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ABSTRACT. All powers of lexsegment ideals with linear resolution (equivalently,
with linear quotients) have linear quotients with respect to suitable orders of the
minimal monomial generators. For a large subclass of the lexsegment ideals the
corresponding Rees algebra has a quadratic Grobner basis, thus it is Koszul. We
also find other classes of monomial ideals with linear quotients whose powers have
linear quotients too.
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INTRODUCTION

Let S = Klz1,...,x,] be the polynomial ring in n variables over a field K. For
an integer d > 2, we denote by M, the set of all the monomials of S of degree d.
A lexsegment ideal of S is a monomial ideal generated by a lexsegment set, that is a
set of the form L(u,v) = {w € My : u Zjex W >1ex v} Where u > v are two given
monomials of M.

Lexsegment ideals were introduced in [§]. Their homological properties and in-
variants have been studied in several papers. We refer the reader to [1], [2], [4], [5],
[6], [9], [10].

In [I], lexsegment ideals with linear resolution are characterized in numerical
terms on the ends of the generating lexsegment set. In [6] it is shown that, for a
lexsegment ideal, having a linear resolution is equivalent to having linear quotients
with respect to a suitable order of the elements in the generating lexsegment set.
There are known examples [3] which show that, in general, powers of monomial
ideals with linear quotients may have no longer linear quotients, or even more, they
do not have a linear resolution.

In this paper we show that the lexsegment ideals have a nice behavior with respect
to taking powers, namely all powers of a lexsegment ideal with linear quotients
(equivalently, with linear resolution) have linear quotients too (Theorem 2.T1] and
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Corollary B.9). Therefore, by collecting all the known results, we may now state the
following

. b .
Theorem 1. Let u = z{* -+ 2% with a; > 0 and v = z}* - - 2% be monomials of

degree d with u >, v and let [ = (L(u,v)) be a lexsegment ideal. Then the following
statements are equivalent;

(1) I has a linear resolution.

(2) I has linear quotients.

(3) All the powers of I have linear quotients.
(4) All the powers of I have a linear resolution.

In order to prove (2) = (3) in the above theorem, we are going to study in the first
place (Section [2]) the completely lexsegment ideals, that is, those whose generating
lexsegment set has the property that its shadows are again lexsegment sets, and,
secondly (Section B]), those which are not completely lexsegment ideals. For the first
class of ideals we need to use and develop some of the techniques introduced in [4].
For the second class, we extend some results of [7].

It will turn out that the Rees algebras of the lexsegment ideals which are not com-
pletely have quadratic Grobner bases, therefore they are Koszul (Corollary B.1T]).
For showing this property we need to slightly extend the notion of /-exchange prop-
erty which was defined in [7] to the notion of o-exchange property. By exploiting this
extension, we show in the last section that one may find larger classes of monomial
ideals for which the Grobner basis of the relation ideal of the Rees algebra R(I)
can be determined (Theorem [B4]). Moreover, any monomial ideal I C S whose
minimal monomial generating set satisfies a o-exchange property is of fiber type,
that is the relations of its Rees algebra R([) consist of the relations of the sym-
metric algebra S(I) and of the fiber relations (Corollary B.H). We also show that
the equigenerated monomial ideals whose minimal monomial generating set satis-
fies a o-exchange property have the nice property that all their powers have linear
quotients (Theorem [B.6)).

1. PRELIMINARIES

In this section we recall the basic definitions and known results needed for the
other sections.

Let K be a field and S = KJzy,...,x,] the polynomial ring in n variables over
K. For an integer d > 2, we denote by My the set of the monomials of degree d in
S ordered lexicographically with 1 > x5 > --- > x,,. For two monomials u,v € My
such that u > v, we denote by L(u,v) the lexsegment set bounded by u and v,
that is,

L(u,v) ={w € Mg: u Z1ex W >1ex v}

If u = ¢, then L(u,v) is denoted L'(v) and is called the initial lexsegment de-
termined by v. Similarly, if v = z¢, then L(u,v) is denoted by L/(u) and is called
the final lexsegment determined by u. An (initial, final) lexsegment ideal of S is a
monomial ideal generated by an (initial, final) lexsegment set. According to [4], we
denote by L,, the K-subalgebra of S generated by the monomials of L(u,v). In



[4] it is proved that £, , is a Koszul algebra. More precisely, it is shown that the
presentation ideal of £, , has a Grobner basis of quadratic binomials. We briefly
recall the basic tools used in [4] in proving this result, since they will be also useful
in the next section.

Let V}, 4 be the Veronese subring of S, that is, V;, s = K[My]. Let w be a monomial
in M. One can write w = 2, = %4, - - - Tq,, Where 1 < ay < --- < ag < n. Consider
the set of variables

T:{Ta: a:(ala"'vad) ENdal Sal S "'Sadgn}v
and let ¢: K[T] — V,,4 be the K-algebra homomorphism defined by
O(Ta) = Ta = Tgy +* * Tay-

Then V, 4 = K[T]/ker ¢ and P = ker ¢ is called the toric or the presentation ideal
of de.

If a=(ay,...,aq) and b = (by,...,by) are vectors with 1 < a; < --- < ag <n
and 1 < b < -+ < by < n, we say that a > b if z, > Tp, that is, if there
exists s > 1 such that a; = b; for « < s — 1 and a, < b,. In this way, one gets
a total order on the variables of T by setting T, > T}, if a > b. Let >, be the
lexicographic order on K[T| induced by this order of the variables of T. Namely, we
have Ta(l) .- 'Ta(N) >lex Tb(l) cee Tb(N) if there exists 1 < ¢ < N such that Ta(i) = Tb(i)
fori <t—1 and Ta(t) > Tb(t)-

A tableau is an N x d-matrix A = [a(1),...,a(N)] with entries in {1,...,n}, with
the property that in every row a(i) = (a;1,. .., a;q) we have a;; < --- < a;q and the
row vectors are in decreasing lexicographic order, that is a(l) > a(2) > --- > a(V)
or, equivalently, Ty1) > Ta@) > -+ > Tyw). The support of A is the collection
supp(A) of the integers which appear in the tableau with their occurrences. It is
clear that one may associate to each tableau A its corresponding monomial T :=
Tay -+~ Tavy in K[T]. A tableau A = [a(1),...,a(N)] is standard if, for every
tableau B = [b(1),...,b(N)] of same support, B # A, one has

Ty = Ta(l) .. 'Ta(N) <Jex Tb(l) ce Tb(N) =15.

As follows from [4, Proposition 2.10], this is equivalent to saying that for any 1 <
i < j < N, the quadratic monomial Tj,(;)Ty;y is standard. In [4, Lemma 2.9] it
is shown that a quadratic monomial 7,7}, it is standard if and only if a = b or
there exists 1 < ¢ < d such that a; = by,...,a;_1 = b;i_1, a; < b;, and, if © < d,
then b1 < -+ < by < a;41 < -+ < aq. If A is a standard tableau, then the
monomial Ty = T,y - --Tany is called standard. Given a set A of Nd indices in
the set {1,...,n}, then there exists a unique standard tableau A of size N x d with
supp(A) = A.

We recall the recursive procedure given in [4] to construct a standard tableau A
with a given support A = {b,...,byg} where 1 < by < .-+ < byg < n. Namely, if
A=[a(l),...,a(N)], where a(i) = (a1, .., aq) for 1 <i < N, then we proceed as
follows. We put by,...,by on the first column of A, that is,

ai1 = by, a1 = by, ..., an1 = by.



Now we consider the decomposition of (b, ...,by) in blocks of equal integers and
fill in each sub-tableau determined by each block from the bottom to the top in an
inductive way. We illustrate this procedure by a concrete example.
Let N=5,d=3,n=28and
A={1,1,2,3,3,4,4,4,5,5,6,6,6,7,8}.

We indicate each step of the standard tableau of support A.

1 1 1 16 7
1 1 1 1 6 8
2 — 2 — 256 — 2 56
3 3 4 4 3 4 4 3 4 4
3 3 45 3 4 5 3 4 5

We have

Proposition 1.1. [4, Proposition 2.11] The set G = {TT—TaTy : TuTh is a standard
monomial and suppla, b] = supp[q, r|} is a Grébner basis of the presentation ideal
of Vi.a with respect to <jex.

Moreover, in [4, Lemma 2.12|, it was proved that if [a, b] is a standard tableau
and [q,r] is a non-standard tableau such that suppla,b] = supp[q,r|, then q >
a > b > r. Consequently, if 7,7}, is a standard monomial and 74T is such that
suppla, b] = supp[q, r], then z,, 2, € L(u,v) if z4 and x, belong to L(u, v). There-
fore, the set

G' = {T4T — TuTy, : TaTy is a standard monomial, supp[a, b] = supp|q, r],
and x4,z € L(u,v)}.
is a Grobner basis of the presentation ideal Ji, , of the toric ring L.

2. POWERS OF COMPLETELY LEXSEGMENT IDEALS WITH LINEAR RESOLUTION

In order to study the powers of the completely lexsegment ideals with linear
quotients, we need to prove some preparatory results.

Definition 2.1. Let wq,...,wy be monomials in My, N > 2. We call the product
wy - - - wy standard if T, ---T),, is a standard monomial, that is, the corresponding
tableau is standard.

Definition 2.2. If wy,...,wy are monomials in My, and w; ---wy = wj - - - Wy,
where wi,...,wl, € My and w - --wy is a standard product, we call w] - - - wy the
standard representation of wy - - - wy.

Remark 2.3. Let uy,...,uy € L(u,v), where L(u,v) C M, is a lexsegment set. If
wy - --wy is a standard representation of wg - - - uy, then wy, ..., wy € L(u,v). In-
deed, let us assume that 7, - - - T}, is not a standard monomial, that is T;,, - - - T}, €
in (P), where P C K[T] is the presentation ideal of V,, ;. Then there exists 1 < i <
Jj < N and v;,v; € L(u,v) with u; > v; > v; > u; such that T,,T,, — T,,T,, € G".

Note that Ty, -+ Tuy >tex Tuy = Tuy y To,Tuyy - Ty, To; Ty, + - - Ty If the prod-
uct Ty o+ Ty Lo, Tuyy Ty, To; Ty -+ - Tuy 18 standard, we finished. Otherwise



we continue the reduction. After a finite number of steps, we reach a standard
product whose factors belong to the lexsegment set L(u,v).

Before stating the preliminary results, we fix some notations. For a monomial u of
S, we denote by v;(u) the exponent of the variable x; in u, that is, v;(u) = deg, (u) for
all 1 <7 < n. We denote supp(u) = {i : v;(u) > 0} and set max(u) = maxsupp(u),
min(u) = minsupp(u).

Lemma 2.4. Let w; - - - wy be a standard monomial and let 2wy - - - wy = w) -+ w4
be the standard representation of :L’wal crwy. Then w] >, wy.

Proof. We make induction on the number of variables. The case n = 2 is straightfor-
ward. Let n > 2. One may assume, by induction on the degree d of the monomials,
that vy (wy) = 0. If vy(wy) = 0, then z; | w)], hence w] >, wy. Let vy(wy) = 1.
Therefore, there exists 0 < s < N such that x; | ws and 1 t weyq. lf s+d > N+ 2,
then we finished, since 2% | w} by the construction of the standard monomials, and
v1(wy) = 1. Now, let us consider s +d < N + 1. Let

’ /
q = min L8 andq/:mln 1, std .
r T T T

Then, since wy - - - wy and w] - - - wy, are standard products, we have ¢ = min(w, /1),
¢ = min(w'/z1), max(w;) < ¢ < min(w;/z;) for all 1 < i < s < j < N, and
max(w}) < ¢ < min(w;/z;) forall 1 <i <s+d<j < N+1.If ¢ < ¢, then we get

Viemeg(wi---wy) = Y vp(wr - wy) > deg(wypr - wy) =
1<m<q
=(N=s)d>(N+1-s5—d)d>vicpeg(wy - Wyyy) = Z V(W Wiy,
1<m<q

which is impossible since vy, (wy - - - wy) = Vi (W] - - - Wiy, 4) for all m > 1. Therefore,
we must have ¢ > ¢'. If ¢ > ¢/, then we finished since w}/x; > w1/x1, whence
W) >1ex wy. What is left to consider is the case ¢ = ¢’. In this case we have

Viem<q(W1 -~ wyn) = (N — s)d + vg(wy) + - - - + vy(wy)
and
Viemsq(Wy W) = (N +1 =5 —d)d + vg(wy) + - + vg(wyq)-
Since Vicmeg(Wi -+ - WN) = Viemeq(W] -+ - Wy, ), We obtain
vg(wi) + -+ vg(wipg) = d(d = 1) + vg(wr) + - - + vy (wy).
This implies that

/! /
Wi Wstd _ a1y (W Ws
€ xq 1 xq xq

Note that gj—ll - ;}—f is a standard product in the variables z,...,z,. Applying
induction on the number n of variables, we have, after d steps, that

_ w1 w _ _
Ig(d n(=zt.. = =Wy -+ - Westds
T T



/ /
ws+d

_ _ . _ w .
where 1w - - - Wgy4, is a standard product and w; >, wy/x;. But I—ll e dsa
standard product as well, hence we have w; = w}/x1 > w1 /z1, whence w} >e,
w1. ]

Lemma 2.5. Let uy---uy and wy---wy be standard products and uy - - -uyx, =
1wy - wy. Then we have uq >y W1.

Proof. We use induction on N. If N = 1, the inequality u; >, w; is obvious. Now
we assume N > 1 and let uy---uy = @, -+ - Tp,,, Where 1 = by < -+ < byg < n
and min(u;) = b; for all 1 < j < N. We first notice that we may assume without
loss of generality that vy(u;) < 1 for all 1 < i < N. If by > by, we obviously have
wy <pep uy since min(wy) = by. Therefore, we may assume by = by = 1. If by < by,
let £ < N be the largest integer such that by < by = --- = by. We have k > 3.
Since u; - - -uy is a standard product, we get

Up - Uk—1 = Tby """ Lo Tony (g 1y (N—kt1)41 TN
Similarly, since wy - - - wy is a standard product, we get
Wy Wg—2 = Ty ** Ly _1 Loy (a—1)(N—k+2)42 ~ LNdn-
Therefore, there exists a monomial w € My, namely

W = Toyiam1y(N—kt)+1 " TONLd—1)(N—k42)+1

such that
T1W - Wp—2W = U1 * Uk —1Tp,-

One observes that wy -« - wi_sw and wuq ---ugp_q1 are standard products. Then, by
induction on N, it follows that wy <j, uq.

It remains to consider by = --- = by = 1 < by < -+ < byg, since, by our
assumption on uq,...,uy, we cannot have by, 1 = 1. If byi1 < byigs1, then, by
the construction of standard products, we get wy <jep uq. Let byy1 =byjo =+ =
byiar1- Then we obtain

" Uy un w1 WN-1 (:)3 - )
P L b T
T T T T Nl N+d/ 3
whence
- Uy Un '\ - pd-1 wq WN-1
L) =y 1. .
7 gl N\ TN gy gl
. _ w WN—
Let w} - - -w/y be the standard representation of :cgNilx—ll “e 11\7[1 L. By Lemma 2.4

we have w| >, wi/x1. On the other hand, we have

U1 un '\ ’ ’
Tn |~ T _beH(wl"'wN)v

x x
with :v_i ce x—?’ and w] - - - wy standard monomials in a number of variables smaller
than n. By induction on n we get u;/xq >, w] whence uy/xy >, wy /1, which
yields uq >jep wy. O



Lemma 2.6. Let w1 >y - Zier UN Zlex Unt1 be monomials of degree d with
vi(u;)) < 1 for all 1 < i < N, such that uy---uy is a standard product and
max(supp(uy - -uy)) < min(supp(un1)). Let vy---vyy1 be the standard repre-
sentation of uy - - -unyunt1- Then vy <jer UN-

Proof. We use induction on N. For N = 1, since v1v, = ujus and vqvy is a standard
product, then we have u >jep V1 >jer Vo >iex Us.

Let N > 1 and assume that uy -+ uy = @y, - - Ty, and uny1 = Ty, - “Tb(y 1)
with

by <+ <byg < bnap1 <0 < bv41ya-

Since uy - - - uy is a standard product, we have min(u;) = b; forall 1 < 7 < N. Since
U1+ - UNUN41 18 standard, we have min(v;) = b; forall 1 < j < N4+1. If by > by,
we obviously have vy, 1 <j,r uy. Therefore, it remains to consider that by = byy1.
Let 1 < k < N be the largest integer such that b,_; < by = --- = by. We have
k > 1 since otherwise v;(uq) > 2. Since ug - - -uy is standard, we get that

uk o« .. UN ey xbk o .. bebe+1 P be+(d71)(N7k+1) .

Similarly, since vy - - - vy is standard, we get

Uk " UN+1 = Loy, * " Loy Longr " Loy (a—1)(N—k+2)+1°
Therefore, there exists a monomial w € My, namely

W = Tyt (am1y(N—tt)41  TON4(dm1)(N—kt2)+17

such that vy - - - vy41 = ug - - - uyw and max(supp(ug - - - uxn)) < min(supp(w)). One
may note that wug---uy and v ---vyy; are standard products as well. By the
induction hypothesis, we get vy11 <jer Un- O

Lemma 2.7. Let uq,...,un,wq,...,wy be monomials of degree d in S such that
Tply - - Uy = Tiwy - - - Wy, where uy -+ -uy, wy---wy are standard products. Then
un Zlex W .

Proof. We may assume that v(wy) = 0 which implies that v4(u;) < 1 for all
1 <i<N.Letup---uny = xp, -~ Tpy, with 1 = by < --- < byg and min(u;) = b;
forall 1 < j < N. We have min(w;) = b;4; for all 1 < j < N. If by > by,
then wy <jep un. Let by = by and 1 < k < N be the largest integer such that
b1 < b, =---=by. If k=1, then by =--- = by = byy1. Since wy---wy is
a standard product, we get vi(wy) > 0, which is impossible by our assumption.
Therefore, it follows that £ > 1. Since u; - - - uy is a standard product, we have

uk “ .. UN ey xbk .. bebe+1 P be+(d71)(N7k+1) .

Similarly, since w; - - - wy is a standard product, we get

Wg—1"""WN = Loy, """ Loy Toyir """ Tbyi(d—1)(N—kt2)41"

Therefore, if

W = Thyia—1y(Nmkt)41 " TON (A1) (N—kt2)+17

we have
wk)—l .. .wN e uk. . .uNw‘



and max(supp(ug - - - uy)) < min(w). Since wuy - - -uy and wy_q - - - wy are also stan-
dard products, by using the previous lemma, we get wy <jer un. O

In order to state the main theorem of this section we need to recall the following

Theorem 2.8 ([6],[2]). Let u = ' --- 2%, with a; > 0, and v = 2} --- 2P be

monomials of degree d with u >, v and let I = (L(u,v)) be a completely lexsegment
ideal. The following statements are equivalent:

(1) w and v satisfy one of the following conditions:
(i) u = 2925, v = 225" for some a with 0 < a < d;
(11) by < a; — 1,'
(iii) by = a1 — 1 and, for the largest monomial w of degree d with w <jep v,
one has T1W/Tmax(w) Siea U-
(2) I has linear quotients.
(3) I has a linear resolution.

Remark 2.9. It is obviously that, if a completely lexsegment ideal is determined by
u and v satisfying condition (i) in the above theorem, then all its powers have linear
quotients. Therefore, we only need to study the powers of completely lexsegment
ideals which are determined by monomials u and v satisfying condition (ii) or (iii)
in Theorem

b1

Theorem 2.10. Let u = a§* -+ 2% with a; > 0 and v = 27* - - - 2% be monomials
of degree d with u >, v and let I = (L(u,v)) be a completely lexsegment ideal with

linear quotients. Then all the powers of I have linear quotients.

Proof. By using Remark 2.9, we have to consider only the cases when u and v satisfy
one of the following conditions:
(a) bl < a; — 1;
(b) by = a; — 1 and for the largest monomial w of degree d with w <., v, one
has 21w/ Tmax(w) Siex U.

We recall (see [0, Theorem 1.2]) that in these cases, I has linear quotients with
respect to the following order on My. For w,w’ € My we set w > w' if 1n(w) <
v1(w') or vi(w) = vy (w') and w >, W'

Let N > 1. We show that IV has linear quotients with respect to the order
>~ on the set Mpyg. Let ui---uy,vi---vy € IV be two standard products such
that vy ---vny = uy---uy. We have to show that there exists a monomial w € IV
such that w > wy---uy, w/ged(w,u; -+ uy) = x; and z; divides the monomial
v ron/ged(vy - on,ug - uy). We have to analyze two cases.

Case I: vy(vy---vn) = vi(ug -+ -uy). By the definition of the order >, we must
have vy -+ UN >jep u1 -+ - uy. Leti > 2 be the smallest index such that v;(vy - - - vy) >
vi(ug -+ -uy). We claim that there exists 1 < ¢ < N such that ¢ < max(u,). Indeed,
otherwise we have i > max(u; - - -uy) and obtain

Nd = deg(uy -+ -uy) = Zl/k(ul ceuy) < Zl/k(vl -oy) < Nd,
k=1 k=1
a contradiction.



Let, therefore, 1 < ¢ < N be such that ¢ < max(u,). Then we get

Tiu T
1 ¢ L(u,v) or ——2— € L(u,v)
1 Tmax(ug)

(see also the proof of [6, Theorem 1.2]). We recall the argument which was used in [6],
Theorem 1.2] and will be also used in this proof several times. We have z;u,/21 <jes
Ug Zpew U and TiUg/ Tmax(uy) Siex Ug iex V- If we assume that zu,/v1 <jep v and
T1Uq/ Tmax(ug) >lex U, We get by = a1 — 1 and xu,/21 <jep w, where w is the largest
monomial of degree d such that w <., v. We get

T, w

T1Tmax(ziug/x1) Lmax(w)

which, by using condition (b), leads to

TiUg < T w <
lex Slex U,
Tmax(ug) Tmax(w)

a contradiction. Therefore, one of the monomials u;, = w;u,/21 or U = Tty /Tmax(u,)
belongs to L(u,v). Note that u; > wu, and u] = u,. Then we may take w =
Uy - -uq_luguqﬂ ceeUN O W = Up -+ - -uq_lu;’uqH ---upy. In each case it follows that
w = Uy uy, w/ged(w, uy - - uy) = x; and x;|vg - o/ ged(vy vy, ug Uy ).

Case IT: vy (uy - - -uyn) > v1(v1 -+ -vy). Then there exist two monomials m,m’ € S
of same degree, let us say p, such that ged(m,m’) = 1 and

muy - uny = mvy Uy, (2.1)

Since vy (uy - - -uy) > vi(vy - - -vy), we get x1|m’ and x1 4 m. Let i = min(supp(m)).
If there exists 1 < ¢ < N such that ¢ < max(u,), then, as in the proof of Case
(I), we may take w = wuy---uy---uy where u, = 2uy/T1 Or U = TiUly/Tmax(uy)-
Then the following conditions hold: w > uy - - - un, w/ ged(w, u; - - - uy) = x; and x;
divides the monomial vy - - - vy /(ged(vy -+ - vy, ug - - - up)).

Now let max(u,) < i for all 1 < ¢ < N, that is, supp(u; - --un) C {1,...,i}. We
show by induction on p = deg(m) that there exists j > 1 such that z;|m and

:)sjul---uN = 1wy - WN, (22)

where wy, ..., wy € L(u,v) and w; - - -wy is a standard product. If p = 1, there is
nothing to prove. Let p > 1 and assume that there exists 1 < j < i such that x;|m/.
There exists 1 < ¢ < N such that j < i < max(v,) since z;|v; - - - vy. As j < max(vy),
it follows that one of the monomials z;v,/z1 € L(u,v) or T;04/Tmax(w,) € L(u,v).
Let us consider that v, = z;v,/x; € L(u,v). By using (2.I)), we get the relation

muy - - uy = (m’/ag)(vr -0 - uw).
If v = 704/ Tmax(vy) € L(u,v), then, by using again (2.1)), we get the relation
muy - Uy = (xmax(vq)m//xj)(vl . "U(/]/ .. 'UN>-

These last two relations show that either there exists a relation of the form mu, - - - uy
= 2wy - - -wy where wy - - - wy is a standard product of monomials of L(u,v), with
deg(m) = p and 7 1 m, or we may apply induction on p and reach the desired



conclusion. In the first case, let m = x4, -, with i =1y <y < -+ <4
For j =1,p, let wj; - - -w;y be the standard product such that

iUy UN = T1W11 W12 * * - WIN,
Ty W11W12 * - WIN = T1W21 W22 * - - WaN,

TizWo1Wag * * - WoN = T1W31W32 * * - W3N,

L, Wp-11Wp—-1,2 - Wp—_1,N = T1Wp1Wp2 * * - WpN -
Multiplying these equalities, we get
MUy -+ UN = TYWp1 W2 * + * WpN,

hence wy; = v;, for 1 < i < N, since wpwpe -+ -wpy and vy --- vy are standard
products.

It is easily seen that supp(w;---w;n) C {1,...,4;} for all 1 < j < p. Therefore,
we may apply Lemma 2.5 and Lemma 2.7 and get

U Zlew U1 Zlew W11 Zlew W21 Zlem e Zlem Wp1 = V1 Zlem v
and
U zle:c un zle:c wiN Zlex WoN Zlex o zle:c WpN = UN zle:c v.

In particular, we have

u Zlew W11 Zlew o Zlem WiN Zlem v,
whence
TjpUyp---UN = T1W11 - - - WIN,
and wyy, ..., w1y € L(u,v). Therefore, we have an equality of the form zju; - - - uy =

rw; - --wy, where wy---wy € IV is a standard product and j > 2. Let w =
(xjuy---uy)/z1. Then w > uy -+ - uy, w/ ged(w, uy - - -un) = x; and z; divides the
monomial vy - - - vy / ged(vy - - - vy, Uy - - - un), which ends our proof. O

Combining the above theorem with [I, Theorem 1.3] and [6, Theorem 1.2], we get
the following equivalent statements.

Theorem 2.11. Let u = 25" - - 2% with a; > 0 and v = 25 - - 2% be monomials

of degree d with u >y, v and let I = (L(u,v)) be a completely lexsegment ideal with
linear quotients. The the following statements are equivalent;

(1) u and v satisfy one of the following conditions:

(i) u = 2925, v =282 for some a with 0 < a < d;

(11) by < a; — 1,'

(iii) by = a; — 1 and, for the largest monomial of degree d with w <je, v, one

has Ilw/xmax(w) <lez U.

) I has a linear resolution.
) I has linear quotients.
) All the powers of I have linear quotients.
)

5) All the powers of I have a linear resolution.

(2
(3
(4
(

10



3. EXCHANGE PROPERTIES AND APPLICATIONS

We first fix some notations. As in the previous section, let S = K{z1,...,x,] be
the ring of polynomials in n variables over a field K and M the set of all monomials
of degree d in S. If B C M, is a nonempty set, we denote by K[B] the K-subalgebra
of S generated by the monomials of B.

Let R = K[{T,}uep] be the polynomial ring in a set of variables indexed over B
and 7 : R — K|[B] the surjective K-algebra homomorphism defined by «(7,) = u,
for all w € B. Jkp) := ker 7 is called the toric ideal of K[B].

Let < be a monomial order on R and in.(Jg(p)) the initial ideal of Jx(p with
respect to <. A monomial T, ---T,, € R is a standard monomial of Jrp with
respect to < if T, - - Ty, ¢ inc(Jx(p)). We recall the following definition which was
given in [7].

Definition 3.1. [7, Definition 4.1] We say that a nonempty set B C M, satisfies
the (-exchange property with respect to a monomial order < on R if B posseses the
following property: if Ty, ---T,, and T, ---T,, are standard monomials of Jgp
with respect to < such that

(a) vi(ug - un) =v(vy---oy) for 1 <i<g—1 (with ¢ <n—1),

(b) vy u) < vglvn o),
then there exist 1 <6 < N, and ¢ < j < n with j € supp(us) and z,us/z; € B.

Inspired by this definition we consider the following slight generalization. Let <,
be a monomial order on S.

Definition 3.2. We say that B satisfies the o-exchange property with respect to < if
B has the following property: it T}, - -- T, and T}, - - - T, are standard monomials of
Ji ) with respect to < such that u; - --uy <, v1---vy, then there exist 1 <0 < N,
q € supp(vy -+ -vy), and j € supp(us) such that
(1) vy(uy---uy) < vy(vr---vn),
(ii) z; <, x4,
(ili) zqus/x; € B.
It is straightforward to show that if B satisfies the f-exchange property with
respect to a monomial order < on R, then B satisfies the o-exchange property with
respect to < for <,=<je, on S with x7 >0+ >1e0 Tn.

Example 3.3. Let <, be a monomial order on S defined as follows. For m,m’
monomials in S, we set m <, m’ if deg(m) < deg(m’) or deg(m) = deg(m’) and

M >pevier M, that is, if m = 27" -+ 2% m' = xll’l .- -xfgl, then there exists some
1 < s < n such that a, = b,, an_1 = by_1,...,a511 = bsy1, and a, < bs. In
particular, we have z,, >, r,_1 >, -+ >, x;. We call this monomial order the

decreasing revlexicographical order on S.

Any final lexsegment set L/ (v), v € My, satisfies the o-exchange property for <,
as above, with respect to any monomial order < on R = K[{T,, : w € L/(v)}]. In
order to prove this claim, let T,,, - - - T, and T}, - - - T}, be two standard monomials
of Jip) with respect to < such that u; ---uy <, v;--- vy, that is

Uy " UN Zreviex V1" UN-

11



Then there exists 1 < ¢ < n such that v;(uy---uy) = v(vy---vy) foralli > g+ 1
and v, (uy---un) < vy(vy---vn). Since deg(uy---uy) = deg(vy ---vy), we must
have at least an index j < ¢ such that v;(uy---un) > vj(vy---vy). Let 1 <§ < N
be such that j € supp(us). Then the following conditions hold: x; >,cyies 24, that
is 7; <, vy and zus/T; <jer us, whence z us/z; € LI (v).

We also notice that, if we choose < on R to be the monomial order given in the pre-
vious section, that is the lexicographical order on the monomials {T,, : w € L/ (v)}
induced by T,, > T, if w; >j; wo, then LY (v) does not satisfy the f-exchange
property with respect to <. For example, let v = xyx304 € K[z1, X2, 3, 24]. Let
up = 23 and v, = 12374, Uy, v1 € LI (v). Then (Tu1)2 and (Tv1)2 are standard
monomials with respect to < on R = K[{T}, : w € L (v)}] and u? <., v?. In the
(-exchange property, we have to take ¢ = 1. Since supp(u;) = {2}, we should have
Tiuy /T = 11735 € LY (v), which is not possible.

Following closely the ideas from the last section in [7], we may prove a slight
generalization of [7, Theorem 5.1].

Let I C S be a monomial ideal generated in degree d and let B = G(I) its minimal
monomial generating set. Let T = S[{T,}ues| = Klz1,...,2,, T, : u € B] be the
polynomial ring over K. 7T is bigraded by deg(z;) = (1,0) for all 1 < i < n and
deg(Ty,) = (0,1) for all u € B.

Let R(I) = @ It/ = S[{ut}tuep] C S[t| be the Rees ring of I. R(I) is also

=20
naturally bigraded by deg(z;) = (1,0) for 1 < i < n and deg(ut) = (0,1) for
all w € B. There exists a canonical bigraded surjective K-algebra homomorphism
¢ : T — R(I) defined b ¢(x;) = z; for 1 < i < n and ¢(T,,) = ut for all u € B.
Let Pgr(r) := ker ¢ be the toric ideal of R(I). Pg(r) is bihomogeneous and generated
by irreducible bihomogeneous binomials of 7. Let <# be an arbitrary monomial
order on R and <, be an arbitrary monomial order on S. By <# we will denote the
product of these two orders which is a monomial order on 7. More precisely, for
mLy, -+ Tuy, M1y, -+ T, monomials in 7, with m, m’ monomials in S, we have
mTyy - Tuy <E /Ty, T,y ifm <,m orm=m'and T, - Ty, <* Ty, -+ Ty
The following theorem generalizes [7, Theorem 5.1].

Theorem 3.4. Let I C S be a monomial ideal generated in degree d, B = G(I),
<# a monomial order on R and <, a monomial order on S. Let G_#(Jxp) be
the reduced Grobner basis of the toric ideal Jip) with respect to <#. Suppose that
B satisfies the o-exchange property with respect to <#. Then the reduced Grébner
basis of the toric ideal Pr(yy with respect to <¥ consists of all binomials belonging
to G_#(Jk(p)) together with the binomials of the form
.CL’ZTU — ZL’ij € PR(])
where x; is the smallest variable with respect to <, such that z; >, x; and v;u/x; € B.

Proof. We closely follow the ideas from the proof of [7, Theorem 5.1].
We first show that the set

G = G<#(JK[B}) U {I’ZTu — ZL’ij € PR([) DX > l’j}

12



is a Grobner basis of Pr(;) with respect to <#.
Let f € Pr(ry C T be an irreducible binomial. If in_x(f) € R, then f € Pr) N
R = Jk{p), hence there is a binomial belonging to G . (Jx|p) which divides in_ (f).
Let in_»(f) ¢ R, that is, we may write

f:xil-..l’itTul...T

e — Ty, Ty T

UN
with {i1,...,4} N {j,..., 5} = 0 and where we assume that z;, >, --- >, 2y, and
Tj 24 ... >4 Tj,. By successively reductions modulo the binomials from G_# (Jk|g))
we may assume that T3, --- T, and T,, - -- T, are standard monomials with respect
to <#. Let in_x(f) =i 2, Ty -+ Tuy. Then xy, -+ -2 >, ), -+ -1, By using
the equality

Tiy o Ty - UN = Ty - T501 - UN,
we obtain uy -+ uy <, vi---vN, Vi (ugcccuy) < v (vp-ocoy) for 1 < s < ¢, and
V(uy - -uy) > vg(vy---oy) for all k ¢ {iy,...,4;}. Since B satisfies the o-exchange
property, we have that there exist 1 < § < N, j € supp(us) and ¢ € supp(vy - - -vy)
such that v, (u; - - un) < vy(v1 -+ vn), T <, x4, and zyus/x; € B.

The first above condition on g shows that ¢ = 7, for some 1 < s < t. Therefore
we have x; us = ;v for some v € B and the proof of our claim is finished.

To end the proof, let us take some binomial ;T;, —x;T,, where u,v € B, z;u = z;v
and x; <, x; is the smallest variable with respect to <, such that z;u/x; € B.
Assume that z;7), is not reduced, hence there exists some binomial z;T, — 2,1}, with
7 < xj, which belongs to Pr(y. Then ;T — x/T,, € Pr(;) and x; <, z; <, T4, a
contradiction. O

Corollary 3.5. Let I C S be a monomial ideal generated in degree d and B = G(I).
Let <# be a monomial order on R and <, a monomial order on S. If B satisfies
the o-exchange property with respect to <*, then I is of fiber type.

We recall (see [7]) that an ideal I C S is called of fiber type if the fiber relations
together with the relations of the symmetric algebra of I generate all the relations
of the Rees algebra of 1.

The above corollary may be used to find equigenerated monomial ideals of fiber
type. Let <, be an arbitrary graded monomial order on S, u € My and [ =
(LL_(u)), where L. (u) = {w € Mg : w >, u}. Then it is easily seen that (L. (u))
satisfies the o-exchange property for any monomial order on R = K[{T,, : w €
L™ (u)}], hence I is of fiber type.

We prove now a significant property of the monomial ideals whose minimal mono-
mial generating system satisfies a o-exchange property.

Theorem 3.6. Let I C S be a monomial ideal generated in degree d and B = G(I).
Let <* be a monomial order on R = K[{T, : u € B}| and <, a monomial order
on S. If B satisfies the o-exchange property with respect to <¥, then IV has linear
quotients with respect to >, for N > 1.

Proof. Let G ([N) = {wq, - ,w,}, where wy >, -+ >, w, and let T,,,,..., T, be
standard monomials of J k(8] With respect to <#. Let 1 < j < i <r be two integers
and assume that w; = vy - - - vy and w; = uy - - - un for ug, ..., un,v1,..., 08 € G(I),

13



Uy Py 2o UN, V1 =4 - >, Un. We have to prove that there exist 1 < k£ < ¢ and
1 < ¢ < n such that

_ Wk and | W
ged(wy, w;) 1 " ged(wy, w;)

Since w; >, w;, by using the o-exchange property of B, there exist 1 <d < N, [ €
supp(us), and ¢ € supp(v; - - -vy) such that v (uy - uy) < vy(vy---on), 21 <, g,
and x,us/x; € B. Let

. TqlUs . TqW;
Wi = Uy Us—1——Us+1 """ UN = .
x x
Then w,, satisfies the required conditions. O]

In the sequel we show that the lexsegment ideals with a linear resolution which
are not completely satisfies an exchange property.
We first recall the following

Theorem 3.7 ([1]). Let I = (L(u,v)) be a lexsegment ideal with x1 | u and x1 t v
which is not a completely lexsegment ideal. Then I has a linear resolution if and
only if u and v have the following form:

d—1
n

aj41 an

u =z oyt and v = 1T

for somel, 2 <1 <mn-—1.

Theorem 3.8. Let <, be the decreasing revlexicographical order on S and I =
(L(u,v)) a lexsegment ideal with linear resolution which is not a completely lexseg-
ment ideal. Then L(u,v) satisfies the o-exchange property with respect to any mono-
mial order on R = K[{T,, : w € L(u,v)}].

Proof. Let u = xlejﬂ“-w‘;ﬁ, v = zxd1 for some 2 < | < n —1. Let us as-

sume that there exists a monomial order < on R such that L(u,v) does not satisfy
the o-exchange property with respect to <. Then there exist two standard mono-
mials T,, ---T,, and T,, ---T,, such that u; ---uy >yepiex V1 vy and with the
property that for all 1 < § < N, j € supp(us) and ¢ € supp(v; - - -vy) such that
vo(ur -+ un) < vy(vy---vn) and T >repier Tq, We have zgus/x; ¢ L(u,v). Since
UL+ UN >revlex V1 - - Uy there exists some ¢, 1 < g < n, such that

vi(up - un) =vi(vy - -oy) forall i > g+ 1

and v (ug - --un) < yy(vy---vy). Since deg(ug - - -un) = deg(vy - - - vy) there exists
some s < ¢ such that vs(uy - -uy) > vs(vy - -vn). Let us be such that s € supp(us).
By our assumption, we must have z,us/Ts <jer v, that is x,us/xs <jeq xfﬂ. This
implies, in particular, that ¢ > [ + 1, and that for all §, 1 < § < N, there exists a
unique j; < [ such that us = z;,ws; where min(ws) > [ + 1.

Therefore we have uy---uy = zj, - -z 2" --- 20", where ji,---,jy < ¢ and
t > q. We have

ai+ -+ ap, = deg(af*---x9") = Nd— N = N(d —1).
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Let vy - vy = 171{1 ---x% . By hypothesis, we have a, < b, and a; = b; for all
i > ¢+ 1. Since each monomial v, € L(u,v) it is divisible by some variable z; with
t <1< gq, we have by + -+ b,—1 > N. Then we have

Nd=1by 4 +byqg+by4-dby>bi4-Fbyg+ag+-+a+ - +a,>

>N+ N(d—1) = Nd,
a contradiction. O

Corollary 3.9. All powers of a lexsegment ideal with a linear resolution which is
not a completely lexsegment ideal have linear quotients with respect to the increasing
revlexicographic order.

Corollary 3.10. Any lexsegment ideal with a linear resolution which is not a com-
pletely lexsegment ideal is of fiber type.

Corollary 3.11. Let I = (L(u,v)) be a lexsegment ideal with a linear resolution
which is not a completely lexsegment ideal. Then the Rees algebra R(I) is Koszul.

Proof. Let <* be the lexicographical monomial order on R = K[{T,, : w € L(u,v)}]
induced by T,,, > T, if w3 >, wy and <, be the decreasing revlexicographic
order on S. By Theorem [3.4] the reduced Grébner basis of Pr(;) with respect to
the product order <# on T is formed by the binomials from G_x (JK[L(M)}), the
reduced Grobmner basis of Jxr,v), and by the binomials of the form

S(,’Z'Tu/ — SL’ij/ s

where z; >, z;, x;u’ = x;v" and j is the smallest integer with x;u'/z; € L(u,v).
Since G_# (Jx[L(u0)) 18 quadratic ([4, Proposition 2.13]), the statement follows. [
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