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Abstract

We give a direct proof of a functional Santaló inequality due to Fradelizi and Meyer.
This provides a new proof of the Blaschke-Santaló inequality. The argument combines a
logarithmic form of the Prékopa-Leindler inequality and a partition theorem of Yao and
Yao.
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Introduction

If A is a subset of Rn we let A◦ be the polar of A:

A◦ = {x ∈ R
n | ∀y ∈ A, x · y ≤ 1},

where x · y denotes the scalar product of x and y. We denote the Euclidean norm of x by
|x| = √

x · x. Let K be a subset of Rn with finite measure. The Blaschke-Santaló inequality
states that there exists a point z in R

n such that

voln(K) voln(K − z)◦ ≤ voln(B
n
2 ) voln(B

n
2 )

◦ = v2n, (1)

where voln stands for the Lebesgue measure on R
n, Bn

2 for the Euclidean ball and vn for its
volume. It was first proved by Blaschke in dimension 2 and 3 and Santaló [7] extended the
result to any dimension. We say that an element z of Rn satisfying (1) is a Santaló point for
K.
Throughout the paper a weight is an measurable function ρ : R+ → R+ such that for any n,
the function x ∈ R

n 7→ ρ(|x|) is integrable.

Definition 1. Let f be a non-negative integrable function on R
n, and ρ be a weight. We

say that c ∈ R
n is a Santaló point for f with respect to ρ if the following holds: for all

non-negative Borel function g on R
n, if

∀x, y ∈ R
n, x · y ≥ 0 ⇒ f(c+ x)g(y) ≤ ρ

(√
x · y

)2
, (2)

then
∫

Rn

f(x) dx

∫

Rn

g(y) dy ≤
(

∫

Rn

ρ(|x|) dx
)2
. (3)
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Heuristically, the choice of the weight ρ gives a notion of duality (or polarity) for non-
negative functions. Our purpose is give a new proof of the following theorem, due to Fradelizi
and Meyer [4].

Theorem 2. Let f be non-negative and integrable. There exists c ∈ R
n such that c is a

Santaló point for f with respect to any ρ. Moreover, if f is even then 0 is a Santaló point for

f with respect to any weight.

The even case goes back to Keith Ball in [2], this was the first example of a functional
version of (1). Later on, Artstein, Klartag and Milman [1] proved that any integrable f

admits a Santaló point with respect to the weight t 7→ e−t2/2. Moreover in this case the
barycenter of f suits (see [5]). Unfortunately this is not true in general; indeed, taking

f = 1(−2,0) + 41(0,1)

g = 1(−0.5,0] +
1
41(0,1)

ρ = 1[0,1],

it is easy to check that f has its barycenter at 0, and that f(s)g(t) ≤ ρ
(√

st
)2

as soon as
st ≥ 0. However

∫

R

f(s) ds

∫

R

g(t) dt =
9

2
> 4 =

(

∫

R

ρ(|r|) dr
)2
.

To prove the existence of a Santaló point, the authors of [4] use a fixed point theorem and
the usual Santaló inequality (for convex bodies). Our proof is direct, in the sense that it does
not use the Blashke Santaló inequality; it is based on a special form of the Prékopa-Leindler
inequality and on a partition theorem due to Yao and Yao [8].
Lastly, the Blaschke-Santaló inequality follows very easily from Theorem 2: we let the reader
check that if c is a Santaló point for 1K with respect to the weight 1[0,1] then c is a Santaló
point for K.

1 Yao-Yao partitions

In the sequel we consider real affine spaces of finite dimension. If E is such a space we denote
by ~E the associated vector space. We say that P is a partition of E if ∪P = E and if the
interiors of two distinct elements of P do not intersect. For instance, with this definition, the
set {(−∞, a], [a,+∞)} is a partition of R. We define by induction on the dimension a class
of partitions of an n-dimensional affine space.

Definition 3. If E = {c} is an affine space of dimension 0, the only possible partition P = {c}
is a Yao-Yao partition of E, and its center is defined to be c.
Let E be an affine space of dimension n ≥ 1. A set P is said to be a Yao-Yao partition of E
if there exists an affine hyperplane F of E, a vector v ∈ ~E\~F and two Yao-Yao partitions P+

and P− of F having the same center c such that

P =
{

A+ R−v |A ∈ P−

}

∪
{

A+ R+v |A ∈ P+

}

,

The center of P is then x.
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If A is a subset of ~E we denote by pos(A) the positive hull of A, that is to say the smallest
convex cone containing A.
A Yao-Yao partition P of an n-dimensional space E has 2n elements and for each A in P
there exists a basis v1, . . . , vn of ~E such that

A = c+ pos(v1, . . . , vn), (4)

where c is the center of P. Indeed, assume that P is defined by F, v,P+ and P− (see Defini-
tion 3). Let A ∈ P+ and assume inductively that there is a basis v1, . . . , vn−1 of ~F such that
A = c+ pos(v1, . . . , vn−1). Then A+ R+v = c+ pos(v, v1, . . . , vn−1).

A fundamental property of this class of partitions is the following

Proposition 4. Let P be a Yao-Yao partition of E and c its center. Let ℓ be an affine form

on E such that ℓ(c) = 0. Then there exists A ∈ P such that ℓ(x) ≥ 0 for all x ∈ A. Moreover

there is at most one element A of P such that ℓ(x) > 0 for all x ∈ A\{c}.
Proof. By induction on the dimension n of E. When n = 0 it is obvious, we assume that
n ≥ 1 and that the result holds for all affine spaces of dimension n−1. Let ℓ be an affine form
on E such that ℓ(c) = 0. We introduce F, v,P+,P− given by Definition 3. By the induction
assumption, there exists A+ ∈ P+ and A− ∈ P− such that

∀y ∈ A+ ∪A− ℓ(y) ≥ 0.

If ℓ(c+v) ≥ 0 then ℓ(x+tv) ≥ 0 for all x ∈ A+ and t ∈ R+, thus ℓ(x) ≥ 0 for all x ∈ A++R+v.
If on the contrary ℓ(c + v) ≤ 0 then ℓ(x) ≥ 0 for all x ∈ A− + R−v, which proves the first
part of the proposition. The proof of the ‘moreover’ part is similar.

The latter proposition yields the following corollary, which deals with dual cones: if C is
cone of Rn the dual cone of C is by definition

C∗ = {y ∈ R
n | ∀x ∈ C, x · y ≥ 0}.

Corollary 5. Let P be a Yao-Yao partition of Rn centered at 0. Then

P∗ := {A∗ |A ∈ P}

is also a partition of Rn.

Actually the dual partition is also a Yao-Yao partition centered at 0 but we will not use
this fact.

Proof. Let x ∈ R
n and ℓ : y ∈ R

n 7→ x · y. By the previous proposition there exists A ∈ P
such that ℓ(y) ≥ 0 for all y ∈ A. Then x ∈ A∗. Thus ∪P∗ = R

n. Moreover if x belongs to the
interior of A∗, then for all y ∈ A\{0} we have ℓ(y) > 0. Again by the proposition above there
is at most one such A. Thus the interiors of two distinct elements of P∗ do not intersect.

We now let M(E) be the set of Borel measure µ on E which are finite and which satisfy
µ(F ) = 0 for any affine hyperplane F .

Definition 6. Let µ ∈ M(E), a Yao-Yao equipartition P for µ is a Yao-Yao partition of E
satisfying

∀A ∈ P, µ(A) = 2−nµ(E). (5)

We say that c ∈ E is a Yao-Yao center of µ if c is the center of a Yao-Yao equipartition for µ.
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Here is the main result concerning those partitions.

Theorem 7. Let µ ∈ M(Rn), there exists a Yao-Yao equipartition for µ. Moreover, if µ is

even then 0 is a Yao-Yao center for µ.

It is due to Yao and Yao [8]. They have some extra hypothesis on the measure and their
paper is very sketchy, so we refer to [6] for a proof of this very statement.

2 Proof of the Fradelizi-Meyer inequality

In this section, all integrals are taken with respect to the Lebesgue measure. Let us recall
the Prékopa-Leindler inequality, which is a functional form of the famous Brunn-Minkowski
inequality, see for instance [3] for a proof and selected applications. If ϕ1, ϕ2, ϕ3 are non-
negative and integrable functions on R

n satisfying ϕ1(x)
λϕ2(y)

1−λ ≤ ϕ3(λx + (1 − λ)y) for
all x, y in R

n and for some fixed λ ∈ (0, 1), then

(

∫

Rn

ϕ1

)λ(
∫

Rn

ϕ2

)1−λ
≤

∫

Rn

ϕ3.

The following lemma is a useful (see [4, 2]) logarithmic version of Prékopa-Leindler. We recall
the proof for completeness.

Lemma 8. Let f1, f2, f3 be non-negative Borel functions on R
n
+ satisfying

f1(x)f2(y) ≤
(

f(
√
x1y1, . . . ,

√
xnyn)

)2
.

for all x, y in R
n
+. Then

∫

R
n

+

f1

∫

R
n

+

f2 ≤
(

∫

R
n

+

f3

)2
. (6)

Proof. For i = 1, 2, 3 we let

gi(x) = fi(e
x1 , . . . , exn)ex1+···+xn .

Then by change of variable we have
∫

Rn

gi =

∫

R
n

+

fi.

On the other hand the hypothesis on f1, f2, f3 yields

g1(x)g2(y) ≤ g3(
x+y
2 ),

for all x, y in R
n. Then by Prékopa-Leindler

∫

Rn

g1

∫

Rn

g2 ≤
(

∫

Rn

g3

)2
.

Theorem 9. Let f be a non-negative Borel integrable function on R
n, and let c be a Yao-Yao

center for the measure with density f . Then c is a Santaló point for f with respect to any

weight.
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Combining this result with Theorem 7 we obtain a complete proof of the Fradelizi-Meyer
inequality.

Proof. It is enough to prove that if 0 is a Yao-Yao center for f then 0 is a Santaló point.
Indeed, if c is a center for f then 0 is a center for

fc : x 7→ f(c+ x).

And if 0 is a Santaló point for fc then c is a Santaló point for f .
Let P be a Yao-Yao equipartition for f with center 0. Let g and ρ be such that (2) holds
(with c = 0). Let A ∈ P, by (4), there exists an operator T on R

n with determinant 1 such
that A = T

(

R
n
+

)

. Let S = (T−1)∗, then S
(

R
n
+

)

= A∗. Let f1 = f ◦ T , f2 = g ◦ S and
f3(x) = ρ(|x|). Since for all x, y we have T (x) · S(y) = x · y, we get from (2)

f1(x)f2(y) ≤ ρ(
√
x · y)2 = f3(

√
x1y1, . . . ,

√
xnyn)

2,

for all x, y in R
n
+. Applying the previous lemma we get (6). By change of variable it yields

∫

A
f

∫

A∗

g ≤
(

∫

R
n

+

ρ(|x|) dx
)2

.

Therefore
∑

A∈P

∫

A
f

∫

A∗

g ≤ 2n
(

∫

R
n

+

ρ(|x|) dx
)2

. (7)

Since P is an equipartition for f we have for all A ∈ P
∫

A
f = 2−n

∫

Rn

f.

By Corollary 5, the set {A∗, A ∈ P} is a partition of Rn, thus

∑

A∈P

∫

A∗

g =

∫

Rn

g.

Inequality (7) becomes
∫

Rn

f

∫

Rn

g ≤ 4n
(

∫

R
n

+

ρ(|x|) dx
)2

,

and of course the latter is equal to
(∫

Rn
ρ(|x|) dx

)2
.
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