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Abstract

We consider a rational system of first order difference equations in the plane with four
parameters such that all fractions have a common denominator. We study, for the different
values of the parameters, the global and local properties of the system. In particular, we
discuss the boundedness and the asymptotic behavior of the solutions, the existence of
periodic solutions and the stability of equilibria.
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1 Introduction

In recent years, rational difference equations have attracted the attention of many researchers
for varied reasons. On the one hand, they provide examples of non-linear equations which
are, in some cases, treatable but whose dynamics present some new features with respect to
the linear case. On the other hand, rational equations frequently appear in some biological
models and, hence, their study is of interest also due to their applications. A good example of
both facts are Ricatti difference equations; the richness of the dynamics of Ricatti equations
is very well-known (see, for instance, [7] and [8]) and a particular case of these equations
provides the classical Beverton-Holt model on the dynamics of exploited fish populations [3].
Obviously, higher order rational difference equations and systems of rational equations have
also been widely studied but still have many aspects to be investigated. The reader can find
in the following books [1],[5],[11], and the works cited therein many results, applications and
open problems on higher order equations and rational systems.

A preliminar study of planar rational systems in the large can be found in the paper [6]
by Camouzis et al. In such work, they give some results and provide some open questions
for systems of equations of the type

xn+1 =
α1 + β1xn + γ1yn
A1 +B1xn + C1yn

yn+1 =
α2 + β2xn + γ2yn
A2 +B2xn + C2yn















, n = 0, 1, . . .
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where the parameters are taken to be non-negative. As shown in the cited paper, some of
those systems can be reduced to some Ricatti equations or to some previously studied second-
order rational equations. Further, since for some choices of the parameters one obtains a
system which is equivalent to the case with some other parameters, Camouzis et al. arrived
at a list of 325 non-equivalent systems to which it should be focused the attention. They list
such systems as pairs (k, l) where k and l make reference to the number of the corresponding
equation in their Tables 3 and 4.

In this paper, we deal with the rational system labelled as (21,23) in [6]. Note that
for non-negative coefficients such system is neither cooperative nor competitive but it has
the particularity that denominators in both equations are equal. This allows us to use
some of the techniques developed in [2] to completely obtain the solutions and give a nice
description of the dynamics of the system. In principle, we will not restrict ourselves to the
case of non-negative parameters, although this case will be considered in detail in the last
section. Hence, we will study the general case of the system

xn+1 =
α1 + β1xn

yn

yn+1 =
α2 + β2xn

yn















, n = 0, 1, . . . , (1)

where the parameters α1, α2, β1, β2 are given real numbers and the initial condition (x0, y0)
is an arbitrary vector of R

2. It should be noticed that when α1β2 = α2β1 the system
can be reduced to a Ricatti equation (or it does not admit any complete solution, which
occurs for α2 = β2 = 0) and therefore these cases will be neglected. Since we will not
assume non-negativeness for neither the coefficients nor the initial conditions, a forbidden
set will appear. We will give an explicit characterization of the forbidden set in each case.
Obviously, all the results concerning solutions that we will state in the paper are to be apply
only to complete orbits. We will focus our attention in three aspects of the dynamics of the
system: the boundedness character and asymptotic behavior of its solutions, the existence
of periodic orbits (and, in particular, of prime period-two solutions) and the stability of the
equilibrium points. It should be remarked that, depending on the parameters, they may
appear asymptotically stable fixed points, stable but not asymptotically stable fixed points,
non-attracting unstable fixed points and attracting unstable fixed points.

The paper is organized, besides this introduction, in three sections. Section 2 is devoted
to some preliminaries and some results which can be mainly deduced from the general
situation studied in [2]. Next, we study the case β2 = 0 since such assumption yields
the uncoupled globally 2-periodic equation yn+1 = α2/yn and the system is reduced to a
linear first order equation with 2-periodic coefficients; this will be our section 3 below. The
main section of the paper is section 4, where we give the solutions to the system and the
description of the dynamics in the general case β2 6= 0. We finish the paper by describing
the dynamics in the particular case where the coefficients and the initial conditions are taken
to be non-negative.
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2 Preliminaries and first results

Systems of linear fractional difference equations Xn+1 = F (Xn) in which denominators are
common for all the components of F have been studied in [2]. If one denotes by q the mapping
given by q(a1, a2, . . . , ak+1) = (a1/ak+1, a2/ak+1, . . . , ak/ak+1) for (a1, a2, . . . , ak+1) ∈ R

k+1

with ak+1 6= 0 and ℓ : Rk → R
k+1 is given by ℓ(a1, a2, . . . , ak) = (a1, a2, . . . , ak, 1), it is

shown in such work that the system can be written in the form Xn+1 = q ◦A◦ ℓ(Xn), where
A is a (k+1)× (k+1) square matrix constructed with the coefficients of the system. In the
special case of our system (1) one actually has

(

xn+1

yn+1

)

= q ◦





β1 0 α1

β2 0 α2

0 1 0









xn

yn
1



 .

This form of the system let us completely determine its solutions in terms of the powers of
the associated matrix

A =





β1 0 α1

β2 0 α2

0 1 0



 . (2)

Actually, the explicit solution to the system with initial condition (x0, y0) is given by

(xn+1, yn+1)
t = q ◦An(x0, y0, 1)

t, (3)

where M t stands for the transposed of a matrix M . Therefore, our system can be completely
solved and the solution starting at (x0, y0) is just the projection by q of the solution of the
linear system Xn+1 = AXn with initial condition X0 = (x0, y0, 1)

t whenever such projection
exists.

Remark 1 When such projection does not exist, then (x0, y0) lies in the forbidden set.
Clearly, this may only happen when for some n ≥ 1 one has

(0, 0, 1)An(x0, y0, 1)
t = 0.

Therefore, if ai(n) ∈ R, 0 ≤ i ≤ 2 are such that An = a0(n)I + a1(n)A+ a2(n)A
2, then one

obtains immediately that the forbidden set is given by the following union of lines

F =
⋃

n≥1

{ (x0, y0) ∈ R
2 : a1(n)y0 + a2(n)β2x0 + a2(n)α2 + a0(n) = 0 }.

The explicit calculation of ai(n), 0 ≤ i ≤ 2 for each n ≥ 3 may be done in several ways.
For instance, one has that a0(n)+a1(n)x+a2(n)x

2 is the remainder of the division of xn by
the characteristic polynomial of A. Further, by elementary techniques of Linear Algebra one
can also compute them in terms of the eigenvalues of A (an approach using the solutions to
an associated linear difference equation may be seen in [9]).

Remark 2 As mentioned in the introduction, all through the paper we will consider that

β2α1 6= β1α2. (4)
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(this is to say, that the matrix A is non-singular) since the cases with β2α1 = β1α2 may
be reduced to a single Ricatti equation. Actually, if α2 = β2 = 0, then the system does not
admit any complete solution, whereas, for α2 6= 0 or β2 6= 0, one has that there exists a
constant C such that α1 = Cα2 and β1 = Cβ2 and hence the first equation of the system
may be substituted by xn+1 = Cyn+1 and then the second one reduces to the Ricatti equation

yn+2 =
α2 + β2Cyn+1

yn+1
, n = 0, 1, . . .

with initial condition y1 = α2+β2x0

y0
.

Our main goal will be to give a description of the dynamics of the system in terms of
the eigenvalues of the associated matrix A given in (2). We begin with the following result
concerning 2-periodic solutions which is the particularization to our system of the analogous
general result given in Theorem 3.1 and Remark 3.1 of [2].

Proposition 3 Let us consider the system (1) with α1β2 6= α2β1. One has:

1. If β2 6= 0, then there are exactly as many equilibria as distinct real eigenvalues of
the matrix A. More concretely, for each real eigenvalue λ one gets the equilibrium
(

λ2−α2

β2
, λ
)

.

2. When β2 = 0, one has:

(a) if α2 < 0, then there are no fixed points;

(b) if 0 < α2 6= β2
1 , then there are two fixed points at

(

α1√
α2−β1

,
√
α2

)

and
(

−α1√
α2+β1

,−√
α2

)

;

(c) if α2 = β2
1 and α1 6= 0, then the only equilibrium point is

(

−α1

2β1
,−β1

)

;

(d) if α2 = β2
1 and α1 = 0, then there is an isolated fixed point (0,−β1) and a whole

line of equilibria (x0, β1).

3. There exist periodic solutions of prime period 2 if and only if α1β2 = 0.

Proof. As stated in [2], a point (a, b) ∈ R
2 is an equilibrium if and only if (a, b, 1) is

an eigenvector of the associated matrix A. When β2 6= 0, it is straightforward to prove

that for each real eigenvalue λ the vector
(

λ2−α2

β2
, λ, 1

)

is an eigenvector. In the case

β2 = 0, the equilibrium points can be easily computed directly from the equations α2 = y2,
α1 + β1x = xy.

For the proof of affirmation (3) it suffices to bear in mind that, according to [2], the
existence of prime period-two solutions is only possible when the associated matrix A has
an eigenvalue λ such that −λ is also an eigenvalue. Since A is a 3 × 3 square matrix, this
obviously implies that the trace of A is also an eigenvalue. Hence, β1 is an eigenvalue but
this is only possible if α1β2 = 0. If α1 = 0, then the initial condition (0, y0) gives a prime
period 2 solution whenever y20 6= α2, whereas, if α1 6= 0 and β2 = 0, a direct calculation
shows that the solution with initial conditions (0,−β1) is periodic of prime period 2. �

We now study the stability of fixed points in some of the cases. Recall that a fixed point
of our system (x∗, y∗) always verifies y∗ = λ for some real eigenvalue λ of the matriz A. We
will say in such case that the fixed point (x∗, y∗) is associated to λ.
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Proposition 4 Let us consider the system (1) with α1β2 6= α2β1. Let ρ(A) be the spectral
radius of the matrix A given in (2) and let λ be an eigenvalue of A.

1. If |λ| < ρ(A), then the associated equilibrium is unstable.

2. If |λ| = ρ(A) and all the eigenvalues of A whose modulus is ρ(A) are simple, then
the associated fixed point is stable. Further, if in this case λ is the unique eigenvalue
whose modulus is ρ(A), then it is assymptotically stable.

Proof. The Jacobian matrix of the map F (x, y) =
(

α1+β1x
y , α2+β2x

y

)

at a fixed point

(x∗, y∗) is given by

DF (x∗, y∗) =

(

β1/y
∗ −x∗/y∗

β2/y
∗ −1

)

.

Consider an eigenvalue λ of A and let λ2, λ3 be the other (non-necessarily different) eigenval-
ues of A. Let us show that the eigenvalues of the Jacobian matrix at a fixed point associated
to λ are just λ2

λ and λ3

λ . The result is trivial when β2 = 0 since the eigenvalues of A are β1

and ±√
α2 and fixed points are always associated to one of the eigenvalues ±√

α2. If β2 6= 0,

then x∗ = λ2−α2

β2
and y∗ = λ and, therefore, one obtains:

trace(DF (x∗, y∗)) =
β1 − λ

λ
=

λ2 + λ3

λ

det(DF (x∗, y∗)) =
−β1λ+ λ2 − α2

λ2
=

det(A)

λ3
=

λ2λ3

λ2
,

showing that the eigenvalues of DF (x∗, y∗) are as claimed. Now, the first statement follows
at once since, if |λ| < ρ(A), then at least one of the eigenvalues of DF (x∗, y∗) lies outside the
unit circle. Moreover, when |λ| = ρ(A) and it is the unique eigenvalue with such property,
then the eigenvalues of DF (x∗, y∗) are inside the (open) unit ball and hence the equilibrium
(x∗, y∗) is assymptotically stable, which proves the second part of (2).

For the proof of the first part of (2) let us recall that if (x∗, y∗) is a fixed point of (1)
associated to the real eigenvalue λ, then X∗ = (x∗, y∗, 1)t is a fixed point of the linear system
Xn+1 = 1

λAXn. The eigenvalues of the matrix M = 1
λA are obviously 1, λ2

λ and λ3

λ . Since
the eigenvalues of A having modulus ρ(A) are simple, so are the eigenvalues of M having
modulus 1. Therefore, the fixed point X∗ is stable [8, Th. 4.13]. Now, the stability of
(x∗, y∗) follows at once from (3) and the continuity of q in the semi-space z > 0. �

3 Case β2 = 0.

Recall that, since we are assuming that inequality (4) holds, we have β1α2 6= 0. In this case,
the forbidden set of the system reduces to the line y = 0. Since β2 = 0 the second equation
of the system becomes the uncoupled equation

yn+1 =
α2

yn
,
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which, as far as α2 6= 0, for each initial condition y0 6= 0 gives

yn =







y0 for even n,

α2

y0
for odd n.

(5)

Substituting such values in the first equation of the system we obtain a first order linear
difference equation with 2-periodic coefficients whose solution is given by x1 = (α1+β1x0)/y0
and, for n > 1,

xn =



































(

β1
2

α2

)

n

2



x0 +
α1(β1 + y0)

α2

n

2
∑

k=1

(

α2

β1
2

)k


 for even n,

α1

y0
+

β1

y0

(

β1
2

α2

)

n−1

2



x0 +
α1(β1 + y0)

α2

n−1

2
∑

k=1

(

α2

β1
2

)k


 for odd n.

(6)

Hence, we have proved the following.

Proposition 5 If β2 = 0 and β2α1 6= β1α2, then the system (1) is solvable for any initial
condition (x0, y0) with y0 6= 0 and the solution (xn, yn) is given by (5) and (6) where, ex-
plicitly, one has:

(1) If α2 = β2
1 , then for n > 1

xn =



















x0 −
α1(β1 + y0)n

2β1
2 for even n,

α1

y0
+

β1x0

y0
− α1(β1 + y0)(n− 1)

2β1y0
for odd n.

(2) If α2 6= β2
1 , then for n > 1

xn =



























(

β1
2

α2

)

n

2

[

x0 +
α1(β1 + y0)

β1
2 − α2

(

1−
(

α2

β1
2

)
n

2

)]

for even n,

α1

y0
+

β1

y0

(

β1
2

α2

)

n−1

2

[

x0 +
α1(β1 + y0)

β1
2 − α2

(

1−
(

α2

β1
2

)
n−1

2

)]

for odd n.

From the proposition above one can easily derive the following result which completely
describes the asymptotic behaviour of the solutions to the system.

Corollary 6 Let us consider β2 = 0 and β1α2 6= 0.

1. When β1
2 = α2 one has:

(a) If α1 6= 0, then every solution to the system is unbounded except those with initial
condition (x0,−β1), which are 2-periodic.
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(b) If α1 = 0, the system is globally 2-periodic.

2. If β1
2 = −α2, then the system (1) is globally 4-periodic. Further, the solution corre-

sponding with the initial condition (x0, y0) is of prime period 2 if and only if 2β2
1x0 +

α1(β1 + y0) = 0.

3. If β1
2 6= |α2|, then the solutions with initial condition

(

α1(β1 + y0)

α2 − β2
1

, y0

)

are period-

two solutions. Moreover,

(a) If β1
2 > |α2|, then any other solution to the system (1) is unbounded.

(b) If β1
2 < |α2|, then any other solution of (1) is bounded and tends to one of the

period-two solutions described above.

Proof. The proof is a straightforward consequence of the explicit formulas for xn and yn
given in Proposition 5. It should, however, be mentioned that the globally periodicity of the
system in the case β1

2 = −α2 can be easily seen since the associated matrix A given by (2)
in such case verifies A4 = β4

1I, where I stands for the identity matrix. Actually, a simple
calculation proves that the solution starting at (x0, y0) is the 4-cycle
{

(x0, y0),

(

α1 + β1x0

y0
,
−β2

1

y0

)

,

(

−x0 −
α1(β1 + y0)

β2
1

, y0

)

,

(−β2
1x0 + α1y0
β1y0

,
−β2

1

y0

)}

,

which is obviously 2-periodic if and only if x0 = −x0 − α1(β1+y0)
β2
1

.�

From the above result and Proposition 4 one easily gets the following information about
the stability of the fixed points.

Corollary 7 Let us consider β2 = 0 and β1α2 6= 0.

1. If β1
2 = α2, then

(a) for α1 6= 0 the unique fixed point of (1) is unstable;

(b) for α1 = 0 every fixed point of (1) is stable but not asymptotically stable.

2. If β1
2 6= α2 > 0, then

(a) for β1
2 > α2 both fixed points of (1) are unstable;

(b) for β1
2 < α2 the fixed points of (1) are stable but not asymptotically stable.

4 Case β2 6= 0.

Proposition 8 Suppose β2 6= 0 and (x0, y0) is an initial condition not belonging to the
forbidden set F. In such case the solution of system (1) is given by

xn =
vn+1

vn−1

1

β2
− α2

β2
, yn =

vn
vn−1

, (7)

where vn is the unique solution of the linear difference equation

vn+3 − β1vn+2 − α2vn+1 + (β1α2 − β2α1) vn = 0 (8)

with initial conditions v−1 = 1, v0 = y0 and v1 = β2x0 + α2.

7



Proof. As we have seen in section 2, the solution to system (1) starting at a point (x0, y0)
not belonging to the forbidden set is just the projection by q of the solution of the linear
system (un+1, vn+1, wn+1)

t = A(un, vn, wn)
t with initial condition (x0, y0, 1)

t where A is
given by (2). Since the third equation of such linear systems reads wn+1 = vn, it can be
reduced to the planar linear system of second order equations

un+1 = β1un + α1vn−1,
vn+1 = β2un + α2vn−1,

(9)

and hence, if (un, vn) is the solution to (9) obtained for the initial conditions (u0, v0, v−1) =
(x0, y0, 1), then the solution of our rational system for the initial values (x0, y0) will be

xn+1 = un/vn−1 , yn+1 = vn/vn−1. (10)

It is clear that for β2 6= 0 we have that un can be completely determined by (9) in terms of
vn+1 and vn−1 and hence it suffices to solve the third order linear equation

vn+3 − β1vn+2 − α2vn+1 + (β1α2 − β2α1) vn = 0 (11)

trivially deduced from (9) and substitute the corresponding values in (10) to obtain the
result claimed.�

In the following results we shall discuss the behavior of the solutions to (1) by using
Proposition 8. We shall consider three different cases depending on the roots of the charac-
teristic polinomial of the linear equation (8). Recall that such roots are also the (possibly
complex) eigenvalues of the matrix A given in (2).

From Proposition 8 we see that the asymptotic behavior of the solutions of system (1)
will depend on the asymptotic behavior of the sequences vn

vn−1
, being vn solutions of the

linear difference equation (8). The Theorem of Poincaré (Theorem 8.9 in [8]) establishes a
general result for the existence of limn→∞

vn
vn−1

. In our case, since equation (8) has constant

coefficients, we can directly do the calculations, even in the cases not covered by the Theorem
of Poincaré, to describe the dynamics of system (1).

4.1 The characteristic polinomial has no distinct roots with the

same module

Let λ1, λ2, λ3 be the three roots of the characteristic polynomial of the linear difference
equation (8) in this case. A condition on the coefficients for this case can be given by:

(

2
3β1α2 − β2α1 − 2

27β1
3

2

)2

≤
(

α2 +
1
3β1

2

3

)3

,

with α1 6= 0 or α2 ≤ 0. Recall that we assume here that β2α1 6= β1α2 and β2 6= 0.
If λ1 is the characteristic root of maximal modulus, we will denote by L the line

L = { (x, y) : β2x = (β1 − λ1)(y + λ1) }.

8



Proposition 9 Suppose that β2 6= 0 and every root of the characteristic polinomial of the
linear difference equation (8) is real and no two distinct roots have the same module. When
(x0, y0) is not in the forbidden set, we have:

1. If |λ1| > |λ2| > |λ3|, then

(a) the system (1) admits exactly the three equilibria

(

λi
2 − α2

β2
, λi

)

, i = 1, 2, 3;

(b) the fixed point

(

λ1
2 − α2

β2
, λ1

)

attracts every complete solution starting on a point

(x0, y0) which does not belong to the line L;

(c) the corresponding solution to the system with initial condition (x0, y0) 6=
(

λ3
2 − α2

β2
, λ3

)

and (x0, y0) ∈ L converges to

(

λ2
2 − α2

β2
, λ2

)

.

2. If |λ1| > |λ2| and λ1 has algebraic multiplicity 2, then

(a) the system (1) admits exactly the two equilibria

(

λi
2 − α2

β2
, λi

)

, i = 1, 2;

(b) the fixed point

(

λ1
2 − α2

β2
, λ1

)

attracts every complete solution except the other

fixed point;

3. If |λ1| > |λ2| and λ2 has algebraic multiplicity 2, then

(a) the system (1) admits exactly the two equilibria

(

λi
2 − α2

β2
, λi

)

, i = 1, 2;

(b) the fixed point

(

λ1
2 − α2

β2
, λ1

)

attracts every complete solution starting on a point

(x0, y0) which does not belong to the line L;

(c) the corresponding solution to the system with initial condition (x0, y0) ∈ L con-

verges to

(

λ2
2 − α2

β2
, λ2

)

.

4. If λ1 has multiplicity 3, then

(a) the system (1) has a unique equilibrium

(

λ1
2 − α2

β2
, λ1

)

;

(b) the equilibrium is a global attractor.

Proof. In all the cases, the equilibrium points are directly given by Proposition 3. The
assertions concerning the asymptotic behaviour can be derived as a consequence of Case 1
in [8, pg. 240], bearing in mind that

xn =
vn+1

vn−1

1

β2
− α2

β2
, yn =

vn
vn−1

,

9



and that vn is the solution to the linear equation (8) with initial conditions v−1 = 1, v0 = y0
and v1 = β2x0 + α2.�

4.2 The characteristic polinomial has two distinct real roots with

the same module

It is easy to check that this case occurs when β1 6= 0, β2 6= 0, α1 = 0 and α2 > 0. Thus, the
roots of the characteristic polynomial of the linear difference equation (8) are β1 and ±√

α2.

Proposition 10 Suppose β1 6= 0, β2 6= 0, α1 = 0 and α2 > 0. Assume also that (x0, y0) is
not in the forbidden set.

1. If β1
2 = α2, then

(a) there are two equilibrium points (0,±β1);

(b) the equilibrium point (0, β1) attracts every complete solution not starting on a
point of the line x = 0;

(c) the solutions starting on a point (x0, y0) of the line x = 0 are prime period-two
solutions except the two equilibrium points (0,±β1).

2. If β1
2 > α2, then

(a) there are three equilibrium points

(

β1
2 − α2

β2
, β1

)

and (0,±√
α2);

(b) the equilibrium point

(

β1
2 − α2

β2
, β1

)

attracts every complete solution not starting

on a point of the line x = 0;

(c) the solutions starting on a point (x0, y0) of the line x = 0 are prime period-two
solutions except the two equilibrium points (0,±√

α2);

3. If β1
2 < α2, then

(a) there are three equilibrium points

(

β1
2 − α2

β2
, β1

)

and (0,±√
α2);

(b) the solutions starting on a point of the line x = 0 are prime period-two solutions
except the two equilibrium points (0,±√

α2);

(c) the solutions starting on a point of the lines β2x+
α2 − β1

2

β1
y = 0 or x =

β1
2 − α2

β2

are unbounded with the only exception of the fixed point

(

β1
2 − α2

β2
, β1

)

;

(d) the solutions starting on any other point (x0, y0) are bounded and each tends to
one of the two-periodic solutions;

10



Proof. In all cases the affirmation a) is a consequence of Proposition 3.
When β1

2 = α2, the roots are β1, with algebraic multiplicity two, and −β1. By Propo-
sition 8 we know that any solution of the system can be written as

β2xn =
(n+ 1)P1 + P2 + P3(−1)n+1

(n− 1)P1 + P2 + P3(−1)n−1
β1

2 − β1
2,

yn =
nP1 + P2 + P3(−1)n

(n− 1)P1 + P2 + P3(−1)n−1
β1,

where P1, P2 and P3 actually satisfy

P1 + P2 − P3 =
β2x0 + β1

2

β1
, P2 + P3 = y0 , −P1 + P2 − P3 = β1. (12)

If P1 6= 0, then (xn, yn) obviously tends to (0, β1). From (12) we see that P1 = 0 if
and only if x0 = 0 and, in such case, xn = 0 and yn takes alternatively the values Aβ1 and
A−1β1 with A = P2+P3

P2−P3
. Notice that y0 6= 0 guaranties P2 + P3 6= 0 and, since β1 6= 0, we

can not have P1 = 0 and P2 − P3 = 0. This completes the proof of (1).
In the case β2

1 6= α2, by Proposition 8 we can write the general solution of the system as

β2xn =
P1 +

[

P2 + P3(−1)n+1
]

(√
α2

β1

)n+1

P1 + [P2 + P3(−1)n−1]
(√

α2

β1

)n−1 β1
2 − α2,

yn =
P1 + [P2 + P3(−1)n]

(√
α2

β1

)n

P1 + [P2 + P3(−1)n−1]
(√

α2

β1

)n−1 β1,

where P1, P2 and P3 satisfy

P1β1 + (P2 − P3)
√
α2 = β2x0 + α2,

P1 + P2 + P3 = y0,

P1β1
−1 + (P2 − P3)

√
α2

−1 = 1.
(13)

When β2
1 > α2 one immediately gets the results of statement (2) with an argument similar

to that of the previous case. Therefore we will focus our attention in the case β2
1 < α2. The

condition x0 = 0 is, according to (13), equivalent to P1 = 0 and in such case one gets
xn = 0 and yn takes alternatively the values K

√
α2 and K−1√α2 with K = P2+P3

P2−P3
= y0

α2
.

Now, if P1 6= 0 and the initial conditions are taken such that P2 + P3 6= 0 6= P2 − P3, then
(xn, yn) tends obviously to the 2-cycle {(0,K√

α2), (0,K
−1√α2)} where K = P2+P3

P2−P3
. On

the contrary, if either P2+P3 = 0 or P2−P3 = 0 (and only one of both equalities holds) then
both sequences xn and yn are unbounded. From the system (13) one gets that P2−P3 = 0 if

and only if x0 = (β2
1 −α2)/β2 and that P2 +P3 = 0 is equivalent to β2x0 +

α2 − β1
2

β1
y0 = 0.

This shows the validity of c).�
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4.3 The characteristic polinomial has complex roots

Now we consider the case in which the characteristic polynomial of the linear difference
equation has a couple of complex roots ρe±iθ, with sin θ > 0. Let λ 6= 0 be the real root. It
can be easily shown that

β1 = λ+ 2ρ cos θ; α2 = −
(

2λρ cos θ + ρ2
)

; β2α1 = λρ2 + β1α2. (14)

and that this situation occurs when
(

2
3β1α2 − β2α1 − 2

27β1
3

2

)2

>

(

α2 +
1
3β1

2

3

)3

.

By Proposition 3 we know that the unique equilibrium is

(

λ2 − α2

β2
, λ

)

. Denote by L

the line
L = { (x, y) : β2x = (β1 − λ)(y + λ) }.

Notice that (β1 − λ)(y + λ) = 2yρ cos θ − α2 − ρ2. Also observe that the equilibrium does
not belong to L.

Theorem 11 Suppose β2 6= 0 and the characteristic polynomial of the linear difference
equation to have complex roots and assume that (x0, y0) is not in the forbidden set.

1. The solutions starting on the line L remain on it and they are either all periodic or
all unbounded.

2. If |λ| > ρ, then the unique equilibrium attracts all the solutions not starting on L.

3. If |λ| < ρ, then every non fixed bounded subsequence of a solution accumulates on L.

4. If |λ| = ρ, then every complete solution (neither starting on the fixed point nor on L)
lies on a not degenerate conic, which does not contain the equilibrium.

Proof. Assume that (x0, y0) is not the fixed point. Using Proposition 8, we have

α2 + β2xn =
Pλn+1 + 2ρn+1 cos (a+ (n+ 1) θ)

Pλn−1 + 2ρn−1 cos (a+ (n− 1) θ)
,

yn =
Pλn + 2ρn cos (a+ nθ)

Pλn−1 + 2ρn−1 cos (a+ (n− 1) θ)
,

where the constants P ∈ R and a ∈ [0, 2π), together with k ∈ R
+, are given by





λ ρeiθ ρe−iθ

1 1 1
1/λ e−iθ/ρ eiθ/ρ









kP
keia

ke−ia



 =





α2 + β2x0

y0
1



 . (15)

Observe that we may consider P ≥ 0, by replacing, if necessary, a with a+ π.
Let us consider the sequences

σn = 2
(ρ

λ

)n

cos (a+ nθ) ; τn = 2
(ρ

λ

)n

sin (a+ nθ) .
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It can be easily proved that

α2 + β2xn = λ2P + σn+1

P + σn−1
, yn = λ

P + σn

P + σn−1
, (16)

λσn+1 = ρσn cos θ − ρτn sin θ, ρσn−1 = λσn cos θ + λτn sin θ . (17)

As a consequence, λ2σn+1 − 2λρσn cos θ + ρ2σn−1 = 0, and then

α2 + β2xn = 2ρyn cos θ − ρ2 + P
λ2 − 2ρλ cos θ + ρ2

P + σn−1
,

which is equivalent to

β2xn − (β1 − λ)(yn + λ) = P
λ2 − 2ρλ cos θ + ρ2

P + σn−1
. (18)

Using (15) one has that (x0, y0) ∈ L if and only if P = 0 and from (18) we then get that
(xn, yn) ∈ L for all n ≥ 1.

Furthermore, by (16), we see that if (x0, y0) ∈ L, then the solution (xn, yn) is periodic
whenever θ/π is a rational number and unbounded otherwise.

Assume now that the solution (xn, yn) does not start on L, this to say, P 6= 0. We will
now distinguish the three cases: |λ| > ρ, |λ| < ρ and |λ| = ρ.

If |λ| > ρ, then by (16) one immediately has xn → λ2−α2

β2
and yn → λ.

Suppose now that |λ| < ρ. If (xnk
, ynk

) is a subsequence satisfying that inf
k
|cos (a+ (nk − 1) θ)| >

0, then one obviously has σnk−1 → ∞. Using the definition of σn, one easily gets that
σnk

σnk−1

is bounded. Then, (xnk
, ynk

) is a bounded subsequence and equation (18) shows that it is
attracted by the line L.

On the other hand, if cos (a+ (nk − 1) θ) → 0, then the left equation in (17) lead us to
∣

∣

∣
σnk

(

λ
ρ

)nk
∣

∣

∣
→ 2 sin θ > 0. Thus, σnk

→ ∞ and using (17) once more we get
σnk

σnk−1
→ ∞.

Therefore, (xnk
, ynk

) is an unbounded subsequence.
Finally, let us suppose ρ = |λ|. If we consider the change of variables

x =
(

β2x+ α2 − ρ2
) λ

2λ cos θ − 2ρ
− (y − λ)

ρλ cos θ

λ cos θ − ρ
,

y =
(

β2x+ α2 − ρ2
) 1

2 sin θ
− (y − λ)

(λ + ρ cos θ)

sin θ
,

then one may deduce from (17) that xn =
ρλσn−1

P + σn−1
, yn =

ρλτn−1

P + σn−1
. Therefore, one

immediately gets that

xn
2 + yn

2 = 4
(ρλ)2

(P + σn−1)2
, (xn − ρλ)2 = P 2 (ρλ)2

(P + σn−1)2
,

which clearly shows that (xn, yn) lies in the conic x2 + y2 = 4
P 2 (x− ρλ)2, having its focus in

(0, 0), its directrix in the line x = ρλ and eccentricity 2/P . Further, one immediately sees

13



that the fixed point

(

λ2 − α2

β2
, λ

)

is transformed by the change of variables above in (0, 0)

and, hence, it does not belong to the conic. �

Remark 12 In the case |λ| < ρ of this last theorem, one might conjecture that every subse-
quence of a solution (even a non-bounded one) actually approaches the line L; but this is not
the case. Let us take, for example, the system whith α1 = 1, β1 = 3, α2 = −4, β2 = −10, in
which the characteristic roots of the associated polynomial are given by λ = 1 and

√
2eiπ/4

and consider the solution starting on (x0, y0) = (−11/20, 3/2). We then have that a = 0,
P = 1 and σ2+4k = 0 for all k ≥ 0. One may use equation (18) to show that all the
points of the form (x3+4k, y3+4k) lay on the line 10x + 2y + 3 = 0 while the line L is
given by 10x + 2y + 2 = 0. Note, however, that the subsequences (x4k, y4k), (x1+4k, y1+4k)
and (x2+4k, y2+4k) are all bounded and converge respectively to (−3/5, 2), (−2/5, 1) and
(−1/5, 0), which do belong to L.

It should also be noticed that the fixed point lays on the line 10x + 2y + 3 = 0. This is
also the case in the general setting. It follows from (18) that whenever σnk−1 = 0 then the
point (xn−k, yn−k) is on the line containing the fixed point which is parallel to L.

Remark 13 Notice that, according to the results in [2], when |λ| = ρ and the argument θ
of the complex root is a rational multiple of π, the system is globally periodic.

4.4 Stability of fixed points

We finish this section with the complete study of the stability of the fixed points in the case
β2 6= 0.

Theorem 14 Suppose that β2 6= 0, let λ be a real eigenvalue of the matrix A given in (2).

Let
(

λ2−α2

β2
, λ
)

be the associated fixed point and denote by ρ(A) the spectral radius of A.

1. If |λ| < ρ(A), then the associated fixed point is unstable.

2. If |λ| = ρ(A), then the associated equilibrium is stable if and only if every eigenvalue
whose modulus is ρ(A) is a simple eigenvalue. Moreover, the stability is asymptotic if
and only if λ is a simple eigenvalue and it is the unique eigenvalue of A whose modulus
is ρ(A).

Proof. The first statement was already proved in Proposition 4. Besides, in such Propo-
sition, we have shown that if every eigenvalue whose modulus is ρ(A) is simple then the
associated equilibrium is stable. Let us prove the converse.

According to the results of the previous subsections, the only cases in which one has a
non-simple eigenvalue of maximal modulus are the cases treated in Proposition 9 (1) and
(4) and the first case of Proposition 10. We will see that in such cases the equilibrium points
associated to eigenvalues of maximal modulus are unstable.

We begin with the case of an eigenvalue λ1 of maximal modulus with multiplicity 2.
For each N ∈ N, N > 1 one may consider the solution with initial conditions (x0, y0) =

(
λ2
1−α2

β2
− 2λ2

1N
(N2+1)β2

, λ1− λ1N
N2+1 ). The solution of (8) in such case is given by vn = λn+1

1 (N2+
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1 − Nn − N)/(N2 + 1), which cannot vanish since N > 1. For this solution one has

|yN − λ1| = |λ1|N , proving that the equilibrium (
λ2
1−α2

β2
, λ1) is unstable.

Similarly, if A has a unique eigenvalue λ of multiplicity 3 then, for each N ∈ N, N 6= 0

let us consider (x0, y0) = (λ
2−α2

β2
− 2 λ2

β2N2 , λ). The corresponding solution to (8) is given by

vn = (N2−n−n2)λn+1

N2 . It is not difficult to see that vn 6= 0 for all n ≥ 1 and then the solution
to our system (1) is complete. Further, since yn = vn/vn−1 one gets that |yN − λ| = 2|λ|.
Therefore, the fixed point (λ

2−α2

β2
, λ) is not stable.

When α1 = 0, β2
1 = α2 6= 0, there are two equilibrium points associated to eigenvalues

of maximal modulus: (0,±β1). The fixed point (0,−β1) is, according to the result of
Proposition 10, unstable since the other equilibrium attracts all the solutions not starting
on the line x = 0. To see that (0, β1) is also unstable, let us choose, for each odd N ∈ N,

the solution starting at (x0, y0) = (
−2β2

1

Nβ2
, β1). Then, using equation (12) and the expression

for yn given just above such equation, we have vn = βn+1
1 + P1nβ

n
1 if n is even and vn =

βn+1
1 + P1(n+ 1)βn

1 if n is odd, where P1 = −β1/N . Since N is odd, we see that yn exists
for all n ∈ N and, further, we get that |yN − β1| = 2|β1|, which clearly implies that (0, β1)
cannot be stable.

Finally, it only remains to prove that when A has distinct simple eigenvalues whose
modulus equal ρ(A) then the fixed point is not asymptotically stable. But this situation can
only happen if either one has the situation described in Proposition 11 (4) or the one given
in Proposition 10 (3). In the case of complex eigenvalues we had seen that all the orbits lie
on conics not going through the fixed point and, hence, it cannot be asymptotically stable.
In the other case, it is clear that the fixed points (0,±√

α2) are not attracting since every
solution starting on the line x = 0 is 2-periodic. �

Remark 15 It is interesting to notice that in the three cases in which there is an eigenvalue
of maximal modulus with multiplicity larger than 1, the corresponding fixed point is attracting
but unstable.

5 Non-negative solutions to the system with non-negative

coefficients

When the coefficients of our system (1) are non-negative and we restrict ourselves to non-
negative initial conditions, many of the cases studied in the previous sections cannot appear.
Further, in such case one may describe which kind of orbits appear and their assymptotic
behaviour without the previous calculation of the characteristic roots.

It shoud be noticed that whenever the coefficients in system (1) are non-negative and
α1β2 6= α2β1, every initial condition (x0, y0) with x0 ≥ 0, y0 > 0 gives rise to a complete
orbit except for α2 = 0 where the condition x0 > 0 is also necessary.

It will be convenient to study independently the case α1β2 = 0. Next result is a simple
summary of the results in Section 3 and Proposition 10 and, hence, we omit its proof.

Corollary 16 Let us consider that the coefficients in system (1) are non-negative and
α1β2 = 0 6= α2β1.
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1. If β2 = 0, one has:

(a) When α2 ≤ β2
1 there are no non-negative periodic orbits and all non-negative

solutions are unbounded, with the only exception of the case α2 = β2
1 , α1 = 0,

which is globally 2-periodic.

(b) When α2 > β2
1 there exists a non attractive fixed point

(

α1√
α2−β1

,
√
α2

)

and the

whole line (α2 − β2
1)x0 = α1(β1 + y0) of 2-periodic solutions. Every other non-

negative solution is bounded and converges to one of the 2-cycles.

2. If β2 6= 0 = α1, then every non-negative solution is bounded and the ones starting in
the line x0 = 0 are 2-periodic. Morevoer,

(a) When α2 < β2
1 there are two non-negative fixed points:

(

β2
1−α2

β2
, β1

)

, which at-

tracts all non-periodic non-negative solutions, and (0,
√
α2).

(b) When α2 = β2
1 there is a unique non-negative equilibrium (0, β1) which attracts

all non-periodic non-negative solutions.

(c) When α2 > β2
1 the unique non-negative equilibrium is (0,

√
α2) which is not an

attractor. Every non-negative solution converges to one of the periodic solutions.

The remaining cases are jointly treated in the following result. All the definitions and
results on non-negative matrices which are used in its proof may be found in [10, Ch. 8]

Proposition 17 Suppose that system (1) has non-negative coefficients and that α1β2 6= 0.

1. If α2 6= 0 or β1 6= 0 then there is a unique non-negative (actually, positive) stable
equilibrium which attracts all non-negative solutions.

2. If α2 = β1 = 0, the system is globally 3-periodic with a unique equilibrium.

Proof. Let us consider A as in (2). A simple calculation shows that (A + I)2 is positive
and, therefore, A is irreducible. Then the spectral radius ρ(A) is a strictly positive simple
eigenvalue of A.

If there exists another eigenvalue λ such that |λ| = ρ(A) then, since A is non-negative
and irreducible, the eigenvalues of A should be λk+1 = ρ(A)eikπ/3 where k = 0, 1, 2 and,
consequently, A3 = ρ(A)3I. The direct computation of A3 shows that this is possible if
and only if α2 = β1 = 0 and, hence, in that case, the system is 3-periodic and the only
equilibrium is the one associated to the real eigenvalue ρ(A).

In the remaining cases, λ1 = ρ(A) is a dominant eigenvalue and, according to our results
of Proposition 4, Proposition 9 and Theorem 11, the corresponding fixed point is stable and
attracts all complete solutions except those starting on the line

L = { (x, y) : β2x = (β1 − λ1)(y + λ1) }.

Since λ1 is the largest eigenvalue of A, one has that det(A−µI) < 0 for all µ > λ1. However,
det(A − β1I) = α1β2 > 0, showing that β1 < λ1. Thus, for every x0 ≥ 0 and y0 > 0 one
obtains β2x0 ≥ 0 and (β1 − λ1)(y0 + λ1) < 0, which proves that (x0, y0) 6∈ L.

The equilibrium associated to the eigenvalue λ1 = ρ(A) is
(

λ2
1−α2

β2
, λ1

)

, which is positive

since, as before, one sees that det(A−√
α2I) = α1β2 > 0 and hence λ1 >

√
α2. �
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