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Abstract

The Yao-Yao partition theorem states that for any probability measure µ on Rn having
a density which is continuous and bounded away from 0, it is possible to partition Rn

into 2n regions of equal measure for µ in such a way that every affine hyperplane of Rn

avoids at least one of the regions. We give a constructive proof of this result and extend
it to slightly more general measures.
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1 Introduction

In [4], Yao and Yao show that for any probability measure µ on Rn having a density which
is continuous and bounded away from 0, it is possible to partition Rn into 2n regions of
equal measure for µ in such a way that every affine hyperplane of Rn avoids at least one of
the regions. This theorem was designed for computational geometry purposes but it turned
out to be useful in other areas of mathematics. For instance, the authors of [1] use it to
prove Ramsey type theorems and in [3], we show a connection with the Blaschke-Santaló
inequality. More precisely, using a partition à la Yao and Yao, we reduce a general functional
form of the Blaschke-Santaló inequality (due to Fradelizi and Meyer [2]) to an easy inequality
between functions dened on R+. The proof of Yao and Yao is by induction on the dimension
and uses the Borsuk-Ulam theorem. The purpose of this paper is to show that the Yao-Yao
theorem can be obtained in a much more concrete way, by applying the real intermediate
values theorem again and again. Of course this proof is longer, but we believe that it gives a
better understanding of the structure of the Yao-Yao partition. Also we are able to get rid of
the technical assumptions (µ having a continuous density bounded away from 0) which are
annoying for applications. The article [4] being very sketchy, we intend to give (almost) every
detail.

The paper deals with finite dimensional real affine spaces; if E is such a space, ~E denotes
the associated vector space. We say that P is a partition of E if ∪P = E and if the interiors
of two distinct elements of P do not intersect. For instance, with this definition, the set
P = {(−∞, a], [a,+∞)} is a partition of R.

Definition 1. If E = {x} is an affine space of dimension 0, we say that P is a Yao-Yao
partition of E if P = {x} and we define the center of P to be x.
Let E be an affine space of dimension n ≥ 1. We say that P is a Yao-Yao partition of E if
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there exists an affine hyperplane F of E, a vector v ∈ ~E\~F and two Yao-Yao partitions P1

and P−1 of F having the same center x such that

P =
{

A+ R−v | A ∈ P−1

}

∪
{

A+ R+v | A ∈ P1

}

,

and we say that x is the center of P.

If E has dimension n, then a Yao-Yao partition of E has 2n elements and we shall see
in the following section that every hyperplane of E avoids at least one of the elements of a
Yao-Yao partition. Let us state our main theorem.
Let M(E) be the set of non-negative Borel measures µ on E which are finite and satisfy
µ(F ) = 0 for any affine hyperplane F .

Definition 2. Let µ ∈ M(E), a Yao-Yao equipartition P for µ is a Yao-Yao partition of E
satisfying

∀A ∈ P, µ(A) = 2−nµ(E). (1)

We say that x ∈ E is a Yao-Yao center of µ if x is the center of a Yao-Yao equipartition for
µ.

Theorem 3. Let µ ∈ M(E), there exists a Yao-Yao equipartition for µ. Moreover, if µ has
a center of symmetry x ∈ E, then x is a Yao-Yao center for µ.

2 Main properties

If A is a subset of ~E we denote by pos(A) the positive hull of A, that is to say the smallest
convex cone containing A.
A Yao-Yao partition P of an n-dimensional space E has 2n elements and for each A in P
there exists a basis v1, . . . , vn of ~E such that

A = x+ pos(v1, . . . , vn), (2)

where x is the center of P. Indeed, assume that P is defined by F, v,P1 and P−1 (see
Definition 1). Let A ∈ P1 and assume inductively that there is a basis v1, . . . , vn−1 of ~F such
that A = x+ pos(v1, . . . , vn−1). Then A+ R+v = x+ pos(v, v1, . . . , vn−1).

Proposition 4. Let P be a Yao-Yao partition of E and x be its center. Any affine half-space
containing x contains an element of P.

Proof. When E has dimension 0, the result is obvious. Let E have dimension n ≥ 1 and
assume that the proposition holds for any affine space of dimension n− 1. Let ℓ be an affine
form on E such that ℓ(x) ≥ 0, and let H = {y ∈ E | ℓ(y) ≥ 0}. We use the notations of
Definition 1. By the induction assumption, there exists A+ ∈ P1 and A− ∈ P−1 such that

∀y ∈ A+, ℓ(y) ≥ 0 and ∀y ∈ A−, ℓ(y) ≥ 0.

Let ~ℓ be the linear form on ~E associated to ℓ, if ~ℓ(v) ≥ 0 then ℓ(x + tv) ≥ 0 for all x ∈ A+

and t ∈ R+, thus A+ + R+v ⊂ H. Similarly if ~ℓ(v) ≤ 0 then A− + R−v ⊂ H. In both cases
H contains an element of P.
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Proposition 5. Let µ ∈ M(E) and let K be a convex subset of E satisfying µ(E\K) <

2−nµ(E). Then any Yao-Yao center x of µ is contained in K.

Proof. Assume on the contrary that there is a center x of µ outside K, and let P be an
equipartition with center x. By Hahn-Banach there is a half-space containing x and disjoint
from K. By Proposition 4, this half-space contains an element A of P. So on the one hand
µ(A) = 2−nµ(E) and on the other hand A ⊂ E\K, thus we get a contradiction.

3 Center with respect to a basis

Let E be an affine space of dimension n and L = (ℓ1, . . . , ℓn) be a family of affine forms on E

such that the map
x ∈ E 7→

(

ℓ1(x), . . . , ℓn(x)
)

∈ Rn

is one to one. We say that L is a system of coordinates. If x ∈ E and v ∈ ~E we write xi and
vi for ℓi(x) and ~ℓi(v), respectively. We also let e1, . . . , en be the basis of ~E satisfying eij = δij .
Let us introduce a restricted notion of Yao-Yao partition.

Definition 6. A Yao-Yao partition P of E given by F, v, x,P1 and P−1 is adapted to L if
F = {y ∈ E | y1 = x1} and if P1 and P−1 are adapted to (ℓ2|F , . . . , ℓn|F ) (which is a system
of coordinates on F ).

In the sequel, the vector v is called the axis of P, and it is said to be normalized when
v1 = 1. Since P has 2n elements, there is a one to one map between P and the discrete cube
{−1, 1}n. Let us construct such a map.

Definition 7. Let P be a Yao-Yao partition of E adapted to L, defined by x,P1,P−1 and v

(with v1 = 1). Let P(∅) = E and let (ε1, . . . , εk) be a sequence of ±1 of size k ∈ {1, . . . , n}.
Recall that Pε1 is a partition of F , hence the notation Pε1(·) is relative to F , for instance
Pε1(∅) = F . We assume inductively that we have defined Pε1(ε2, . . . , εk) and we let

P(ε1, . . . , εk) = Pε1(ε2, . . . , εk) + R+(ε1v).

An easy induction shows that

P =
{

P(ε) | ε ∈ {−1, 1}n
}

. (3)

We now give some basic properties of the sets P(·). It is easy to prove by induction that if P
is a Yao-Yao partition of E adapted to the basis L, then for all ±1 sequence ε of size k, there
exists a sequence of vectors v1, . . . , vk satisfying vij = 0 and vii = 1 for all j < i ≤ k (we call
sub-diagonal such a sequence hereafter) such that

P(ε) = x+ pos(ε1v
1, . . . , εkv

k) + span(ek+1, . . . , en), (4)

where x is the center of P. Besides, the first vector v1 is equal to the axis of P (in particular,
it does not depend on ε). Let x, y ∈ E and v1, . . . , vn and w1, . . . , wn be two sub-diagonal
sequences of ~E. Observe that if

x+ pos(v1, . . . , vn) = y + pos(w1, . . . , wn)
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then x = y and vi = wi for all i = 1, . . . , n. Let P and Q be Yao-Yao partitions of E satisfying
P(ε) = Q(ε) for some ±1 sequence ε of length k ≤ n. Let P be the projection of E with range
span(e1, . . . , ek) and kernel span(ek+1, . . . , en). Using (4), the equality P

(

P(ε)
)

= P
(

Q(ε)
)

and the observation above, we get

(x1, . . . , xk) = (y1, . . . , yk) and

(v1, . . . , vk) = (w1, . . . , wk),
(5)

where x and y are the centers of P and Q, respectively; and v and w are their normalized
(v1 = w1 = 1) axes.

If S is a set of affine functions on E (possibly empty), we let BE(S) be the smallest σ-
algebra of subsets of E making all elements of S measurable. When a set A belongs to BE(S)
for some S, we say that A depends only on S. Another simple consequence of (4) is that for
any ε of length k the set P(ε) depends only on (ℓ1, . . . , ℓk).
Let α ∈ R and F = {ℓ1 = α}. For any u ∈ ~E\~F we let πF,u : F +R+u → F be the projection
which, for any x ∈ F and t ∈ R+, maps x+ tu to x. Let A ⊂ F , we let

Au = (πF,u)
−1(A) = {x ∈ E |x1 ≥ α and x− (x1 − α)

u

u1
∈ A}. (6)

Let P be a partition of E. Let k < n and ε1, . . . , εk be a ±1 sequence. There exists an affine
form ℓ ∈ span(1, ℓ1, . . . , ℓk) such that

P(ε1, . . . , εk, 1) = P(ε1, . . . , εk) ∩ {ℓk+1 ≥ ℓ} (7a)

P(ε1, . . . , εk,−1) = P(ε1, . . . , εk) ∩ {ℓk+1 ≤ ℓ}. (7b)

Let us prove (7) by induction on k. When k = 0 we have P(1) = F + R+v = {ℓ1 ≥ x1}
and P(−1) = {ℓ1 ≤ x1}. If k ≥ 1, let v be the normalized (v1 = 1) axis of P and assume
inductively that

Pε1(ε2, . . . , εk1) = Pε1(ε2, . . . , εk) ∩ {ℓk+1 ≥ ℓ}

for some ℓ ∈ span(1, ℓ2, . . . , ℓk). Let us assume that ε1 = 1, then

P(1, ε2, . . . , εk, 1) = (πF,v)
−1

(

P1(ε2, . . . , εk) ∩ {ℓk+1 ≥ ℓ}
)

= P(1, ε2, . . . , εk) ∩Av,

where A = F ∩ {ℓk+1 ≥ ℓ}. Using (6), we obtain

Av = {x1 ≥ α} ∩ {ℓk+1 ≥ ℓ′}

where ℓ′ = ℓ+ (ℓ1 − α)(vk+1 − ~ℓ(v)). Since additionnally {x1 ≥ α} contains P(1, ε2, . . . , εk),
we get (7a) when ε1 = 1. The proof for ε1 = −1 and the proof of (7b) are similar.
From (7), we get in particular

P(ε1, . . . , εk) = P(ε1, . . . , εk, 1) ∪ P(ε1, . . . , εk,−1).

Applying this equality again and again, we obtain, for any ε of size k

P(ε) = ∪
{

P(ε, τ) | τ ∈ {−1, 1}n−k
}

where (ε, τ) is the sequence obtained by concatenation of ε and τ . Therefore, if P is an
equipartition for µ then

µ
(

P(ε1, . . . , εk)
)

= 2−kµ(E). (8)
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4 Uniqueness

In this section we prove that, under reasonable assumptions, the Yao-Yao center of a measure,
with respect to a given basis, is unique. In the sequel, the space E is equipped with a system
of coordinates ℓ1, . . . , ℓn and all Yao-Yao partitions are adapted to this system.

Lemma 8. Let α ∈ R and F = {z ∈ E | z1 = α}.

(i) Let A ⊂ F depend only on ℓ2, . . . , ℓk, let v,w ∈ ~E satisfying v1 = w1 = 1 and
(v2, . . . , vk) = (w2, . . . , wk), then Av = Aw .

(ii) Let ℓ be an affine form on E, non-constant on F and let A = F ∩ {ℓ ≥ 0}. Let v,w
satisfy v1 = w1 = 1 and ~ℓ(v) > ~ℓ(w), then Av ( Aw.

(iii) Again let A = F ∩ {ℓ ≥ 0}, and let (vp) be a sequence satisfying v
p
1 = 1 for all p and

~ℓ(vp) ↑ +∞. Then for any µ ∈ M(E) we have

lim
p→+∞

µ(Avp) = 0.

Proof. Point (i) follows easily from (6). For (ii), observe that when A = F ∩ {ℓ ≥ 0},
equation (6) becomes

Av = {x ∈ E |x1 ≥ α and ℓ(x) ≥ (x1 − α)~ℓ(v)}, (9)

and similarly for Aw. The inclusion Av ⊂ Aw follows immediately. Besides, since ℓ is non-
constant on F , we can find x satisfying x1 = 1 + α and

~ℓ(w) < ℓ(x) < ~ℓ(v),

so inclusion is strict. By (ii) the sequence (Avp) is decreasing, and clearly by (9) the inter-
section ∩Avp is included in F , hence (iii).

The key step is the following

Lemma 9. Let P and Q satisfy

∀ε1, . . . , εk, P(ε1, . . . , εk) = Q(ε1, . . . , εk) (10)

∃ε′1, . . . , ε
′
k+1, P(ε′1, . . . , ε

′
k+1) 6= Q(ε′1, . . . , ε

′
k+1) (11)

for some k < n. If xk+1 ≥ yk+1, then there exists δ1, . . . , δk such that P(δ1, . . . , δk, 1) is
strictly included in Q(δ1, . . . , δk, 1).

Proof. The proof is by induction on k. If k = 0 then (11) becomes

P(1) = {ℓ1 ≥ x1} 6= {ℓ1 ≥ y1} = Q(1).

So x1 6= y1, thus x1 > y1, hence P(1) ( Q(1).
Assume that k ≥ 1. Let v and w be the normalized (v1 = w1 = 1) axes of P and Q,
respectively. Recall that (10) implies (5): (x1, . . . , xk) = (y1, . . . , yk) and (v1, . . . , vk) =
(w1, . . . , wk). Also, intersecting (10) with {ℓ1 = x1}, we get

∀ε1, . . . εk, Pε1(ε2, . . . , εk) = Qε1(ε2, . . . , εk). (12)
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There are three cases. If vk+1 = wk+1, since for all ε1, . . . , εk+1, the set A = Pε1(ε2, . . . , εk+1)
depends only on ℓ2, . . . , ℓk+1, Lemma 8 (i) implies that

P(ε1, . . . , εk+1) = Pε1(ε2, . . . , εk+1) + R+(ε1v)

= Pε1(ε2, . . . , εk+1) + R+(ε1w).
(13)

AlsoQ(ε1, . . . , εk+1) = Qε1(ε2, . . . , εk+1)+R+(ε1w). Therefore there must exist (δ1, ε
′
2, . . . , ε

′
k+1)

such that
Pδ1(ε

′
2, . . . , ε

′
k+1) 6= Qδ1(ε

′
2, . . . , ε

′
k+1),

otherwise (11) would fail. Recalling (12), we remark that we can apply the induction assump-
tion to Pδ1 and Qδ1 : there exists δ2, . . . , δk such that Pδ1(δ2, . . . , δk1) is stricly included in
Qδ1(δ2, . . . , δk1). Then (13) shows that P(δ1, . . . , δk1) is strictly included in Q(δ1, . . . , δk1),
which concludes the proof in this case.
If vk+1 > wk+1, then by (7) and Lemma 8 (ii) we obtain

P1(ε2, . . . , εk1) + R+v ( P1(ε2, . . . , εk1) + R+w, (14)

for all ε2, . . . , εk. Therefore, it is enough to prove that there exists δ2, . . . , δk such that

P1(δ2, . . . , δk1) ⊂ Q1(δ2, . . . , δk1).

This holds by the induction assumption applied to P1 and Q1: either we have equality for all
δ2, . . . , δk, or there exists δ2, . . . , δk such that the inclusion is strict.
The case vk+1 < wk+1 is similar, we just need to deal with P−1 and Q−1 instead of P1 and
Q1.

We now let M∗(E) be the set of measures µ ∈ M(E) which satisfy µ(U) > 0 for every
open set U . Here is the main result of this section.

Proposition 10. Let µ ∈ M∗(E), then µ has at most one center with respect to the system
L. Moreover the k first coordinates of the center of µ depend only on the restriction of µ to
BE(ℓ1, . . . , ℓk).

Proof. Let µ, ν ∈ M∗(E) satisfy ν(A) = µ(A) for all A ∈ BE(ℓ1, . . . , ℓl). We can assume that
µ(E) = 1(= ν(E)). Let P and Q be equipartitions for µ and ν, respectively, and let us call
x and y the respective centers of P and Q. We want to prove that (x1, . . . , xl) = (y1, . . . , yl).
If P 6= Q, there exists k satisfying (10) and (11), we have in particular

(x1, . . . , xk) = (y1, . . . , yk) (15)

and we may assume that xk+1 ≥ yk+1. By the previous lemma, there exists (ε1, . . . , εk+1) such
that P(ε1, . . . , εk+1) is strictly included in Q(ε1, . . . , εk+1). Since these sets are polytopes,
their difference Q(ε1, . . . , εk+1)\P(ε1, . . . , εk+1) has non-empty interior. Recall that the set
Q(ε1, . . . , εk+1) depends only on ℓ1, . . . , ℓk+1. So if k + 1 ≤ l, applying (8), and the fact that
µ(U) > 0 for any open set U , we get

2−k−1 = µ
(

P(ε1, . . . , εk+1)
)

< µ
(

Q(ε1, . . . , εk+1)
)

= ν
(

Q(ε1, . . . , εk+1)
)

= 2−k−1,

which is absurd. Therefore l ≤ k, and the result follows from (15).
The uniqueness of the center is obtained by letting ν = µ and l = n.
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5 Continuity

We now deal with the continuity of the center, for this we need a topology on M(E). Let
(µp)p∈N be a sequence of elements of M(E) and µ ∈ M(E). The sequence (µp) converges
narrowly to µ when

∫

φdµp →

∫

φdµ (16)

for any function φ continuous and bounded on E. A subset F of M(E) is tight if for every
ε > 0 there exists a compact subset K of E such that µ(E\K) < ε for all µ ∈ F . A converging
sequence of measures is obviously tight.
Recall that when T : Ω1 → Ω2 is a measurable map, and µ is a measure on Ω1, the image
measure T#µ of µ by T is defined by

T#µ(A) = µ
(

T−1(A)
)

,

for every measurable subset A of Ω2.
Let F be an affine hyperplane of E. For any µ ∈ M(E) and v ∈ ~E\~F we let µF,v = (πF,v)#µ,
hence

∀A ⊂ F, µF,v(A) = µ(A+ R+v). (17)

Let (νp) be a sequence of elements of M(E) converging narrowly towards ν ∈ M(E). Notice
that if A ⊂ E is a polytope, then ν(∂A) = 0 and thus νp(A) → ν(A).
Let (vp) be a sequence of elements of ~E\~F converging to v ∈ ~E\~F . Then

ν
p
F,vp → νF,v, narrowly.

Indeed, by tightness of the set {ν, νp | p ∈ N}, we can assume that all these measures are
supported by a compact set K. We can also assume that F + R+v

p = F + R+v for all p.
Then, setting µp = ν

p
F,vp and µ = νF,v, it is easy to see that the supports of µ and µp for all

p are contained in a compact subset L of F . Let φ be continuous on F , then φ is uniformly
continuous on L, from which we get φ ◦ πF,vp → φ ◦ πF,v, uniformly on K. The result follows
easily.
In the same spirit, if (up) is a sequence of elements of ~E converging to 0 and if Tp is the
translation of vector up, then (Tp)#ν

p → ν, narrowly.
The following lemma is an easy consequence of Proposition 5.

Lemma 11. Let F ⊂ M(E) be tight and such that {µ(E) | µ ∈ F} is bounded. Then there
exists a compact subset of E containing any center of any element of F .

We now reformulate the definition of a Yao-Yao center. Let µ ∈ M(E). Then an element
x ∈ E is a center for µ according to (ℓ1, . . . , ℓn) if and only if letting F = {ℓ1 = x1} there
exists v ∈ ~E\~F such that

- µ(F + R+v) =
1
2µ(E).

- the point x is a center for both µF,v and µF,−v, according to the system of coordinates
(ℓ2|F , . . . , ℓn|F ).

In the sequel, such a vector v, is called an axis for (µ, F ), and we say that v is normalized if
v1 = 1. Here is a first continuity property of the center.
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Lemma 12. Let (µp) be a sequence of elements of M(E) converging narrowly towards µ ∈
M(E). If all the measures µp share a common center x with respect to (ℓ1, . . . , ℓn); then x is
also a center of µ.

Proof. The proof is by induction on the dimension n of E. When n = 1, the result is obvious:
if x is a median for all the measures µp then it is a median for µ. We assume that n ≥ 2 and
that the result holds for any affine space of dimension n−1. We can also assume that µ and the
measures µp are probability measures. Let F = {ℓ1 = x1}. For all p there exists a normalized
axis vp for (µp, F ). We claim that the sequence (vp) is bounded. Indeed otherwise there exists
ℓ affine on E such that ~ℓ(vp) → +∞. Let H = {ℓ ≥ 0} ∩ F . Let ǫ > 0, by Lemma 8 (iii),
there exists w such that w1 = 1 and µ(Hw) < ǫ. For p big enough ~ℓ(vp) > ~ℓ(w), applying
Lemma 8 (ii) we get Hvp ⊂ Hw. Also for p large, we have µp(Hw) ≤ µ(Hw) + ǫ. Thus

µ
p
F,vp(H) = µp(Hvp) < 2ǫ.

Taking ǫ small enough, it follows from Proposition 5 that for any such p the center x of µp
F,vp

does not belong to H. Hence ℓ(x) ≤ 0. Let m > 0, the same holds if we replace ℓ by ℓ+m,
so we get ℓ(x) ≤ −m for all m > 0, which is absurd.
Up to an extraction we can assume that (vp) has a limit, say v (which satisfies v1 = 1). Then

µ
p
F,vp → µF,v narrowly.

By the induction assumption, x is a center for µF,v with respect to the basis (ℓ2|F , . . . , ℓn|F ),
and the same holds for µF,−v. Therefore x is a center for µ.

Corollary 13. Let (µp) be a sequence of elements of M(E) converging narrowly towards
µ ∈ M(E). If every measure µp has a center xp with respect to (ℓ1, . . . , ℓn) and if the
sequence (xp) has a limit x, then x is a center of µ with respect to (ℓ1, . . . , ℓn).

Proof. Let vp = x − xp and Tp be the translation of vector vp. Since vp → 0 we have
(Tp)#µ

p → µ, and clearly x = Tp(x
p) is a center for (Tp)#µ

p. Then the result follows from
the previous lemma.

6 Proof of Theorem 3

Let us start with an easy fact. Let V be a vector space of finite dimension n, with a given
basis (e1, . . . , en). Let T : V → V be continuous and satisfy the following properties:

(a) For k = 1 . . . n and v ∈ V , the k first coordinates of Tv depend only on the k first
coordinates of v.

(b) If f is a linear form and (vp) a sequence satisfying f(vp) → +∞ then f(Tvp) → +∞.

Then T is onto.
Indeed, let u in V and u1, . . . , un be its coordinates. By (b) and the continuity of T , we

can find v1 ∈ R such that the first coordinate of T (v1e1) is u1. Then we find v2 ∈ R such that
the second coordinate of T (v1e1+v2e2) is u2, and by (a) the first coordinate of T (v1e1+v2e2)
is still u1. And so on.

Proposition 14. Let E be an affine space and (ℓ1, . . . , ℓn) be a system of coordinates. Any
element of M∗(E) admits a unique center with respect to (ℓ1, . . . , ℓn).

8



Proof. We have already proved the uniqueness of the center, we shall prove its existence
by induction on the dimension. If E has dimension 1 then we just have to show that any
µ ∈ M∗(E) has a median, which is clear.
If n ≥ 2, we assume that the proposition holds for any affine space of dimension n − 1. Let
α ∈ R satisfy µ{ℓ1 ≥ α} = 1

2µ(E) and let F = {ℓ1 = α}. Let u ∈ ~E satisfy u1 = 1. By the

induction assumption, for all v ∈ ~F and ε ∈ {−1, 1}, the measure µF,ε(u+v) admits a unique

center with respect to (ℓ2, . . . , ℓn) which we call x(ε)(v). If we can prove that there exists v

such that x(1)(v) = x(−1)(v), then we are done. We define

T : v ∈ ~F 7→ x(−1)(v)− x(1)(v) ∈ ~F .

If a sequence (vp) goes to v, then µF,u+vp converges narrowly to µF,u+v. Then by Lemma 11,
the sequence

(

x(1)(vp)
)

p
is bounded, and by Corollary 13, any of its converging subsequences

goes to the unique center of µF,u+v. Therefore x(1)(vp) → x(1)(v), and similarly for x(−1),
hence the continuity of T .
If (v2, . . . , vk) = (w2, . . . , wk) then, by Lemma 8 (ii), we have Au+v = Au+w for all A ∈
BF (ℓ2, . . . , ℓk), hence µF,u+v(A) = µF,u+w(A). By Proposition 10, this implies that for i =
2, . . . , k

ℓi
(

x(1)(v)
)

= ℓi
(

x(1)(w)
)

,

and similarly for x(−1). Therefore T satisfies (a).
Let ℓ be an affine form on E, and (vp) be a sequence of elements of ~F such that ~ℓ(vp) →
+∞. Then it follows from Lemma 8 (iii) that for any m > 0 and any big enough p we get
µu+vp(F ∩ {ℓ ≥ −m}) < 2−nµ(F ), which by Proposition 5 implies that ℓ(x(1)(vp)) ≤ −m.
Hence

ℓ
(

x(1)(vp)
)

→ −∞.

Similarly ℓ
(

x(−1)(vp)
)

→ +∞. Thus T satisfies (b). Therefore T is onto. There exists v ∈ ~F

such that Tv = 0, then x(1)(v) = x(−1)(v) which concludes the proof.

Lemma 15. If µ ∈ M∗(E) has a center of symmetry z then z is the unique Yao-Yao center
of µ, whatever the basis L.

Proof. Let x be the Yao-Yao center of µ and s : E → E be the symmetry of center z. Then
clearly s(x) is a center for s#µ, with respect to L. Since s#µ = µ and by uniqueness of the
center, we obtain s(x) = x. Therefore x = z.

We are now in a position to prove Theorem 3. Let E be an affine space of dimension n

and (ℓ1, . . . , ℓn) be a system of coordinates. Let γ be an arbitrary element of M∗(E). Let
µ ∈ M(E) and for p ≥ 1 let µp = µ+ 1

p
γ. Then obviously µp ∈ M∗(E) and µp → µ, narrowly.

Let xp be the center of µp with respect to (ℓ1, . . . , ℓn). By Lemma 11 and Corollary 13, the
sequence (xp) is bounded and the limit of any of its converging subsequence is a center for µ,
so µ has a center.
If µ is symmetric with respect to x, then we let γ be an element of M∗(E) symmetric with
respect to x. Then so is µp, by the preceding lemma we get xp = x for any p, therefore x is
a center for µ.
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