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Self-Intersecting Periodic Curves in the Plane

J. Howie & J. F. Toland

Abstract

Suppose a smooth planar curve v is 27-periodic in the z direction and the
length of one period is ¢. It is shown that if v self-intersects, then it has
a segment of length £ — 27w on which it self-intersects and somewhere its
curvature is at least 27 /(¢ — 2m). The proof involves the projection I" of
~ onto a cylinder. (The complex relation between v and I" was recently
observed analytically in [I], see also [5, Ch. 10]). When + is in general
position there is a bijection between self-intersection points of v modulo
the periodicity, and self-intersection points of I" with winding number 0
around the cylinder. However, our proof depends on the observation that
a loop in I' with winding number 1 leads to a self-intersection point of ~.
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Let a smooth 27-periodic curve 7 in the (z,y)-plane be parametrized by arc-
length as follows:

v=A{p(s) : s € R}, p(s) = (u(s),v(s)),
u(s+40) =2 +u(s), v(s+4¥) =0uv(s), s €R.
w'(s)? 4+ 0'(s)? =1,

The length of one period of v is £ and g € « is called a crossing if ¢ = p(s1) =
p(s2) and s1 # s2. Note that crossings exist if and only if p is not injective. A
crossing ¢ is called simple if there are exactly two real numbers s; # so with
p(s1) = p(s2) = q and if p'(s1) # p'(s2) when p(s1) = p(s2) and s1 # s2. Note
that the smooth curve v can be approximated arbitrarily closely by smooth
curves in general position, that is with all crossings simple. If 7 is in general
position, then it follows from the smoothness that the set of crossings is discrete,
and hence finite by compactness. Let p/(s) = (cos¥(s),sind(s)), s € R, where
¥ is smooth [3, Prop. 2.2.1]. The goal is to establish the following which is
intuitively obvious. (A periodic segment of v is a segment of the form {p(¢) :
t € la,a+{]}.)

Proposition. Suppose that all crossings of v are simple.
(a) If p is injective on every interval of length € — 27, p is injective.

(b) If p is not injective its curvature is somewhere at least 2w /(¢ — 27).
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(¢) If p is not injective and ¥ is periodic, then v has a periodic segment which
contains two crossings.

The global problem of bounding from below the maximum curvature of a self-
intersecting periodic planar curve arose in a study of water waves beneath an
elastic sheet. In the model [6], the sheet energy increases with the curvature
and, roughly speaking, the conclusion needed was that sheets of certain energies
could not self-intersect.

Remark. Periodicity of ¥ in the Proposition does not follow from that of p, as
the first diagram below shows. Part (c¢) of the Proposition is illustrated in the
second diagram, where ¢ is periodic.

For a proof, we project v onto the cylinder C = S! x R, where S! = {e'? : ¢ €
R}. Let P: R — C be given by P(s) = (e*) v(s)) and let T = {P(s) : s €
[0,4]}. Thus the projection of the periodic, non-compact curve v in R? onto C
is the compact curve I'. Now T has a crossing Q if P(sg) = P(tp) = Q for some
0 <ty < sp < £ and we note that

P(sg) = P(tp) if and only if p(sg) = p(to) + k(2m,0) = p(to + k), k€ Z,
where k = #(I'g), the winding number around C of
Lo ={P(s) : s € [to, s0]}, (1)

a loop at . Crossings of I with winding number & correspond to the existence
of horizontal chords with length 2|k|m connecting points of 5. Significantly
for the Proposition, there is a one-to-one correspondence between crossings of
~ and crossings of I" with winding number zero. Note that #(I') = 1, since
P(¢) = P(0) and p(£) = p(0) + (27, 0).

Lemma 1. Suppose that #(I'q) € {0,1} for a crossing Q of I'. Then p is not
injective on some interval of length £.

Proof. By hypothesis I'q := {P(s) : s € [to, 0]}, [to, S0o] C [0,¢) and

u(so) = u(to) + 2km for k € {0, 1}, v(so) = v(to).



If k=0, p(sp) = p(tp) and the conclusion holds. If k =1,
p(so) =p(to +¢), 0<to+l—sg<V,
and again the conclusion holds. O

Remark. Note that if #(I'g) = —1, the proof of Lemma [I] leads only to the
conclusion that there is an interval of length 2¢ on which p is not injective, as
illustrated in the example below.

-2 0 21w 4

The segment 1 — 2 — 3 — 4, in which arrows denote increasing arc-length,
represents one period of v in R2. The dashed curve 5 — 6 — 7 — 8 represents
the next period. The segment numbered 1 contains a sub-loop of I' on C with
winding number —1 and the construction just described leads to the crossing O
on 7. However, the length of the corresponding closed sub-arc of 1 —+2 — 3 —
4 — 5 in R? lies between ¢ and 2¢ which does not vindicate the Proposition.
However, there is another crossing x on v, and the closed loop 4 — 5 — 6
satisfies the conclusion of the Proposition. O

The following is the key.

Lemma 2. Suppose the crossings of I' are all simple. For any loop at @ of the
form T's = {P(s) : s € [a,b]}, P(a) = P(b) = Q, with #(I') > 1, there exists
a sub-loop at Qy of the form Lg={P(s) : s € [a1,b1]}, P(ar) = P(b1) = Q1
a<ap <by <b, with#(T5)=1

Proof. Since #(F@) > 1 it follows from the topology of the cylinder that I'5
has a crossing. The proof is by induction on the number of crossings.

If I' 5 has only one crossing, 1"@ is the union of two loops, fl and fg, based at
a point of PQ' Since they have no crossings, each has winding number +1 or 0.
Since the sum of their winding numbers is #(1"@) > 1, each has winding number

1 and #(F@) =2 If @ € fg, then the sub-path Iy satisfies the conclusion of
the lemma, and vice versa.

Now we make the inductive hypothesis that the lemma holds for any loop 1"@
of the form in the lemma with no more than N — 1 crossings, N > 2.



Suppose a loop I'g = {P(s) : s € [@,b]}, P@) = P(b) = Q, has N crossings.
Choose one of them, P(s1) = P(t1) =: C,j, say. This splits I'z into two loops,

fl and fg, based at @ If they both have winding number 1, then the result
follows, exactly as in the case N = 1 above. Otherwise one of them, I'; say, has
winding number at least 2 and no more than N — 1 crossings.

Now, momentarily, let @ be the origin of arc length so that fl ={P(s) : s €
[0,£]} where s is arc length measured from @ along T'y. Then, by induction,
there is a loop I'y1 in T'y, satisfying the conclusion of the lemma with [O,N]

instead of [a, b], and winding number 1.

If fll does not contain @, then f‘ll with the original parametrization satisfies
the conclusion of the lemma.

If fll does contain @, then its complement in Tisa sub-path flg ={P(s):s€
[/, 0] C [a,b]} of T', with winding number not smaller than 1 and no more than
N — 1 crossings.

If the winding number of flg is 1, then we are done. If it exceeds 1, then the
required conclusion follows from the inductive hypothesis. o

Lemma 3. If #(I'g) > 1 for a crossing Q of T', then p is not injective on some
closed interval of length £.

Proof. Assume first that all the crossings of the original curve I' are simple.
Putting I' = 'y in Lemma [2] gives the existence of a crossing of I with winding
number 1. The required result follows by Lemma [Il when all the crossings of
I' are simple. If the crossings of I' are not all simple, apply the conclusion of
Lemma[2]to a uniform periodic approximation v of v parametrized by a smooth
periodic function p; with the property that each crossing of I'y is simple and
close to a crossing of I". The required result in the general case will follow by a
simple limiting argument. O

Proof of the Proposition. (a) If p is not injective, T" has a crossing, Q. Suppose
P(to) = P(s0), 0 <ty < sp < ¢, Then, in the notation of (@), I'q = {P(s): s €
[t0, so]} and there is a minimal sub loop I'g, = {P(s) : s € [t1,s1]} of ' (a loop
in I'g which has no proper sub loop) [t1,s1] C [to, so], P(s1) = P(t1) =: Q1.
Since I'g, has no crossings, |#(Tg,)| < 1.

Now we observe that if p is not injective, then it is not injective on some interval
of length ¢. If #(T'g,) € {0, 1}, the observation holds by Lemmal[ll If #(T'g,) =
—1, since #(I') = 1, the complement of I'g, in I" has winding number 2 and the
observation holds, by Lemma [3

Now consider an interval [a,a 4 ¢] on which p is not injective. Since p(a + ¢) =
p(a)+ (2m,0), it follows easily (from the diagram below!) that the length of any
loop in this periodic segment of v does not exceed ¢ — 2w. Hence there is an
interval of length ¢ — 27 on which p is not injective.



u(a) : Eu(a) +27

(b) A classical result [4] in the case of plane curves is the following [2, Remark
on p. 38].

Axel Schur (1921). Suppose that T; = {vi(s) : s € [0,S]}, i = 1, 2, are two
plane curves parametrized by arc length, with the same length S and with curva-
tures ki(s) at v;(s). Suppose that Y1 has no self-intersections and, along with
the chord from v1(0) to vi(S), bounds a convex region. Furthermore, suppose

that |ka| < k1 on [0,S]. Then |va(s) —v2(0)] > |vi(s) — v1(0)], s € [0,5].

Let T3 be a closed loop in 7 with length S no greater than ¢ — 27 and suppose
that at every point its curvature |rq| < 27w(1 — €)/(¢ — 27) for some € > 0. Let
Y1 be the segment of length S of a circle of radius (£ — 27)/(27(1 — €)). Now
|k2] < k1, T1 is not closed but Y is closed, which contradicts Schur’s result.
Hence no such e exists, which proves (b).

(c) Consider a periodic segment of v with only one crossing at an angle a,
as illustrated by the solid line in the diagram. Now extend this segment as a
smooth closed curve of length ¢ + L with no further crossings (the extension is
the dashed curve 7).

s:Ozinﬁls:€+L - s=1/
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By the hypothesis of part (c),
¢ 0+L
/ ¥ (s)ds = 0, and by construction, / 9 (s)ds = —2r.
0 ¢

So, from the hypothesis, the integral of 1/ around the oriented loop v U 7 is
—2m. On the other hand, by the Hopf’s Umlaufsatz for curvilinear polygons [3]



§13.2],
Lo
V(s)ds| =7+ a=

+L 4
/ ¥ (s)ds + V' (s)ds
Lo 0

£y

This is impossible since a ¢ {0, 7}, because all crossings are simple. This
contradiction completes the proof.
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