Partitions and functional Santaló inequalities

Joseph Lehec *

September 2008

Abstract

We give a direct proof of a functional Santaló inequality due to Fradelizi and Meyer. This provides a new proof of the Blaschke-Santaló inequality. The argument combines a logarithmic form of the Prékopa-Leindler inequality and a partition theorem of Yao and Yao.

Published in Arch. Math. 92 (1) (2009) 89-94.

Introduction

If A is a subset of \mathbb{R}^n we let A° be the polar of A:

$$A^{\circ} = \{ x \in \mathbb{R}^n \, | \, \forall y \in A, \ x \cdot y \le 1 \},\$$

where $x \cdot y$ denotes the scalar product of x and y. We denote the Euclidean norm of x by $|x| = \sqrt{x \cdot x}$. Let K be a subset of \mathbb{R}^n with finite measure. The Blaschke-Santaló inequality states that there exists a point z in \mathbb{R}^n such that

$$\operatorname{vol}_n(K)\operatorname{vol}_n(K-z)^\circ \le \operatorname{vol}_n(B_2^n)\operatorname{vol}_n(B_2^n)^\circ = v_n^2,\tag{1}$$

where vol_n stands for the Lebesgue measure on \mathbb{R}^n , B_2^n for the Euclidean ball and v_n for its volume. It was first proved by Blaschke in dimension 2 and 3 and Santaló [7] extended the result to any dimension. We say that an element z of \mathbb{R}^n satisfying (1) is a Santaló point for K.

Throughout the paper a *weight* is an measurable function $\rho : \mathbb{R}_+ \to \mathbb{R}_+$ such that for any n, the function $x \in \mathbb{R}^n \mapsto \rho(|x|)$ is integrable.

Definition 1. Let f be a non-negative integrable function on \mathbb{R}^n , and ρ be a weight. We say that $c \in \mathbb{R}^n$ is a Santaló point for f with respect to ρ if the following holds: for all non-negative Borel function g on \mathbb{R}^n , if

$$\forall x, y \in \mathbb{R}^n, \quad x \cdot y \ge 0 \implies f(c+x)g(y) \le \rho\left(\sqrt{x \cdot y}\right)^2,\tag{2}$$

then

$$\int_{\mathbb{R}^n} f(x) \, dx \int_{\mathbb{R}^n} g(y) \, dy \le \left(\int_{\mathbb{R}^n} \rho(|x|) \, dx \right)^2. \tag{3}$$

^{*}LAMA (UMR CNRS 8050) Université Paris-Est

Heuristically, the choice of the weight ρ gives a notion of duality (or polarity) for nonnegative functions. Our purpose is give a new proof of the following theorem, due to Fradelizi and Meyer [4].

Theorem 2. Let f be non-negative and integrable. There exists $c \in \mathbb{R}^n$ such that c is a Santaló point for f with respect to any ρ . Moreover, if f is even then 0 is a Santaló point for f with respect to any weight.

The even case goes back to Keith Ball in [2], this was the first example of a functional version of (1). Later on, Artstein, Klartag and Milman [1] proved that any integrable f admits a Santaló point with respect to the weight $t \mapsto e^{-t^2/2}$. Moreover in this case the barycenter of f suits (see [5]). Unfortunately this is not true in general; indeed, taking

$$\begin{split} f &= \mathbf{1}_{(-2,0)} + 4\mathbf{1}_{(0,1)} \\ g &= \mathbf{1}_{(-0.5,0]} + \frac{1}{4}\mathbf{1}_{(0,1)} \\ \rho &= \mathbf{1}_{[0,1]}, \end{split}$$

it is easy to check that f has its barycenter at 0, and that $f(s)g(t) \leq \rho(\sqrt{st})^2$ as soon as $st \geq 0$. However

$$\int_{\mathbb{R}} f(s) \, ds \int_{\mathbb{R}} g(t) \, dt = \frac{9}{2} > 4 = \left(\int_{\mathbb{R}} \rho(|r|) \, dr \right)^2.$$

To prove the existence of a Santaló point, the authors of [4] use a fixed point theorem and the usual Santaló inequality (for convex bodies). Our proof is direct, in the sense that it does not use the Blashke Santaló inequality; it is based on a special form of the Prékopa-Leindler inequality and on a partition theorem due to Yao and Yao [8].

Lastly, the Blaschke-Santaló inequality follows very easily from Theorem 2: we let the reader check that if c is a Santaló point for $\mathbf{1}_K$ with respect to the weight $\mathbf{1}_{[0,1]}$ then c is a Santaló point for K.

1 Yao-Yao partitions

In the sequel we consider real affine spaces of finite dimension. If E is such a space we denote by \vec{E} the associated vector space. We say that \mathcal{P} is a partition of E if $\cup \mathcal{P} = E$ and if the interiors of two distinct elements of \mathcal{P} do not intersect. For instance, with this definition, the set $\{(-\infty, a], [a, +\infty)\}$ is a partition of \mathbb{R} . We define by induction on the dimension a class of partitions of an *n*-dimensional affine space.

Definition 3. If $E = \{c\}$ is an affine space of dimension 0, the only possible partition $\mathcal{P} = \{c\}$ is a Yao-Yao partition of E, and its center is defined to be c.

Let E be an affine space of dimension $n \geq 1$. A set \mathcal{P} is said to be a Yao-Yao partition of E if there exists an affine hyperplane F of E, a vector $v \in \vec{E} \setminus \vec{F}$ and two Yao-Yao partitions \mathcal{P}_+ and \mathcal{P}_- of F having the same center c such that

$$\mathcal{P} = \left\{ A + \mathbb{R}_{-}v \, | \, A \in \mathcal{P}_{-} \right\} \cup \left\{ A + \mathbb{R}_{+}v \, | \, A \in \mathcal{P}_{+} \right\},\$$

The center of \mathcal{P} is then x.

If A is a subset of \vec{E} we denote by pos(A) the positive hull of A, that is to say the smallest convex cone containing A.

A Yao-Yao partition \mathcal{P} of an *n*-dimensional space E has 2^n elements and for each A in \mathcal{P} there exists a basis v_1, \ldots, v_n of \vec{E} such that

$$A = c + \operatorname{pos}(v_1, \dots, v_n), \tag{4}$$

where c is the center of \mathcal{P} . Indeed, assume that \mathcal{P} is defined by F, v, \mathcal{P}_+ and \mathcal{P}_- (see Definition 3). Let $A \in \mathcal{P}_+$ and assume inductively that there is a basis v_1, \ldots, v_{n-1} of \vec{F} such that $A = c + pos(v_1, \ldots, v_{n-1})$. Then $A + \mathbb{R}_+ v = c + pos(v, v_1, \ldots, v_{n-1})$.

A fundamental property of this class of partitions is the following

Proposition 4. Let \mathcal{P} be a Yao-Yao partition of E and c its center. Let ℓ be an affine form on E such that $\ell(c) = 0$. Then there exists $A \in \mathcal{P}$ such that $\ell(x) \ge 0$ for all $x \in A$. Moreover there is at most one element A of \mathcal{P} such that $\ell(x) > 0$ for all $x \in A \setminus \{c\}$.

Proof. By induction on the dimension n of E. When n = 0 it is obvious, we assume that $n \ge 1$ and that the result holds for all affine spaces of dimension n-1. Let ℓ be an affine form on E such that $\ell(c) = 0$. We introduce $F, v, \mathcal{P}_+, \mathcal{P}_-$ given by Definition 3. By the induction assumption, there exists $A_+ \in \mathcal{P}_+$ and $A_- \in \mathcal{P}_-$ such that

$$\forall y \in A_+ \cup A_- \quad \ell(y) \ge 0.$$

If $\ell(c+v) \ge 0$ then $\ell(x+tv) \ge 0$ for all $x \in A_+$ and $t \in \mathbb{R}_+$, thus $\ell(x) \ge 0$ for all $x \in A_+ + \mathbb{R}_+ v$. If on the contrary $\ell(c+v) \le 0$ then $\ell(x) \ge 0$ for all $x \in A_- + \mathbb{R}_- v$, which proves the first part of the proposition. The proof of the 'moreover' part is similar.

The latter proposition yields the following corollary, which deals with dual cones: if C is cone of \mathbb{R}^n the dual cone of C is by definition

$$C^* = \{ y \in \mathbb{R}^n \, | \, \forall x \in C, \ x \cdot y \ge 0 \}.$$

Corollary 5. Let \mathcal{P} be a Yao-Yao partition of \mathbb{R}^n centered at 0. Then

$$\mathcal{P}^* := \{A^* \mid A \in \mathcal{P}\}$$

is also a partition of \mathbb{R}^n .

Actually the dual partition is also a Yao-Yao partition centered at 0 but we will not use this fact.

Proof. Let $x \in \mathbb{R}^n$ and $\ell : y \in \mathbb{R}^n \mapsto x \cdot y$. By the previous proposition there exists $A \in \mathcal{P}$ such that $\ell(y) \geq 0$ for all $y \in A$. Then $x \in A^*$. Thus $\cup \mathcal{P}^* = \mathbb{R}^n$. Moreover if x belongs to the interior of A^* , then for all $y \in A \setminus \{0\}$ we have $\ell(y) > 0$. Again by the proposition above there is at most one such A. Thus the interiors of two distinct elements of \mathcal{P}^* do not intersect. \Box

We now let $\mathcal{M}(E)$ be the set of Borel measure μ on E which are finite and which satisfy $\mu(F) = 0$ for any affine hyperplane F.

Definition 6. Let $\mu \in \mathcal{M}(E)$, a Yao-Yao equipartition \mathcal{P} for μ is a Yao-Yao partition of E satisfying

$$\forall A \in \mathcal{P}, \quad \mu(A) = 2^{-n} \mu(E). \tag{5}$$

We say that $c \in E$ is a Yao-Yao center of μ if c is the center of a Yao-Yao equipartition for μ .

Here is the main result concerning those partitions.

Theorem 7. Let $\mu \in \mathcal{M}(\mathbb{R}^n)$, there exists a Yao-Yao equipartition for μ . Moreover, if μ is even then 0 is a Yao-Yao center for μ .

It is due to Yao and Yao [8]. They have some extra hypothesis on the measure and their paper is very sketchy, so we refer to [6] for a proof of this very statement.

2 Proof of the Fradelizi-Meyer inequality

In this section, all integrals are taken with respect to the Lebesgue measure. Let us recall the Prékopa-Leindler inequality, which is a functional form of the famous Brunn-Minkowski inequality, see for instance [3] for a proof and selected applications. If $\varphi_1, \varphi_2, \varphi_3$ are nonnegative and integrable functions on \mathbb{R}^n satisfying $\varphi_1(x)^{\lambda}\varphi_2(y)^{1-\lambda} \leq \varphi_3(\lambda x + (1-\lambda)y)$ for all x, y in \mathbb{R}^n and for some fixed $\lambda \in (0, 1)$, then

$$\left(\int_{\mathbb{R}^n} \varphi_1\right)^{\lambda} \left(\int_{\mathbb{R}^n} \varphi_2\right)^{1-\lambda} \leq \int_{\mathbb{R}^n} \varphi_3.$$

The following lemma is a useful (see [4, 2]) logarithmic version of Prékopa-Leindler. We recall the proof for completeness.

Lemma 8. Let f_1, f_2, f_3 be non-negative Borel functions on \mathbb{R}^n_+ satisfying

$$f_1(x)f_2(y) \le \left(f(\sqrt{x_1y_1},\ldots,\sqrt{x_ny_n})\right)^2.$$

for all x, y in \mathbb{R}^n_+ . Then

$$\int_{\mathbb{R}^n_+} f_1 \int_{\mathbb{R}^n_+} f_2 \le \left(\int_{\mathbb{R}^n_+} f_3 \right)^2. \tag{6}$$

Proof. For i = 1, 2, 3 we let

$$g_i(x) = f_i(\mathbf{e}^{x_1}, \dots, \mathbf{e}^{x_n})\mathbf{e}^{x_1 + \dots + x_n}.$$

Then by change of variable we have

$$\int_{\mathbb{R}^n} g_i = \int_{\mathbb{R}^n_+} f_i.$$

On the other hand the hypothesis on f_1, f_2, f_3 yields

$$g_1(x)g_2(y) \le g_3(\frac{x+y}{2}),$$

for all x, y in \mathbb{R}^n . Then by Prékopa-Leindler

$$\int_{\mathbb{R}^n} g_1 \int_{\mathbb{R}^n} g_2 \le \left(\int_{\mathbb{R}^n} g_3 \right)^2.$$

Theorem 9. Let f be a non-negative Borel integrable function on \mathbb{R}^n , and let c be a Yao-Yao center for the measure with density f. Then c is a Santaló point for f with respect to any weight.

Combining this result with Theorem 7 we obtain a complete proof of the Fradelizi-Meyer inequality.

Proof. It is enough to prove that if 0 is a Yao-Yao center for f then 0 is a Santaló point. Indeed, if c is a center for f then 0 is a center for

$$f_c: x \mapsto f(c+x).$$

And if 0 is a Santaló point for f_c then c is a Santaló point for f.

Let \mathcal{P} be a Yao-Yao equipartition for f with center 0. Let g and ρ be such that (2) holds (with c = 0). Let $A \in \mathcal{P}$, by (4), there exists an operator T on \mathbb{R}^n with determinant 1 such that $A = T(\mathbb{R}^n_+)$. Let $S = (T^{-1})^*$, then $S(\mathbb{R}^n_+) = A^*$. Let $f_1 = f \circ T$, $f_2 = g \circ S$ and $f_3(x) = \rho(|x|)$. Since for all x, y we have $T(x) \cdot S(y) = x \cdot y$, we get from (2)

$$f_1(x)f_2(y) \le \rho(\sqrt{x \cdot y})^2 = f_3(\sqrt{x_1y_1}, \dots, \sqrt{x_ny_n})^2$$

for all x, y in \mathbb{R}^n_+ . Applying the previous lemma we get (6). By change of variable it yields

$$\int_{A} f \int_{A^*} g \le \left(\int_{\mathbb{R}^n_+} \rho(|x|) \, dx \right)^2.$$

Therefore

$$\sum_{A \in \mathcal{P}} \int_{A} f \int_{A*} g \le 2^n \left(\int_{\mathbb{R}^n_+} \rho(|x|) \, dx \right)^2. \tag{7}$$

Since \mathcal{P} is an equipartition for f we have for all $A \in \mathcal{P}$

$$\int_A f = 2^{-n} \int_{\mathbb{R}^n} f.$$

By Corollary 5, the set $\{A^*, A \in \mathcal{P}\}$ is a partition of \mathbb{R}^n , thus

$$\sum_{A \in \mathcal{P}} \int_{A^*} g = \int_{\mathbb{R}^n} g$$

Inequality (7) becomes

$$\int_{\mathbb{R}^n} f \int_{\mathbb{R}^n} g \le 4^n \Big(\int_{\mathbb{R}^n_+} \rho(|x|) \, dx \Big)^2$$

and of course the latter is equal to $\left(\int_{\mathbb{R}^n} \rho(|x|) dx\right)^2$.

References

- S. Artstein, B. Klartag, and V. Milman. The Santaló point of a function, and a functional form of Santaló inequality. Mathematika 51 (2005) 33–48.
- [2] K. Ball. Isometric problems in ℓ_p and sections of convex sets. PhD dissertation, University of Cambridge, 1986.
- [3] K. Ball. An elementary introduction to modern convex geometry. In *Flavors of geometry*, edited by S. Levy, Cambridge University Press, 1997.

- [4] M. Fradelizi and M. Meyer. Some functional forms of Blaschke-Santaló inequality. Math. Z. 256 (2) (2007) 379–395.
- [5] J. Lehec. A simple proof of the functional Santaló inequality. C. R. Acad. Sci. Paris. Sér.I 347 (2009) 55–58.
- [6] J. Lehec. On the Yao-Yao partition theorem. Arch. Math. 92 (4) 366–376.
- [7] L.A. Santaló. Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugaliae Math. 8 (1949) 155–161.
- [8] A.C. Yao and F.F. Yao, A general approach to d-dimensional geometric queries, in Proceedings of the seventeenth annual ACM symposium on Theory of computing, ACM Press, 1985, pp.163–168.