted model of
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Table 2. Best fit parameters for X-ray spectra

Time interval (s) β χ2/d.o.f
6.7× 101 < t < 8.7× 101 0.09± 0.01 267/195
4.3× 102 < t < 5.4× 102 1.39± 0.04 19/17
5.0× 103 < t < 6.0× 103 1.34± 0.05 14/12
8.0× 103 < t < 1.2× 104 1.16± 0.04 10/9
6.5× 104 < t < 1.0× 105 1.12± 0.09 10/9

X-ray spectra, and set toNH = 9.2 × 1021 cm−2 as mentioned
above. The conversion fromAV to those in other bands was per-
formed following the equations in Cardelli et al. (1989).

For the correction of the extragalactic extinction, we used
the “Q2” model because it provides the most plausible optical—
IR SEDs, as shown below. According to the synchrotron-shock
model, the spectral slope at the optical region should beβO =

βX − 0.5 in the case ofνm < νO < νc < νX , whereνm andνc
are typical and cooling frequencies of the synchrotron emission
from a forward shock (Sari et al. 1998). In figure 4, we show the
expected spectral slope ofβO = βX − 0.5 with νc = 1018 Hz,
indicated by the dotted lines. The optical flux is required to
be over this dotted lines in order to satisfy the condition ex-
pected by the synchrotron-shock model. In addition to the “Q2”
model, the figure also contains optical–IR points correctedwith
the Milky Way model (NH/AV = 1.6 × 1021 cm−2; open tri-
angles) and with the “Q1” model (NH/AV = 6.7 × 1021 cm−2;
open squares)(Maiolino et al. 2001). As can be seen in panel (c),
a high AV provided by the Milky Way model yields an unnat-
urally sharp break betweenRc and J-bands. Corrected by the
“Q1” model, the optical flux is too low to be interpreted by
the synchrotron-shock model withβO = βX − 0.5. The mod-
els for SMC (NH/AV = 1.5 × 1022 cm−2) and LMC (NH/AV =

7.6× 1021 cm−2) also yield further lower optical flux. Thus, the
“Q2” model provides the best correction among those models.

Near the peak of the prompt emission, as can be seen in
panel (a) of figure 4, the optical flux is much above the power-
law component of X-rays. This indicates that the emission mech-
anism or source of the optical emission is distinct from those of
the prompt X-ray andγ-ray emission.

In panel (c) of figure 4, there is a difference between the
optical flux and the spectrum extrapolated from the X-ray data
(the solid line in the figure). The SED, hence, requires a spectral
break between the optical and X-ray bands. This is consistent
with the situation for the case ofνm < νO < νc < νX . In the
standard model,νc evolves with time, decreasing in case of con-
stant density medium, increasing in case of wind medium. Since
our findings privilege a constant density medium as discussed in
subsection 4.2, we expect at one point thatνc, decreasing with
time, will cross the optical band. At that time, the optical and X-
ray decay will become identical, and the SED will be compatible
with a simple power law. This is the case in panel (e), suggesting
thatνc crossed the optical band aroundt = 5× 104 s.

4. Discussion

4.1. A possible hump structure in the optical light curve

Here, we discuss the substructure in the optical light curve
around 5 ks. The behavior of the optical and X-ray light curves
is unclear in the transition phase from the plateau to the shallow
decay phases (1.5 × 103 s . t . 4.6 × 103 s). In figure 2, the

solid lines denote 95 % confidence regions of the power-law de-
cay model for each phase of the optical afterglow. As indicated
by these lines, our observation suggests that the plateau phase is
terminated by a flattening phase or a hump in the optical after-
glow.

We checked the significance of this hump with a correction
of colors, because the best-fitted models were calculated with
data taken with different bands; theV- andRc-band observations
in the plateau and shallow decay phases, respectively. The lower
panel of figure 2 shows the ratio of the observations to the best-
fitted model of the plateau phase. We convertedV-band obser-
vations to ourRc-band ones, by addingV − Rc = 0.05 to the
V-magnitudes. The hump appears over a 2.2-sigma level even
with the color correction.

By contrast, there is no sign of such a hump in the X-ray
light curve between those two phases. In addition, there is alarge
difference in the optical and X-ray decay indices in the plateau
phase, compared with those in the subsequent shallow and nor-
mal decay phases. The X-ray and optical light curves apparently
exhibit different behaviors during the X-ray plateau phase and
the transition phase to the shallow decay phase.

4.2. Implication to the synchrotron-shock model

In this subsection, we discuss the behavior of the afterglowof
GRB 061121 based on the synchrotron-shock model. In the case
of νm < νO < νc < νX , Urata et al. (2007) proposed a relation be-
tween the decay indices of the X-ray and optical bands described
asαX − αO = 1/4. In the plateau and shallow decay phases of
GRB 061121, theαX − αO is 0.34± 0.10 and 0.11± 0.08, re-
spectively. The classical synchrotron-shock model, hence, fails
to reproduce the observed light curves of GRB 061121 in the
shallow decay phase. It can only marginally reproduce the light
curve in the plateau phase.

Panaitescu et al. (2006) generalized the formulae of the
synchrotron-shock model by including the variations of theen-
ergy (E) in the blast wave, the energy ratio for electrons and the
magnetic field (εi andεB), and the ambient medium (n) in the fol-
lowing form;E(> Γ) ∝ Γ−e, εB ∝ Γ

−b, εi ∝ Γ
−i, andn(r) ∝ r−s.

The decay indices of optical and X-ray light curves are calcu-
lated as in equations (9) and (10) in Panaitescu et al. (2006).
Using those formulae, we evaluate the presence of the energy
injection (e > 0) or the time variations of microphysical param-
eters (b , 0 or i , 0) for GRB 061121.

We first assumes = 0, namely the uniform distribution of the
interstellar medium. In the following examination, we calculate
p from β in each time-interval shown in table 2. For the plateau
phase, assumingb = 0 andi = 0, we find that the optical and X-
ray light curves yield inconsistente, that is,e = 1.32± 0.24 and
4.05± 0.37 calculated fromαO1 andαX1, respectively. This in-
consistency can be reconciled only whens takes a narrow range
of s = 1.22±0.01 ande takes an unnaturally large value (e ∼ 7).
In the other case ofs > 0, the inconsistency ine becomes more
extreme. These results indicate that the observed light curves
during the plateau phase cannot be reproduced only with the en-
ergy injection scenario. Temporal variations of the microphysi-
cal parameters are, hence, required. Assuminge = 0 ands = 0,
we obtainb = −2.10± 0.36 andi = 2.04± 0.12. The positivei
implies a low efficiency of the energy for accelerating electrons
in highly relativistic shocks.

During the shallow decay phase after the optical hump, the
decay indices changed toαO2 = 0.96 andαX2 = 1.07. Even in
this phase, the condition ofb = 0 andi = 0 yields differente
values calculated fromαO2 (yielding e = 0.64± 0.20) andαX2
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SEDs for each panel are indicated in figure 2. The abscissa andordinate denote the rest-frame frequency in Hz and the flux density
in mJy, respectively. The filled circles are X-ray observations by XRT, optical observations reported to GCN, and our optical—IR
observations. The IR observations just provide upper limits of the flux. For the extragalactic extinction, the optical and IR data were
corrected with the “Q2” model (Maiolino et al. 2001). The open triangles and squares are data in which their corrections for the
extinctions were performed with the Milky Way model and the “Q1” model, respectively (Guidorzi et al. 2007). We omit arrows
indicating upper limits of the IR points of the open triangles and squares. The solid lines represent the best fitted power-law model
for the X-ray spectra. The dotted lines are expected spectral slopes from the synchrotron-shock model.

(e = 1.19± 0.25). Assuminge = 0, we obtainb = −0.50± 0.27
and i = 0.75± 0.12 for this phase. It is interesting to note that
the absolute values of bothb and i decreases from the plateau
to shallow decay phases. From the early to late stages, the con-
dition of the blast wave may resemble the classical picture in
which no temporal variation in the microphysical parameters is
required. Thus, the model proposed by Panaitescu et al. (2006)
can explain the light curves in both the plateau and shallow de-
cay phases by changing the microphysical parameters.

An alternative model was proposed by Ioka et al. (2006),
which consider prior activities before the main prompt emission.
According to their model, the shallow decay of X-ray afterglows
appears because a blast wave obtains additional energy by col-
liding with prior ejecta without significant decelerating of shells.
This model is possibly preferable for GRB 061121, since it has
a precursor∼ 75 s before the peak of the main prompt emission
(Page et al. 2007). The precursor may be a sign of the existence
of the prior activity.

Ioka et al. (2006) define the the prior ejected mass as a
power-law form ofγ, that is,M(< γ) ∝ γa. The decay indices
of X-ray and optical afterglows are given withαX = (a − 3)/2+
(a−11)(p−2)/8 andαO = (7a−25)/8+ (a−11)(p−2)/8 in the
case ofνm < νO < νc < νX , respectively. For the plateau phase of
GRB 061121, the X-ray and optical decay indices provide a con-
sistenta within errors for possible values ofp (2.2 & p & 2.8).
In the case ofp = 2.78, for example, we obtaineda = 4.94±
0.48 fromαX1 anda = 5.05± 0.10 fromαO1. For the shallow
decay phase, assumingp = 2.68, for example, we calculated
a = 5.99± 0.44 fromαX2 anda = 5.23± 0.10 fromαO2. Thus,

the decay indices of the plateau and shallow decay phases canbe
reproduced with the prior activity model proposed by Ioka etal.
(2006), while a temporal variation ofa would be needed.

Both models in Panaitescu et al. (2006) and Ioka et al.
(2006) can explain the observed light curves of GRB 061121,
only when time variations inb, i, or a are allowed. The situation
is further confusing when we consider the presence of the op-
tical hump between the plateau and shallow decay phases. The
discontinuity around the hump indicates a variation of the op-
tical decay index, which means a further variation inb, i, or a
during the hump.

The hump in the optical light curve between the plateau and
shallow decay phases is apparently not seen in the X-ray light
curve. This implies that the dominant emitting regions are dif-
ferent in X-ray and optical afterglows around the hump. The
hump structure reminds us of the two-component jet model; the
hump may be explained with a scenario that the emission from
a narrow jet may dominate in the plateau phase, while that from
a wide jet became dominant after the hump (Sheth et al. 2003;
Peng et al. 2005). In this case, the hump structure may appear
whenνm of the synchrotron emission from the wide jet passes
the optical band. The classical synchrotron-shock model failed
to reproduce the light curves possibly because of the composi-
tion of the two components in the plateau and shallow decay
phases.

In the standard synchrotron-shock model, an increase of the
density of the shock region would produce a hump in the opti-
cal light curve which is not seen in X-rays ifνc lies between the
optical and X-ray bands (Panaitescu and Kumar 2000). Hence,
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the optical hump of GRB 061121 may also be reproduced if the
external shock passed through a high density region in the inter-
stellar medium att = 2–6 ks.

We finally note that there are several sources which ex-
hibit optical light curves analogous to GRB 061121, that is,
GRB 021004 (Uemura et al. 2002), GRB 050525A (Klotz et al.
2005; Blustin et al. 2006), GRB 060117 (Jelı́nek et al. 2006),
GRB 060526 (Dai et al. 2007), and GRB 061007 (Mundell et al.
2007). For all of them, an early decay phase was terminated bya
flattening or a hump at 102−4 s, which was followed by a steeper
decay phase. An important point is that the decay indices before
and after the flattening phase are different each other. This char-
acteristic feature may commonly be observed in a group of GRB
afterglows. If the emission during the early decay phase hasa
different nature from that during the later decay phase, the rela-
tionship of those two components possibly causes the diversity
in light curves of optical afterglows and the correlation between
early X-ray and optical light curves.

5. Summary

We performed time-series photometry of the optical afterglow of
GRB 061121 with the 1.5-m Kanata telescope, and reported on
a detailed study of the afterglow with published X-ray and opti-
cal data. The decay index of the optical light curve was signif-
icantly different between the plateau and shallow decay phases.
The optical light curve possibly has a hump structure between
the plateau and shallow decay phases, while no sign of such a
hump is seen in the X-ray light curve. The different behavior in
the optical and X-ray light curves indicates that they have dis-
tinct emitting sources. The hump structure in the optical light
curve may imply a passage of the typical frequency of the syn-
chrotron emission from another forward shock distinct fromthe
early afterglow. The optical decay index became same as the X-
ray one in the late phase after the final break at∼ 4.6 × 104 s.
In conjunction with the temporal evolution of SEDs, we propose
that this break is caused by the passage of the cooling frequency
at the optical band. In both the plateau and shallow decay phases,
the observed decay and spectral indices are inconsistent with the
standard synchrotron-shock model. They requires the variation
of microphysical parameters in the shock region or the priorac-
tivity of the central engine. It is also possible that they are due to
the composition of two forward shock components if the hump
structure in the light curve was caused by another forward shock.
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