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Abstract

We prove that if the system of integer translates of a square integrable func-
tion is ℓ2-linear independent then its periodization function is strictly positive
almost everywhere. Indeed we show that the above inference is true for any
square integrable function if and only if the following statement on Fourier
analysis is true: For any (Lebesgue) measurable subset A of [0, 1], with pos-
itive measure, there exists a non trivial square summable function, with
support in A, whose partial sums of Fourier series are uniformly bounded.
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1. Introduction

Given a square integrable function ψ ∈ L2(R) , many properties of the
system of integer translates

Bψ = {Tkψ, k ∈ Z}, Tkψ(x) = ψ(x− k), x ∈ R, k ∈ Z,

can be completely described in terms of properties of the 1-periodic function

pψ(ξ) =
∑

k∈Z

| ψ̂(ξ + k) |2, ξ ∈ R,
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called the periodization function of ψ (note that pψ ∈ L1(T)). Systems of
integer translates arise in the context of wavelet analysis and, more generally,
in the theory of shift invariant spaces. We refer the reader to the work of
Hernández, Šikić, Weiss, and Wilson, [1] and to references contained therein
for a comprehensive summary of these properties.

In this paper we focus on ℓ2-linear independence. First of all, let us pass
to recall different concepts of independence in great generality.

Definition 1. Let (en)n∈N be a sequence in a Hilbert space H . We say that

(i) (en)n∈N is linearly independent if every finite subsequence of (en)n∈N
is linearly independent.

(ii) (en)n∈N is ℓ2- linearly independent if whenever the series

+∞
∑

n=0

cnen is

convergent and equal to zero for some coefficients (cn)n∈N ∈ ℓ2(N),
then necessarily cn = 0 for all n ∈ N.

(iii) (en)n∈N is ω-independent if whenever the series
+∞
∑

n=0

cnen is convergent

and equal to zero for some scalar coefficients (cn)n∈N, then necessarily
cn = 0 for all n ∈ N.

(iv) (en)n∈N is minimal if for all k ∈ N, ek /∈ span{en, n 6= k}.

Since we will not always be dealing with unconditionally convergent series,
we order Z = {0, 1,−1, 2,−2, . . .} as it is usually done with Fourier series.

Hence by
∑

k∈Z ckTkψ = 0 we mean limn→+∞

∑

|k|≤n ckTkψ = 0.

So Bψ is ℓ2- linearly independent if and only if whenever {ck} ∈ ℓ2 and

lim
n→+∞

‖
∑

|k|≤n ck Tkψ‖2 = 0,

then necessarily ck = 0 for all k ∈ Z.
Relations between the various type of independence for Bψ and properties
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of the periodization function are summarized in the following scheme:

Bψ is minimal ⇐⇒
1

pψ
∈ L1(T)

⇓
Bψ is ω-independent

⇓
Bψ is ℓ2-linearly independent ⇐= pψ(ξ) > 0 a.e.

⇓
Bψ is linearly independent Always true

In particular, it is known that

pψ(ξ) > 0 a.e. ⇒ Bψ is ℓ2−linear independent.

A question raised in [1] is the following: Is the converse true?
Šikić, and Speegle [5] have given a positive answer if pψ is bounded;

see also Paluszyński’s paper [4], where it is proved that pψ(ξ) > 0 a.e. is
equivalent to L2-Cesàro linear independence of Bψ. The latter means that if
the Cesàro averages

1

n

n−1
∑

h=0

Sh, Sh =
∑

|k|≤h

ckTkψ, {ck} ∈ ℓ2,

tend to zero in L2 norm, then necessarily ck = 0, for all k ∈ Z.
The approach we used in addressing this problem was global in nature:

rather than examining the assumptions to be put on a single ψ, we preferred
to analyze the issue as a whole, for all ψ ∈ L2(R) .

The result is that the converse is true for any ψ if and only if the fol-
lowing statement on Fourier analysis is true: For any (Lebesgue) measurable
subset A of [0, 1], with positive measure |A|, we can find a non trivial square
summable function, with support in A, whose partial sums of Fourier series
are uniformly bounded.

By support of f ∈ L1(T) (denoted suppf) we mean the smallest closed
set S such that f(ξ) = 0 almost everywhere in the complement of S.

After the proof of the main result in Section 2, in Section 3 we discuss the
existence of such a good function for any measurable set A ⊂ [0, 1]. As far as
we know existence is obtained as a corollary of general results by Kislyakov
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and Vinogradov, although we realize that there may be other direct proofs
that we are not aware of.

We end with some notations. If A ⊂ [0, 1] we set Ac = [0, 1] \ A. For
a measurable set E, χE is the characteristic function of E: χE(ξ) = 1 if
ξ ∈ E, zero otherwise. For f ∈ L2(T) the symmetric partial sums of the
Fourier series are

Sn(f)(ξ) =
∑

|k|≤n

f̂(k)e2πikξ.

For f ∈ L1(R) the Fourier transform is

f̂(ξ) =

∫

R

f(x) e−2πixξ dx.

The author is grateful to Professor Guido Weiss for having introduced
her to the subject.

2. Main result

In this section we prove the main result. The first step requires uniformly
boundedness only in the complement of the set A.

Theorem 2. The following are equivalent:

a) For any 0 6= ψ ∈ L2(R) the following is true

Bψ is ℓ2−linear independent ⇒ pψ(ξ) > 0 a.e.;

b) For every measurable A ⊂ [0, 1], |A| > 0, |Ac| > 0, there exists 0 6= f ∈
L2(T), such that

1. suppf ⊂ A;

2. ess sup
t/∈A

|Sn(f)(t)| = ‖Sn(f)‖L∞(Ac) are uniformly bounded, i.e.

there exists M > 0 such that ‖Sn(f)‖L∞(Ac) ≤M , for all n ∈ N.

Proof. b) ⇒ a)
Let 0 6= ψ ∈ L2(R) . We shall show that if the set where pψ(ξ) = 0 has
positive measure, then Bψ is not ℓ2-linear independent.

Assume |A| =| {pψ(ξ) = 0} |> 0. Since ψ 6= 0 then |Ac| > 0.
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By b) there exists 0 6= f ∈ L2(T), such that both 1. and 2. hold. Now a
simple calculation shows

‖
∑

|k|≤n

f̂(−k) Tkψ‖
2
2 =

∫ 1

0

|
∑

|k|≤n

f̂(k)e2πikξ |2 χAc(ξ) pψ(ξ) dξ. (1)

By a.e. convergence of the partial sums to f , and supp f ⊂ A, we get a.e.

lim
n

|
∑

|k|≤n

f̂(k)e2πikξ |2 χAc(ξ) pψ(ξ) = 0.

By uniform boundedness of Sn(f) in A
c, pψ ∈ L1(T), and by Lebesgue dom-

inated convergence theorem we get

lim
n

∫ 1

0

|
∑

|k|≤n

f̂(k)e2πikξ |2 χAc(ξ) pψ(ξ) = 0.

So equality (1) gives us a non zero sequence ck = f̂(−k) in ℓ2(Z) such that

∑

k∈Z

ck Tkψ = 0,

and so Bψ is not ℓ2-linear independent.
a) ⇒ b)
Let A ⊂ [0, 1], |A| > 0, and |Ac| > 0. Without loss of generality, we can
suppose Ac ⊂ [0, 1). Consider ψ ∈ L2(R) defined by

ψ̂(ξ) =

{

1, if ξ ∈ Ac,
0, if ξ ∈ R \ Ac.

Note that,

pψ(ξ) =
∑

k∈Z

| ψ̂(ξ + k) |2 =| ψ̂(ξ) |2, (periodic),

so that A = {ξ ∈ [0, 1] : pψ(ξ) = 0}. Hypothesis a) applied to ψ implies
that Bψ is not ℓ2-linear independent, so there exists a non zero sequence
{ck} ∈ ℓ2(Z) such that

lim
n

‖
∑

|k|≤n

ck Tkψ‖2 = 0. (2)
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There is a unique f ∈ L2(T) such that f̂(k) = c−k. We shall show that the
partial sums Sn(f) are uniformly bounded in Ac. Once we have proved this,
it is easy to show that f(ξ) = 0 a.e. in Ac. Indeed

‖
∑

|k|≤n

ck Tkψ‖
2
2 =

∫

R

|
∑

|k|≤n

f̂(k)e2πikξ |2 ψ̂(ξ) dξ

=

∫

Ac

|
∑

|k|≤n

f̂(k)e2πikξ |2 dξ.

So, for n → +∞, the left hand side tends to zero by (2), while, by uniform
boundedness and the a.e. convergence of the partial sums, the right hand
side tends to

∫

Ac
| f(ξ) |2 dξ.

In order to prove the uniform boundedness of the partial sums, we shall
apply the uniform boundedness principle to the following bounded linear
operators

Tn : L1(T) → C,

Tn(g) =

∫ 1

0

∑

|k|≤n

f̂(k)e2πikξ χAc(ξ) g(ξ) dξ.

First, it is known that

‖Tn‖ = ‖Sn(f)‖L∞(Ac).

Furthermore, for g in the dense subspace L1(T) ∩ L2(T) of L1(T), we have
by (2)

| Tn(g) |≤





∫

R

|
∑

|k|≤n

f̂(k)e2πikξ ψ̂(ξ) |2 dξ





1/2

‖g‖2 →
n→+∞

0.

So, see Hutson and Pym [2], there exists a unique

T : L1(T) → C

such that Tn(g) →
n
T (g), for all g ∈ L1(T). In particular, for any fixed

g ∈ L1(T), we have definitively

| Tn(g) |≤| Tn(g)− T (g) | + | T (g) |≤ 1+ | T (g) |,
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which implies
sup{| Tn(g) | : n ∈ N} < +∞.

By uniform boundedness principle we get

sup ‖Sn(f)‖L∞(Ac) = sup ‖Tn‖ < +∞,

and everything is proved. 2

Example. 1. If A ⊂ [0, 1] contains an interval I, the function f = χJ ,
for any interval J interior to I, verifies conditions 1. and 2. of pre-
vious theorem. Indeed, by the localization principle, Sn(f) converges
uniformly (to zero) in every closed interval contained in Jc. But Jc con-
sists of, at most, two intervals strictly containing Ac, hence the uniform
boundedness.

2. Take as A the set of irrationals in [0, 1/2]. Then A is totally discon-
nected but the function f = χA∩[0,1/4] has the same Fourier series of
χ[0,1/4] and works well as in the previous case.

3. Let A be a Cantor-like set, in [0, 1], of positive measure. Let f be any
function with support in A. Then Sn(f) converges uniformly in any
closed subinterval of the intervals (an, bn) contiguous to A, but a priori
nothing can be said for

⋃

n(an, bn) = Ac.

Remark 3. At the light of Example 1, it is easy to prove that the statement
b) in Theorem 2 is equivalent to the apparent stronger requirement

c) For every measurable A ⊂ [0, 1], |A| > 0, |Ac| > 0, there exists
0 6= f ∈ L2(T), such that

1. suppf ⊂ A;
2. ‖Sn(f)‖L∞(T) are uniformly bounded.

Indeed, to prove b) implies c), it is sufficient to assume that A does not
contain an interval, otherwise statement c) is true regardless of b).

We are going to show, by a density argument, that the same function f
provided by b) works well.

So let f and M as in b). Let ξ0 ∈ A and n ∈ N. Since Sn(f) is continuous
in ξ0, we can find an open neighborhood I0 of ξ0 such that

| Sn(f)(ξ)− Sn(f)(ξ0) |< 1, for all ξ ∈ I0.

There exists at least one ξ ∈ Ac ∩ I0 (otherwise A contains an interval), and
finally

| Sn(f)(ξ0) |≤ 1+ | Sn(f)(ξ) |< 1 +M.
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3. Looking for a nice function

To the best of my knowledge, the existence of a nice function f satisfying
condition c), for a given set A ⊂ [0, 1], can be derived by the following
theorem in Kislyakov’s paper [3, Theorem 4], whose proof relies also upon a
result by Vinogradov [6]. The latter makes use of Carleson almost everywhere
convergence theorem.

We recall first some basic notations: U∞ denotes the space of functions
f ∈ L∞(T) for which the following norm is finite

‖f‖U∞ = sup

{∣

∣

∣

∣

∣

∑

n≤k≤m

f̂(k)ξk

∣

∣

∣

∣

∣

, n,m ∈ Z, n ≤ m, ξ ∈ T

}

.

Theorem 4. For every F ∈ L∞(T) with ‖F‖∞ ≤ 1 and every 0 < ε ≤ 1 there
exists a function G ∈ U∞ with the following properties: |G|+ |F −G| = |F |;
|{ξ ∈ T, F (ξ) 6= G(ξ)}| ≤ ε‖F‖1; ‖G‖U∞ ≤ const(1 + log(ε−1)).

The application of Theorem 4 is clear: For any measurable set A ⊂ [0, 1],
|A| > 0, |Ac| > 0, it is sufficient to take F = χA and 0 < ε < 1. Then G
provided above is not zero since otherwise |{ξ ∈ T,χA(ξ) 6= 0}| = |A| ≤ ε|A|;
the support of G is contained in A since |G| ≤ |F |; and finally ‖G‖U∞ ≤
const(1 + log(ε−1)) implies that the partial sums of Fourier series of G are
uniformly bounded.
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