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Abstract

We give a direct proof of a functional Santald inequality due to Fradelizi and Meyer.
This provides a new proof of the Blaschke-Santal6 inequality. The argument combines a
logarithmic form of the Prékopa-Leindler inequality and a partition theorem of Yao and
Yao.
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Introduction
If Ais a subset of R"™ we let A° be the polar of A:
A°={x eR"|Vye A, -y <1},

where x - y denotes the scalar product of z and y. We denote the Euclidean norm of x by
|z] = v/x - x. Let K be a subset of R™ with finite measure. The Blaschke-Santalé inequality
states that there exists a point z in R™ such that

vol, (K) vol, (K — 2)° < vol,(BY) vol,(By)° = v2, (1)

where vol,, stands for the Lebesgue measure on R", By for the Euclidean ball and v,, for its
volume. It was first proved by Blaschke in dimension 2 and 3 and Santalé [7] extended the
result to any dimension. We say that an element z of R"™ satisfying (II) is a Santalé point for
K.

Throughout the paper a weight is an measurable function p : R, — R, such that for any n,
the function x € R"™ — p(]x|) is integrable.

Definition 1. Let f be a non-negative integrable function on R”, and p be a weight. We
say that ¢ € R™ is a Santalé point for f with respect to p if the following holds: for all
non-negative Borel function g on R"”, if

Yo,y €RY, z-y>0 = fle+a)g(y) < p(vzy)°, 2)

then
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Heuristically, the choice of the weight p gives a notion of duality (or polarity) for non-
negative functions. Our purpose is give a new proof of the following theorem, due to Fradelizi
and Meyer [4].

Theorem 2. Let f be non-negative and integrable. There exists ¢ € R™ such that ¢ is a
Santalé point for f with respect to any p. Moreover, if f is even then 0 is a Santald point for
f with respect to any weight.

The even case goes back to Keith Ball in [2], this was the first example of a functional
version of (Il). Later on, Artstein, Klartag and Milman [I] proved that any integrable f
admits a Santalé point with respect to the weight t — e~t*/2. Moreover in this case the
barycenter of f suits (see [5]). Unfortunately this is not true in general; indeed, taking

J =120 +41(0,)
9=1Cos50 + 1101
pP= 1[0,1}7

it is easy to check that f has its barycenter at 0, and that f(s)g(t) < p(\/g)2 as soon as

st > 0. However 0
2
L1 [awie=3>a=([ ptirhar)”

To prove the existence of a Santalé point, the authors of [4] use a fixed point theorem and
the usual Santald inequality (for convex bodies). Our proof is direct, in the sense that it does
not use the Blashke Santal6 inequality; it is based on a special form of the Prékopa-Leindler
inequality and on a partition theorem due to Yao and Yao [§].

Lastly, the Blaschke-Santalé inequality follows very easily from Theorem 2k we let the reader
check that if ¢ is a Santal6 point for 1x with respect to the weight 1jg ;) then ¢ is a Santal6
point for K.

1 Yao-Yao partitions

In the sequel we consider real affine spaces of finite dimension. If F is such a space we denote
by E the associated vector space. We say that P is a partition of F if UP = E and if the
interiors of two distinct elements of P do not intersect. For instance, with this definition, the
set {(—o0,al,[a,+00)} is a partition of R. We define by induction on the dimension a class
of partitions of an n-dimensional affine space.

Definition 3. If £ = {c¢} is an affine space of dimension 0, the only possible partition P = {c}
is a Yao-Yao partition of E, and its center is defined to be c.

Let E be an affine space of dimension n > 1. A set P is said to be a Yao-Yao partition of F
if there exists an affine hyperplane F' of E, a vector v € E\ﬁ and two Yao-Yao partitions P
and P_ of F having the same center c such that

P={A+Rv|AcP }U{A+Rsv|Ac P},

The center of P is then z.



If A is a subset of E we denote by pos(A) the positive hull of A, that is to say the smallest
convex cone containing A.
A Yao-Yao partition P of an n-dimensional space E has 2" elements and for each A in P
there exists a basis v1,...,v, of E such that

A:C—I—pOS(’Ul,.--,’L)n), (4)

where c¢ is the center of P. Indeed, assume that P is defined by F,v, P, and P_ (see Defini-
tion [B]). Let A € P4 and assume inductively that there is a basis vy,...,v,—1 of F such that
A=c+pos(vi,...,vp—1). Then A+ R v =c+ pos(v,vy,...,0_1).

A fundamental property of this class of partitions is the following

Proposition 4. Let P be a Yao-Yao partition of EE and c its center. Let £ be an affine form
on E such that £(c) = 0. Then there exists A € P such that £(x) > 0 for all x € A. Moreover
there is at most one element A of P such that {(x) > 0 for all x € A\{c}.

Proof. By induction on the dimension n of . When n = 0 it is obvious, we assume that
n > 1 and that the result holds for all affine spaces of dimension n— 1. Let £ be an affine form
on F such that ¢(c) = 0. We introduce F,v, P, P_ given by Definition Bl By the induction
assumption, there exists A} € P4 and A_ € P_ such that

Vye Ay UA_ ((y) > 0.

If {(c+v) > 0 then {(z+tv) > 0forallz € AL andt € Ry, thus ¢(x) > Oforallz € AL +Rv.
If on the contrary ¢(c + v) < 0 then ¢(z) > 0 for all z € A_ + R_v, which proves the first
part of the proposition. The proof of the ‘moreover’ part is similar. O

The latter proposition yields the following corollary, which deals with dual cones: if C' is
cone of R™ the dual cone of C' is by definition

C*={yeR"|Vz e, z-y >0}
Corollary 5. Let P be a Yao-Yao partition of R™ centered at 0. Then
Pr.={A*|AeP}
1s also a partition of R™.

Actually the dual partition is also a Yao-Yao partition centered at 0 but we will not use
this fact.

Proof. Let x € R™ and £ : y € R™ +— x - y. By the previous proposition there exists A € P
such that ¢(y) > 0 for all y € A. Then x € A*. Thus UP* = R". Moreover if x belongs to the
interior of A*, then for all y € A\{0} we have ¢(y) > 0. Again by the proposition above there
is at most one such A. Thus the interiors of two distinct elements of P* do not intersect. [

We now let M(E) be the set of Borel measure p on E which are finite and which satisfy
wu(F) = 0 for any affine hyperplane F'.

Definition 6. Let u € M(E), a Yao-Yao equipartition P for u is a Yao-Yao partition of E
satisfying
VAEP, u(A)=2"u(E). (5)

We say that ¢ € E is a Yao-Yao center of p if ¢ is the center of a Yao-Yao equipartition for p.



Here is the main result concerning those partitions.

Theorem 7. Let p € M(R"™), there exists a Yao-Yao equipartition for u. Moreover, if p is
even then 0 is a Yao-Yao center for p.

It is due to Yao and Yao [8]. They have some extra hypothesis on the measure and their
paper is very sketchy, so we refer to [6] for a proof of this very statement.

2 Proof of the Fradelizi-Meyer inequality

In this section, all integrals are taken with respect to the Lebesgue measure. Let us recall
the Prékopa-Leindler inequality, which is a functional form of the famous Brunn-Minkowski
inequality, see for instance [3] for a proof and selected applications. If ¢1, @2, @3 are non-
negative and integrable functions on R™ satisfying ¢1(z)*02(y)' ™ < @3(Az + (1 — \)y) for
all z,y in R™ and for some fixed A\ € (0,1), then

(L) ([ ) <] n

The following lemma is a useful (see [4] 2]) logarithmic version of Prékopa-Leindler. We recall
the proof for completeness.

Lemma 8. Let f1, fo, f3 be non-negative Borel functions on R} satisfying

2

f@)fy) < (FE - VEba)

/nfl/nf2§</R

gz(flf) = fi(ewla . e 7emn)em1+"'+(£n.

/ gi = fi-

On the other hand the hypothesis on f1, fo, f3 yields

for all z,y in R". Then

B (0

Proof. For i =1,2,3 we let

Then by change of variable we have

g1(2)g2(y) < gs(5Y),

for all x,y in R™. Then by Prékopa-Leindler

/n91/ng2§</n93)2. O

Theorem 9. Let f be a non-negative Borel integrable function on R™, and let ¢ be a Yao-Yao
center for the measure with density f. Then c is a Santald point for f with respect to any
weight.



Combining this result with Theorem [7] we obtain a complete proof of the Fradelizi-Meyer
inequality.

Proof. 1t is enough to prove that if 0 is a Yao-Yao center for f then 0 is a Santalé point.
Indeed, if ¢ is a center for f then 0 is a center for

ferx— fle+ ).

And if 0 is a Santal6 point for f. then ¢ is a Santalé point for f.

Let P be a Yao-Yao equipartition for f with center 0. Let g and p be such that (2)) holds
(with ¢ = 0). Let A € P, by (@), there exists an operator T on R"™ with determinant 1 such
that A = T(R%). Let S = (T~1)*, then S(R}) = A*. Let fi = foT, fo = go S and
fa(z) = p(|x|). Since for all z,y we have T'(z) - S(y) = x - y, we get from (2])

[i@) f2(y) < p(VE-9)? = fs(VTLIL, -5 /Tl

for all «,y in R”,. Applying the previous lemma we get (@]). By change of variable it yields

/Af/A*9§</Rip(|x|)dx)2.
S [af a=e ([ otahar)’ <7

AeP

Therefore

~—

Since P is an equipartition for f we have for all A € P

By Corollary [, the set {A*, A € P} is a partition of R™, thus

z/A*gz/ng.

AeP

L[ a<e(] sahas)

+

Inequality ([7l) becomes

and of course the latter is equal to ( [p. p(|z|) d:n)2. O
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