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THE QUANTUM ORIGIN OF COSMIC STRUCTURE

K. A. MALIK

Astronomy Unit, Queen Mary University of London, United Kingdom

In this concise, albeit subjective review of structure formation, I shall introduce the cosmolog-

ical standard model and its theoretical and observational underpinnings. I will focus on recent

results and current issues in theoretical cosmology, in particular in cosmological perturbation

theory and its applications.

1 Introduction

Recent years have seen a remarkable transformation of cosmology, from a rather esoteric subject
at the borderline of theoretical physics and applied mathematics to one of the most vibrant and
popular areas of modern Astronomy. This development has been brought about by the spectac-
ular advance in the subject, such as the development of cosmological perturbation theory, but
more importantly, by the availability of new observational data sets of unprecedented quantity
and quality.

Two data sets are of particular importance in this context, Cosmic Microwave Background
(CMB) experiments Large Scale Structure (LSS) surveys. The CMB experiments1 , balloon-
borne, using dedicated satellites, or ground-based, have revolutionised our understanding of the
universe, giving us access to information from the very early universe in form of tiny temperature
anisotropies, at the level of 1 part in 100, 000, imprinted on the CMB. The exceptionally success-
ful Wmap satellite mission2 which started in June 2001 and ended just recently (see contribution
by Hinshaw in this volume), measured the spectrum of these anisotropies with unprecedented

precision on large and medium angular scales. The Planck mission3, launched in May 2009, is
now taking data, and will not only improve temperature anisotropy measurements and extend
them to smaller scales, but will also measure the polarisation of the CMB (see contribution by de
Benardis in this volume). LSS surveys improved our understanding of the late universe. From
measuring the positions and redshift distances from just hundreds or thousands of galaxies, the
latest surveys, such as 2df Galaxy Redshift Survey4 (now completed), the 6df Galaxy Survey5

and the SDSS6 (both still taking data), have mapped hundreds of thousands of galaxies, and
other objects, and eventually will have mapped on the order of millions of galaxies.

In the following sections I shall give a brief overview of our current understanding of structure
formation, in particular how vacuum fluctuations in the fields present in the very universe give
rise to CMB anisotropies and LSS in the late universe. I do apologise in advance for a rather
incomplete and subjective referencing due to the limited space available.
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Figure 1: The evolution of the universe in what has become the cosmological standard model.

2 The evolution of the Universe

Let us now turn to the evolution of the universe, that the observational data from CMB experi-
ments and LSS surveys mentioned in the previous section and our understanding of fundamental
physics suggest. In the following I shall describe the Cosmological standard model reflecting the
general consensus in the cosmology community under the tacit understanding that nothing “too
weird” is included.

Faced with the observational data, we might first ask what underlying theory or theories
govern the evolution of the Universe, giving rise to the data. Fortunately we do not have to
invoke utterly new physics to answer this question. Most of the progress in recent years is
built on two familiar theories from theoretical physics, each governing their particular range of
scales, namely on small scales Quantum Field Theory, necessary to set initial conditions for the
universe, and on large scales Einstein’s General Relativity, necessary to calculate its evolution.
This means we can already work with two separate, well understood theories, instead of having
to wait for a more fundamental final theory. Although it would be nice to have an underlying
more fundamental theory, we already have the tools to calculate how quantum fluctuations
evolve into large scale structure, thereby testing models of the early universe which at least
reflect some aspects of any more fundamental theory.

Figure 1 summarises the evolution of the universe in the cosmological standard model (figure

from Faucher-Giguère et al.7). The universe begins with a period accelerated expansion, called
inflation. During this era small quantum fluctuations in the fields present are stretched by the
expansion of spacetime to super-horizon scales (larger than the particle horizon), where they
are frozen in. These small fluctuations therefore remain constant until they later reenter the
horizon and act as the “seeds” for the anisotropies in the CMB and source the formation of
the LSS, where the small fluctuation are amplified through gravitational instability. Roughly
400, 000 years after the beginning of the universe the CMB is formed, followed by an epoch
known as the “dark ages” during which no objects emitting visible light are present. The first
stars are forming ca. 400 Myears afterwards, starting an epoch of reionisation ending roughly 1
Gyear after the beginning. The first galaxies begin to assemble during the dark ages, ever larger
structures such as clusters and super-cluster of galaxies form thereafter, and the universe has
begun to undergo another period of accelerated expansion a couple of Gyears ago. The main
constituents of the universe as given by the seven year WMAP data (see Komatsu et al.8) at
the present day are roughly 73% dark energy, 23% dark matter, and 4.5% baryonic matter.

Let me stress again, unlike the standard model in particle physics, the cosmological standard
model is by no means accepted by the whole community working in the wider field of cosmology.



This reflects on the one hand the heterogeneity of the field and the community, and on the
other the still weaker experimental and observational “underpinnings” of cosmology compared
to particle physics, despite the huge progress in recent years. The cosmological standard model
is however the model most practitioners might agree upon, albeit some with a slight hesitation.

To understand the final “details” – what drives inflation, what drives the late time acceler-
ation of the universe – we might need to resort to more arcane areas of theoretical physics. I
will return to these questions later on.

3 Generating primordial density perturbations

In this section I shall briefly review how the primordial density perturbations that source the
formation of the CMB anisotropies and the LSS are generated. As pointed out above, the
dynamics of the universe on large and intermediate scales is controlled by Einstein equations

Gµν = 8π G Tµν , (1)

where Gµν is the Einstein tensor describing the geometry of spacetime, Tµν is the energy-
momentum tensor encoding the matter content of the universe, and G is Newton’s constant.
However, the initial conditions are set by the theory governing the smallest scales, Quantum
field theory. Of particular importance here will be the dynamics of the field driving inflation,
the inflaton.

3.1 Inflation

Cosmological inflation was proposed in the early eighties by Starobinsky9 and Guth10 to alleviate
several problems of the Hot Big Bang model (such as the flatness, horizon, monopole problems,

see e.g. Liddle and Lyth11 for an introduction to modern cosmology). Inflation is a period
of accelerated expansion of spacetime in the very early universe. This is “easily” achieved by
introducing a scalar field ϕ with potential U , which gives rise to the pressure P = 1

2a2
ϕ′2−U(ϕ) ,

where a is the scale factor and a prime denotes differentiation with respect to conformal time η.
We can see that the pressure P is negative during a period of potential domination, which

is usually associated with the field “slowly rolling” down its potential, therefore having small or
negligible kinetic energy (this is known as the slow-roll approximation).

The dynamics of the backgrounda is governed by the Klein-Gordon equation

ϕ′′ + 2Hϕ′ + a2U,ϕ = 0 , (2)

for the scalar field, and by the Friedmann equation

H2 =
8πG

3

(
1

2
ϕ′2 + a2U

)
, (3)

for the scalar factor a, whereH = a′/a. The above system constitutes a simple damped oscillator.
Imposing the slow-roll approximation then gives a nearly constant Hubble parameter H = H/a.

We now turn to the generation of vacuum fluctuations in the scalar field. The evolution of
these fluctuations is governed by the perturbed Klein-Gordon equation

δϕ1
′′ + 2Hδϕ1

′ + k2δϕ1 + a2U,ϕϕδϕ1 = 0 (4)

where we assumed slow-roll and are working in Fourier space, with k being the comoving
wavenumber. Once the potential is specified, Eq. (4) can be solved in terms of Hankel functions.

aI am postponing the details of splitting quantities into background and perturbations to Section 3.2.



The initial conditions for Eq. (4) are the connection with Quantum Field Theory and are
imposed on small scales and at early times (|kη| ≫ 1) (choosing the positive frequency modes

in the initial vacuum state, see e.g. Liddle and Lyth11), and are given by

δϕ1 ∼ e−ikη

a
√
2k

. (5)

Then defining the power spectrum for the field fluctuations as Pδϕ1
(k) ≡

(
k3

2π2

) ∣∣δϕ1

∣∣2, we

get at horizon crossing, i.e. when k = H, the now classic result for the fluctuation amplitude,
Pδϕ1

(k) = H2/(2π)2. This means that the amplitude of the field fluctuations at horizon crossing

is (nearly) independent of scale or scale-invariant for H ∼ const (Starobinsky9; Hawking13; Guth

and Pi12; Mukhanov and Chibisov14).

Inflation solves many problems of the hot Big Bang model which it was designed to do.
Therefore the arguably greatest success of inflation is the generation of a (nearly) scale-invariant

or Harrison-Zeldovich-Peebles power spectrum15 for the primordial density fluctuations from
the vacuum fluctuations in the scalar field that can then act as seeds for structure formation,
something it wasn’t originally intended to do.

3.2 Cosmological perturbation theory

To accurately calculate the primordial perturbation spectrum and to relate it to the spectrum of
temperature fluctuations in the CMB or the distribution of galaxies, we need General Relativity.

Unfortunately General Relativity is non-linear, and only a few exact solution relevant for
cosmology are known. We therefore have to resort to an approximation scheme, which predom-
inantly is cosmological perturbation theory.

Choosing the homogeneous and isotropic Friedmann-Robertson-Walker metric as our back-
ground, we have to split all metric and matter variables into a time-dependent background and
time and space dependent perturbations, e.g. for the scalar field above ϕ = ϕ+ δϕ1 +

1

2
δϕ2+ . . .

(the subscripts denote the order of the perturbation). The perturbed quantities are then substi-
tuted into the governing equations (1), and the resulting expressions truncated at the required
order. For example linear perturbation theory is recovered by neglecting terms of second order
or higher.

Although General Relativity is covariant, splitting variables is not: spurious gauge modes
get introduced and therefore we have to construct gauge invariant variables, as pioneered by
Bardeen16. For example, a first order “coordinate” transformation xµ → x̃µ = xµ + δx µ

1
,

induces a change in the metric variable, here the curvature perturbation, and the energy density
perturbation as

ψ̃1 = ψ1 +
a′

a
δη1 , δ̃ρ1 = δρ1 + ρ′0δη1 , (6)

where δx 0
1

= δη1. We can now solve for δη1, combine both equations, and get a gauge-invariant
quantity, which no longer contains any gauge artefacts,

− ζ1 = ψ1 +
H
ρ′
δρ1 , (7)

the curvature perturbation on uniform density hypersurfaces (Bardeen et al.17). For recent
reviews on cosmological perturbation theory, including higher order perturbations, see e.g. Malik
and Matravers18 (more mathematical) and Malik and Wands19 (more detailed).



4 Evolution and conserved quantities

Variables like δϕ1 in general evolve and we need to model their evolution from the end of infla-
tion, or more precisely, when they exit the horizon, to the time when they reenter the horizon.
However, we can use instead conserved quantities, for which one only needs to calculate the
value at “horizon exit”. A popular example is ζ1 introduced in Eq. (7). Energy conservation

is then sufficient, as shown in Wands et al.20, to guarantee that on large scales for adiabatic
perturbations ζ ′

1
= 0 . We can therefore calculate observable quantities in the early universe,

e.g. at end of inflation after horizon exit, then map them onto ζ and be confident that the
observables won’t change until they reenter the horizon.

Hence we arrive at the following simplistic picture of structure formation:

• vacuum fluctuation in the scalar field, mapped to the curvature perturbation ζ1 ∼ gravi-
tational potential wells,

• dark matter and other fluids “fall into” the potential wells, amplified by gravitational
instability,

• CMB anisotropies, and anisotropies in the neutral hydrogen and the LSS are formed.

5 Observational signatures

In order to test our models of the early universe, we have to compare their theoretical predictions
with the observational data. In the following I shall briefly describe how this is done and which
observable quantities are used.

5.1 Calculating observational consequences

As described in Section 3, the starting point is the calculation of the two-point correlator or power
spectrum 〈δϕ1δϕ1〉 of the field fluctuations, which can then be translated into the spectrum of a
conserved quantity that later on source the CMB anisotropies, e.g. the curvature perturbation
on uniform density hypersurfaces, 〈ζ1ζ1〉. This input power spectrum has then to be evolved

using the Einstein equations, usually using Boltzmann solvers such as Cmbfast or Camb21,
and we get the theoretical predictions for the CMB anisotropies, which can then be compared
with observational data. The whole process is highly non-trivial, and beyond the scope of this
article.

In comparing the theory with the observations using the formalism sketched above the
theoretical input is in general a particular model of inflation, given in form of a particular
potential U(ϕ). There are too many models to list, and I am following e.g. Liddle and Lyth11

by grouping the model zoo into:

• single field models versus multi-field models,

• large field models compared to small field models.

It is interesting to note that at present the simplest “chaotic inflation” models, introduced by
Linde22, are still in agreement with the data (following the above categorisation these are single,
large field models), e.g. U(ϕ) = 1

2
m2ϕ2.

Possibly the biggest problem of inflation is that the nature and identity of the inflaton,
the field that drives inflation, is at present unknown. As indicated above, it is not even clear
whether more than one field is involved, and whether the field driving inflation is responsible
for generating the initial nearly scale invariant power spectrum.



Let me now very briefly highlight some of the parameter values from Wmap7 cosmological
interpretation paper by Komatsu et al.8. Taking the primordial power spectrum as a power law,
with amplitude ∆2

ζ(k0) and spectral index ns

∆2

ζ(k) = ∆2

ζ(k0)

(
k

k0

)ns−1

, (8)

we have ∆2

ζ(k0) = 2.43 × 10−9, ns = 0.969 (at 68%C.L.), at pivot scale k0 = 0.002 Mpc−1.
Note that Wmap7 ruled out the exact Harrison-Zeldovich-Peebles spectrum with spectral index
ns = 1 (at more than 3 σ). Finally, the scalar to tensor ratio, that is the contribution of
gravitational waves to the power spectrum is r < 0.36, and the “running” or scale dependence
of spectral index is −0.084 < dns/d ln k < 0.010.

5.2 Higher order observables

At linear order in perturbation theory the primordial perturbations generated during inflation
are (very nearly) Gaussian distributed, but at higher this is no longer the case. Higher order
cosmological perturbation theory has already allowed us to extract new information from obser-
vational data sets and the calculation of new observable quantities. Note, that in this article I
am mainly concerned with classical perturbation theory, so the order of the perturbations does
not refer to loops.

As stated above, at linear order the observable of choice is the two-point correlation function:
〈ζζ〉, which gives rise to the power spectrum P (k) ∼ Akns−1, with amplitude A , spectral index
ns (and comoving wavenumber k). The power spectrum contains all the information on the
distribution (in the Gaussian case).

At second order in perturbation theory we can calculate the three-point correlation function,
〈ζζζ〉 giving rise to the bispectrum (Gangui et al.23, Komatsu and Spergel24, Maldacena25, and

for a recent review see Bartolo et al. 26). This is much more complicated, even in the Gaussian
case. However, for the simplest models the information in the bispectrum can be characterised
by a single number, the non-linearity parameter fNL, which in this case can be roughly described
as fNL ∝ ζ2/(ζ1)

2 , where ζ1 and ζ2 are the curvature perturbation at first and second order,
respectively. Note, that at present fNL is treated as a constant (as is spectral index in many
studies), though eventually – when sufficient data is available – one should allow for scale and
configuration dependence.

Having calculated the theoretical predictions, we can then use the observational data from
the CMB, and increasingly also data from LSS surveys, to constrain the models of the early
universe we are studying. At linear order most models under discussion these days pass the
observational tests. The non-linearity parameter fNL is therefore becoming a very strong model
discriminator: the very simplest single field inflation models , the “vanilla” variety, predict
fNL ∼ 1. However, there is already a tantalising hint, albeit only at the 68% level, in the
Wmap7 data that fNL = 32 ± 21. This implies that the “vanilla” inflation models might be
ruled out, and multi-field inflation models, e.g. curvaton models or generic multi-field inflation
models, might be favoured (see Alabidi et al.27 for a recent discussion of three models giving
large fNL, including the curvaton model).

5.3 New phenomena at higher order in perturbation theory

As sketched in Section 5.2 above, higher order perturbation theory is necessary to exploit the
data and calculate higher order observables. But it can also be used to study new phenomena
that only become apparent beyond the standard, linear perturbation theory. These higher
order phenomena can also be used to study models of the early universe, allowing to probe



different regions of parameter space. I shall very briefly highlight two effects at second order,
the generation of tensor perturbations, and the generation of vorticity.

Second order tensor perturbations or gravitational waves are sourced by a term quadratic
in first order density (“scalar”) perturbations. In the absence of first order gravitational waves,
second order ones can dominate the observational signal on some scales (see the papers by

Ananda et al.28 and Baumann et al.29).
Whereas vorticity at linear order is assumed to be zero in standard cosmology, as there are

no source terms (such as an anisotropic pressure), at second order vorticity is sourced by the
coupling of density and entropy perturbations, even in the absence of anisotropic pressure (see

the papers by Christopherson et al.30). This effect might be observable, in particular on small
scales, and should allow for e.g. additional bounds on the entropy perturbation.

6 Current and future observational data sets

Until recently, cosmologists preferred the “clean” data from the CMB, which is not affected by
complicated astrophysics in the late universe, to calculate higher order observables. However,
at the moment data sets from the later stages of the universe, namely LSS surveys and future
21cm anisotropy maps, are becoming another focus of research (see e.g. the paper by Komatsu

et al.31). This is not only because additional data sets will deepen our understanding of the
universe, but they also probe different epochs in its evolution.

Whereas LSS surveys, such as the ones mentioned in Section 1, probe redshifts out to a depth
of z ∼ 1, maps of the neutral hydrogen probe intermediate redshifts and have the potential to
become an additional source of data. The neutral hydrogen left over from the Big Bang can be
mapped using its 21cm transition. Primordial perturbations sourcing potential “wells” and then
generating the temperature anisotropies in the CMB, later on also source anisotropies in the
neutral hydrogen. The 21cm signal is generated after decoupling but before galaxy formation
at redshift 200 . z . 30 (this can be compared to the formation of the CMB at decoupling,
z ≃ 1100). The amount of data in the 21cm anisotropy maps compared to the CMB is many

orders of magnitude higher (see Loeb and Zaldarriaga32 for details), and many 21cm experiments
are currently either projected or are already taking data, e.g. Ska and Lofar. It is however
not clear yet, whether issues such as foreground subtraction can be resolved.

7 Conclusions

The cosmological standard model works exceedingly well; inflation, originally introduced to
solve problems of the hot Big Bang model, provides a mechanism to generate a nearly scale-
invariant primordial spectrum of density perturbations through the vacuum fluctuations in the
fields present in the very early universe, e.g. the inflaton. The primordial density perturbations
can then act as a source for the CMB anisotropies and the LSS. New observable quantities, in
particular at higher order in cosmological perturbation theory, and new and better data will
allow to constrain the parameter space for the models of the early universe further.

However, there are also problems. In particular, what is the inflaton? Although no candidate
for the inflaton is obvious at present, at the very least the inflationary paradigm is an excellent
parametrisation of whatever more fundamental theory is sourcing structure formation. Why the
universe has the initial conditions inferred by the data, indeed, whether it makes sense to ask
this question given our knowledge (or ignorance) at the present time, is not clear.

The Lhc in Geneva will probe energies of up to 15 TeV, recreating conditions last encoun-
tered at the very beginning of the universe. Data from the Lhc will help to understand the
beginning of the universe and its evolution, and also shed some light on the many unanswered
questions that remain in modern cosmology, such as on the nature of the dark matter. We



therefore have reason to hope that the forthcoming new results from Lhc and cosmology will
answer some of our questions about the universe, without raising too many new ones.
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