Self-Intersecting Periodic Curves in the Plane

J. Howie \& J. F. Toland

Abstract

Suppose a smooth planar curve γ is 2π-periodic in the x direction and the length of one period is ℓ. It is shown that if γ self-intersects, then it has a segment of length $\ell-2 \pi$ on which it self-intersects and somewhere its curvature is at least $2 \pi /(\ell-2 \pi)$. The proof involves the projection Γ of γ onto a cylinder. (The complex relation between γ and Γ was recently observed analytically in [1], see also [5, Ch. 10]). When γ is in general position there is a bijection between self-intersection points of γ modulo the periodicity, and self-intersection points of Γ with winding number 0 around the cylinder. However, our proof depends on the observation that a loop in Γ with winding number 1 leads to a self-intersection point of γ.

Mathematics Subject Classification: Primary 53A04, Secondary 55M25
Let a smooth 2π-periodic curve γ in the (x, y)-plane be parametrized by arclength as follows:

$$
\left\{\begin{array}{l}
\gamma=\{p(s): s \in \mathbb{R}\}, \quad p(s)=(u(s), v(s)), \\
u(s+\ell)=2 \pi+u(s), \quad v(s+\ell)=v(s), \\
u^{\prime}(s)^{2}+v^{\prime}(s)^{2}=1,
\end{array} \quad s \in \mathbb{R}\right.
$$

The length of one period of γ is ℓ and $q \in \gamma$ is called a crossing if $q=p\left(s_{1}\right)=$ $p\left(s_{2}\right)$ and $s_{1} \neq s_{2}$. Note that crossings exist if and only if p is not injective. A crossing q is called simple if there are exactly two real numbers $s_{1} \neq s_{2}$ with $p\left(s_{1}\right)=p\left(s_{2}\right)=q$ and if $p^{\prime}\left(s_{1}\right) \neq p^{\prime}\left(s_{2}\right)$ when $p\left(s_{1}\right)=p\left(s_{2}\right)$ and $s_{1} \neq s_{2}$. Note that the smooth curve γ can be approximated arbitrarily closely by smooth curves in general position, that is with all crossings simple. If γ is in general position, then it follows from the smoothness that the set of crossings is discrete, and hence finite by compactness. Let $p^{\prime}(s)=(\cos \vartheta(s), \sin \vartheta(s)), s \in \mathbb{R}$, where ϑ is smooth [3, Prop. 2.2.1]. The goal is to establish the following which is intuitively obvious. (A periodic segment of γ is a segment of the form $\{p(t)$: $t \in[a, a+\ell]\}$.)

Proposition. Suppose that all crossings of γ are simple.
(a) If p is injective on every interval of length $\ell-2 \pi, p$ is injective.
(b) If p is not injective its curvature is somewhere at least $2 \pi /(\ell-2 \pi)$.
(c) If p is not injective and ϑ is periodic, then γ has a periodic segment which contains two crossings.

The global problem of bounding from below the maximum curvature of a selfintersecting periodic planar curve arose in a study of water waves beneath an elastic sheet. In the model [6], the sheet energy increases with the curvature and, roughly speaking, the conclusion needed was that sheets of certain energies could not self-intersect.

Remark. Periodicity of ϑ in the Proposition does not follow from that of p, as the first diagram below shows. Part (c) of the Proposition is illustrated in the second diagram, where ϑ is periodic.

For a proof, we project γ onto the cylinder $\mathbf{C}=S^{1} \times \mathbb{R}$, where $S^{1}=\left\{e^{i \phi}: \phi \in\right.$ $\mathbb{R}\}$. Let $P: \mathbb{R} \rightarrow \mathbf{C}$ be given by $P(s)=\left(e^{i u(s)}, v(s)\right)$ and let $\Gamma=\{P(s): s \in$ $[0, \ell]\}$. Thus the projection of the periodic, non-compact curve γ in \mathbb{R}^{2} onto \mathbf{C} is the compact curve Γ. Now Γ has a crossing Q if $P\left(s_{0}\right)=P\left(t_{0}\right)=Q$ for some $0 \leq t_{0}<s_{0}<\ell$ and we note that

$$
P\left(s_{0}\right)=P\left(t_{0}\right) \text { if and only if } p\left(s_{0}\right)=p\left(t_{0}\right)+k(2 \pi, 0)=p\left(t_{0}+k \ell\right), \quad k \in \mathbb{Z}
$$

where $k=\#\left(\Gamma_{Q}\right)$, the winding number around \mathbf{C} of

$$
\begin{equation*}
\Gamma_{Q}=\left\{P(s): s \in\left[t_{0}, s_{0}\right]\right\} \tag{1}
\end{equation*}
$$

a loop at Q. Crossings of Γ with winding number k correspond to the existence of horizontal chords with length $2|k| \pi$ connecting points of γ. Significantly for the Proposition, there is a one-to-one correspondence between crossings of γ and crossings of Γ with winding number zero. Note that $\#(\Gamma)=1$, since $P(\ell)=P(0)$ and $p(\ell)=p(0)+(2 \pi, 0)$.

Lemma 1. Suppose that $\#\left(\Gamma_{Q}\right) \in\{0,1\}$ for a crossing Q of Γ. Then p is not injective on some interval of length ℓ.

Proof. By hypothesis $\Gamma_{Q}:=\left\{P(s): s \in\left[t_{0}, s_{0}\right]\right\},\left[t_{0}, s_{0}\right] \subset[0, \ell)$ and

$$
u\left(s_{0}\right)=u\left(t_{0}\right)+2 k \pi \text { for } k \in\{0,1\}, \quad v\left(s_{0}\right)=v\left(t_{0}\right)
$$

If $k=0, p\left(s_{0}\right)=p\left(t_{0}\right)$ and the conclusion holds. If $k=1$,

$$
p\left(s_{0}\right)=p\left(t_{0}+\ell\right), \quad 0<t_{0}+\ell-s_{0}<\ell
$$

and again the conclusion holds.
Remark. Note that if $\#\left(\Gamma_{Q}\right)=-1$, the proof of Lemma 1 leads only to the conclusion that there is an interval of length 2ℓ on which p is not injective, as illustrated in the example below.

The segment $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, in which arrows denote increasing arc-length, represents one period of γ in \mathbb{R}^{2}. The dashed curve $5 \rightarrow 6 \rightarrow 7 \rightarrow 8$ represents the next period. The segment numbered 1 contains a sub-loop of Γ on \mathbf{C} with winding number -1 and the construction just described leads to the crossing O on γ. However, the length of the corresponding closed sub-arc of $1 \rightarrow 2 \rightarrow 3 \rightarrow$ $4 \rightarrow 5$ in \mathbb{R}^{2} lies between ℓ and 2ℓ which does not vindicate the Proposition. However, there is another crossing \star on γ, and the closed loop $4 \rightarrow 5 \rightarrow 6$ satisfies the conclusion of the Proposition.

The following is the key.
Lemma 2. Suppose the crossings of Γ are all simple. For any loop at \widetilde{Q} of the form $\Gamma_{\widetilde{Q}}=\{P(s): s \in[a, b]\}, P(a)=P(b)=\widetilde{Q}$, with $\#(\widetilde{\Gamma})>1$, there exists a sub-loop at \widetilde{Q}_{1} of the form $\Gamma_{\widetilde{Q}}:=\left\{P(s): s \in\left[a_{1}, b_{1}\right]\right\}, P\left(a_{1}\right)=P\left(b_{1}\right)=\widetilde{Q}_{1}$, $a \leq a_{1}<b_{1}<b$, with $\#\left(\Gamma_{\widetilde{Q}_{1}}\right)=1$.

Proof. Since $\#\left(\Gamma_{\widetilde{Q}}\right)>1$ it follows from the topology of the cylinder that $\Gamma_{\widetilde{Q}}$ has a crossing. The proof is by induction on the number of crossings.
If $\Gamma_{\widetilde{Q}}$ has only one crossing, $\Gamma_{\widetilde{Q}}$ is the union of two loops, $\widetilde{\Gamma}_{1}$ and $\widetilde{\Gamma}_{2}$, based at a point of $\Gamma_{\widetilde{Q}}$. Since they have no crossings, each has winding number ± 1 or 0 . Since the sum of their winding numbers is $\#\left(\Gamma_{\widetilde{Q}}\right)>1$, each has winding number 1 and $\#\left(\Gamma_{\widetilde{Q}}\right)=2$. If $\widetilde{Q} \in \widetilde{\Gamma}_{2}$, then the sub-path $\widetilde{\Gamma}_{1}$ satisfies the conclusion of the lemma, and vice versa.

Now we make the inductive hypothesis that the lemma holds for any loop $\Gamma_{\widetilde{Q}}$ of the form in the lemma with no more than $N-1$ crossings, $N \geq 2$.

Suppose a loop $\Gamma_{\widehat{Q}}=\{P(s): s \in[\widehat{a}, \widehat{b}]\}, P(\widehat{a})=P(\widehat{b})=\widehat{Q}$, has N crossings. Choose one of them, $P\left(s_{1}\right)=P\left(t_{1}\right)=: \widetilde{Q}$, say. This splits $\Gamma_{\widehat{Q}}$ into two loops, $\widetilde{\Gamma}_{1}$ and $\widetilde{\Gamma}_{2}$, based at \widetilde{Q}. If they both have winding number 1 , then the result follows, exactly as in the case $N=1$ above. Otherwise one of them, $\widetilde{\Gamma}_{1}$ say, has winding number at least 2 and no more than $N-1$ crossings.
Now, momentarily, let \widetilde{Q} be the origin of arc length so that $\widetilde{\Gamma}_{1}=\{P(s): s \in$ $[0, \widetilde{t}]\}$ where s is arc length measured from \widetilde{Q} along $\widetilde{\Gamma}_{1}$. Then, by induction, there is a loop $\widetilde{\Gamma}_{11}$ in $\widetilde{\Gamma}_{1}$, satisfying the conclusion of the lemma with $[0, \widetilde{t}]$ instead of $[a, b]$, and winding number 1.

If $\widetilde{\Gamma}_{11}$ does not contain \widehat{Q}, then $\widetilde{\Gamma}_{11}$ with the original parametrization satisfies the conclusion of the lemma.
If $\widetilde{\Gamma}_{11}$ does contain \widehat{Q}, then its complement in $\widehat{\Gamma}$ is a sub-path $\widetilde{\Gamma}_{12}=\{P(s): s \in$ $\left.\left[a^{\prime}, b^{\prime}\right] \subset[a, b]\right\}$ of $\widehat{\Gamma}$, with winding number not smaller than 1 and no more than $N-1$ crossings.
If the winding number of $\widetilde{\Gamma}_{12}$ is 1 , then we are done. If it exceeds 1 , then the required conclusion follows from the inductive hypothesis.

Lemma 3. If $\#\left(\Gamma_{Q}\right)>1$ for a crossing Q of Γ, then p is not injective on some closed interval of length ℓ.

Proof. Assume first that all the crossings of the original curve Γ are simple. Putting $\widetilde{\Gamma}=\Gamma_{Q}$ in Lemma 2 gives the existence of a crossing of Γ with winding number 1. The required result follows by Lemma 1 when all the crossings of Γ are simple. If the crossings of Γ are not all simple, apply the conclusion of Lemma 2 to a uniform periodic approximation γ_{1} of γ parametrized by a smooth periodic function p_{1} with the property that each crossing of Γ_{1} is simple and close to a crossing of Γ. The required result in the general case will follow by a simple limiting argument.

Proof of the Proposition. (a) If p is not injective, Γ has a crossing, Q. Suppose $P\left(t_{0}\right)=P\left(s_{0}\right), 0 \leq t_{0}<s_{0}<\ell$, Then, in the notation of (1), $\Gamma_{Q}=\{P(s): s \in$ $\left.\left[t_{0}, s_{0}\right]\right\}$ and there is a minimal sub loop $\Gamma_{Q_{1}}=\left\{P(s): s \in\left[t_{1}, s_{1}\right]\right\}$ of Γ_{Q} (a loop in Γ_{Q} which has no proper sub loop) $\left[t_{1}, s_{1}\right] \subset\left[t_{0}, s_{0}\right], P\left(s_{1}\right)=P\left(t_{1}\right)=: Q_{1}$. Since $\Gamma_{Q_{1}}$ has no crossings, $\left|\#\left(\Gamma_{Q_{1}}\right)\right| \leq 1$.

Now we observe that if p is not injective, then it is not injective on some interval of length ℓ. If $\#\left(\Gamma_{Q_{1}}\right) \in\{0,1\}$, the observation holds by Lemma 1. If $\#\left(\Gamma_{Q_{1}}\right)=$ -1 , since $\#(\Gamma)=1$, the complement of $\Gamma_{Q_{1}}$ in Γ has winding number 2 and the observation holds, by Lemma 3.

Now consider an interval $[a, a+\ell]$ on which p is not injective. Since $p(a+\ell)=$ $p(a)+(2 \pi, 0)$, it follows easily (from the diagram below!) that the length of any loop in this periodic segment of γ does not exceed $\ell-2 \pi$. Hence there is an interval of length $\ell-2 \pi$ on which p is not injective.

(b) A classical result [4] in the case of plane curves is the following [2, Remark on p. 38].

Axel Schur (1921). Suppose that $\Upsilon_{i}=\left\{v_{i}(s): s \in[0, S]\right\}, i=1,2$, are two plane curves parametrized by arc length, with the same length S and with curvatures $\kappa_{i}(s)$ at $v_{i}(s)$. Suppose that Υ_{1} has no self-intersections and, along with the chord from $v_{1}(0)$ to $v_{1}(S)$, bounds a convex region. Furthermore, suppose that $\left|\kappa_{2}\right| \leq \kappa_{1}$ on $[0, S]$. Then $\left|v_{2}(s)-v_{2}(0)\right| \geq\left|v_{1}(s)-v_{1}(0)\right|, s \in[0, S]$.

Let Υ_{2} be a closed loop in γ with length S no greater than $\ell-2 \pi$ and suppose that at every point its curvature $\left|\kappa_{2}\right| \leq 2 \pi(1-\epsilon) /(\ell-2 \pi)$ for some $\epsilon>0$. Let Υ_{1} be the segment of length S of a circle of radius $(\ell-2 \pi) /(2 \pi(1-\epsilon))$. Now $\left|\kappa_{2}\right| \leq \kappa_{1}, \Upsilon_{1}$ is not closed but Υ_{2} is closed, which contradicts Schur's result. Hence no such ϵ exists, which proves (b).
(c) Consider a periodic segment of γ with only one crossing at an angle α, as illustrated by the solid line in the diagram. Now extend this segment as a smooth closed curve of length $\ell+L$ with no further crossings (the extension is the dashed curve $\widetilde{\gamma}$).

By the hypothesis of part (c),

$$
\int_{0}^{\ell} \vartheta^{\prime}(s) d s=0 \text {, and by construction, } \int_{\ell}^{\ell+L} \vartheta^{\prime}(s) d s=-2 \pi
$$

So, from the hypothesis, the integral of ϑ^{\prime} around the oriented loop $\gamma \cup \widetilde{\gamma}$ is -2π. On the other hand, by the Hopf's Umlaufsatz for curvilinear polygons [3,
§13.2],

$$
\left|\int_{\ell_{1}}^{\ell_{2}} \vartheta^{\prime}(s) d s\right|=\pi+\alpha=\left|\int_{\ell_{2}}^{\ell+L} \vartheta^{\prime}(s) d s+\int_{0}^{\ell_{1}} \vartheta^{\prime}(s) d s\right| .
$$

This is impossible since $\alpha \notin\{0, \pi\}$, because all crossings are simple. This contradiction completes the proof.

References

[1] T. M. Apostol and M.A. Mnatsakanian, Unwrapping curves from cylinders and cones. Amer. Math. Monthly. 114 (2007), 388-416.
[2] S. S. Chern, Curves and surfaces in Euclidean space, in: Studies in Global Geometry and Analysis, Studies in Mathematics Volume 4, Math. Asoc. Amer, 1967, pp. 16-56.
[3] A. Pressley, Elementary Differential Geometry. Second Edition. Springer Undergraduate Mathematics Series. Springer, London, 2010.
[4] A. Schur. Über die Schwarzsche Extremaleigenschaft des Kreises unter den Kurven konstanter Krümmung. Mathematische Annalen 83 (1921), 143-148. http://www.digizeitschriften.de/main/dms/img/?PPN=PPN235181684
[5] H. Steinhaus, Mathematical Snapshots. Dover, Mineola NY, 1999.
[6] J. F. Toland, Heavy hydroelastic travelling waves. Proc. R. Soc.Lond. A 463 (2007), 2371-2397 (DOI : 10.1098/rspa.2007.1883)
J. Howie

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University
Edinburgh EH14 4AS
J. F. Toland

Department of Mathematical Sciences
University of Bath
Bath BA2 7AY

