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Abstract—In this paper we propose a new design of LT codes,
which decreases the average amount of redundancy in compari-
son to existing designs. The design focuses on a parameter ofthe
LT decoding process called the ripple size. This parameter was
also a key element in the design proposed in the original workby
Luby. Specifically, Luby argued that an LT code should provide
a constant ripple size during decoding. In this work we argue
that the ripple size should decrease during decoding, in order
to reduce the redundancy. Initially we motivate this claim by
analytical results related to the redundancy within an LT code.
We then propose a new degree distribution, which provides the
desired decreasing ripple size. The new degree distribution is
evaluated and compared to the current state of the art through
simulations. This reveals a noticeable increase in performance
with respect to the average amount of redundancy.

I. I NTRODUCTION

Rateless codes are capacity achieving erasure correcting
codes. Common for all rateless codes is the ability to generate
a potentially infinite amount of encoded symbols fromk input
symbols. Decoding is possible when (1+α)k encoded symbols
have been received, whereα is close to zero. The generation of
encoded symbols can be done on the fly during transmission,
which means the rate of the code decreases as the transmission
proceeds, as opposed to fixed rate codes, hence the name. Rate-
less codes are attractive due to their flexible nature. Regardless
of the channel conditions, a rateless code will approach the
channel capacity without the need for feedback. Moreover,
practical implementations of rateless codes can be made with
very low encoder and decoder complexity. The most successful
examples are LT codes [1] and Raptor codes [2]. Originally
rateless codes were intended for reliable file downloading in
broadcast channels [3]. However, lately rateless codes have
drawn significant interest in the area of mobile multimedia
broadcast [4] [5].

LT codes were developed by Luby and were the first
practical capacity achieving rateless code. A key part of Luby’s
design was the degree distribution, which is essential to a
well-performing LT code. Initially Luby presented the Ideal
Soliton distribution (ISD), which was shown to be optimal in
terms of overhead, when all random processes follow expected
behavior. By this we mean that when modeling the encoding
and decoding processes for analysis, all random variables are
assigned their expected value. Optimal behavior is achieved
with the ISD, by keeping a parameter called the ripple size
constantly equal to one throughout the decoding process. This
parameter is described in details in section II. A ripple size
above one introduces overhead, while decoding fails if the

ripple size hits zero. For this reason the ISD is optimal in
theory, however, it lacks robustness against variance in the
ripple size, which makes it inapplicable in practice. In order
to counter this problem, Luby developed the Robust Soliton
distribution (RSD), which aims at ensuring a ripple size larger
than one, yet still constant. The performance of the RSD is
significantly better than that of the ISD, and it is the de facto
standard for LT codes. In [6] the authors address the problem
of finding a degree distribution, which provides a ripple of
a given predefined constant sizeR. Initially, they show that
such a degree distribution does not exist for highk, and then
describe an approximate solution. In [7] the variance of the
ripple size is derived with the purpose of designing a robust
degree distribution. The analysis is based on an assumption,
which makes it valid for only “most of the decoding process”.
The authors state that their next step is to work around this
assumption, in order to solve the design problem.

In this work we investigate the trade-off between robustness
against variance in the ripple size and required overhead. That
is, the amount of encoded symbols, in excess ofk, necessary
in order to successfully decode, i.e.αk. We argue that the
optimal robust degree distribution for LT codes does not seek a
constant ripple size. Rather a degree distribution should ensure
a ripple size which decreases during the decoding process. We
support this claim by showing that a new degree distribution,
proposed in this paper, outperforms both the RSD and the
distribution developed in [6].

The remainder of this paper is organized as follows. Section
II provides a brief overview of LT codes, explaining the
encoding and decoding processes and relevant parameters. The
analytical work of this paper is presented in section III, while
simulation results are given in section IV. Conclusions are
drawn in section V, followed by an Appendix explaining the
details of the degree distribution design.

II. BACKGROUND

A. LT Codes

In this section an overview of regular LT codes is given.
Assume we wish to transmit a given amount of data, e.g. a
file or slice of video from a stream. This data is divided intok
input symbols. From these input symbols a potentially infinite
amount of encoded symbols, also calledoutput symbols,
are generated. Output symbols are XOR combinations of
input symbols. The number of input symbols used in the
XOR is referred to as thedegree of the output symbol, and
all input symbols contained in an output symbol are called
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neighbors of the output symbol. The output symbols of an
encoder follow a certain degree distribution,π(i), which is a
key element in the design of good LT codes. The encoding
process of an LT code can be broken down into three steps:

Encoder:

1) Randomly choose a degreei by samplingπ(i).
2) Choose uniformly at randomi of the k possible input

symbols.
3) Perform bitwise XOR of thei chosen input symbols.

The resulting symbol is the output symbol.

This process can be iterated as many times as needed, which
results in a rateless code.

Decoding of an LT code is based on performing the reverse
XOR operations. Initially all degree one output symbols are
identified and moved to a storage referred to as theripple.
Symbols in the ripple areprocessed one by one, which means
that they are removed as content from all buffered symbols
through XOR operations. Once a symbol has been processed,
it is removed from the ripple and considered decoded. The
processing of symbols in the ripple will potentially reduce
some of the buffered symbols to degree one, in which case
they are moved to the ripple. This is called a symbolrelease.
This makes it possible for the decoder to process symbols
continuously in an iterative fashion. The iterative decoding
process can be explained in two steps:

Decoder:

1) Identify all degree one output symbols and add them to
the ripple.

2) Process a symbol from the ripple and remove it after-
wards. Go to step 1.

Decoding is successful when all input symbols have been
recovered. If at any point before this, the ripple size equals
zero, decoding has failed. This hints that a well performing
LT code should ensure a high ripple size during the decoding
process. However, when a symbol is released, there is a
risk that it is already contained in the ripple, in which case
the symbol is redundant. Hence, to minimize the risk of
redundancy, the ripple size should be kept low. This trade-
off was the main argument for the design goal in [1], that the
ripple size should be kept constant at a reasonable level above
one.

III. A NALYSIS

It is clear from the description of LT codes in section
II, that the ripple size is a very important parameter. The
evolution of the ripple size is determined by the degree
distribution. Thus, to obtain high decoding performance, the
degree distribution should be chosen carefully, such that a
desirable ripple evolution is achieved. The relation between
the degree of an encoded symbol and the point of release was
derived by Luby in Proposition 7 in [1]. By point of release,
we mean the point in the decoding process, where the symbol
is reduced to one of the input symbols and potentially added to
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Fig. 1. The release probability as a function of the decodingstep for fixed
degrees (i).

the ripple. It is parameterized byL, the number of remaining
unprocessed symbols. The relationship is given as a probability
mass function, pmf, which expresses the release probability as
a function ofL and the original degree,i. Fig. 1 is a plot of
the function for a number of fixed degrees,i = 2, 4, ..., 20, and
k = 100. The figure clearly shows that as the degree increases,
the symbol is more likely to be released late in the decoding
process, which follows intuition. However, it also shows that
already at quite low degrees, there is a significant probability
that the symbol is not released until very late in the decoding
process.

The pmf in Lubys Proposition 7 expresses the release
probability only and therefore does not take into account the
probability of a redundant symbol, i.e. when the achieved
input symbol is already in the ripple. This has been taken
into account in Lemma 1.

Lemma 1. (Release and Ripple Add Probability): The prob-
ability that a symbol of original degree i is released and
added to the ripple, when L out of k input symbols remain
unprocessed, given that the ripple size is R at the point of
release, is

q(i, L,R) =
i(i− 1)(L−R+ 1)

∏i−3
j=0 (k − (L+ 1)− j)

∏i−1
j=0 (k − j)

for i = 2, ..., k −R+ 1,

L = R, ..., k − i+ 1,

R = 1, ..., k − 1.

Proof: As in the proof of Proposition 7 in [1], this is
the probability thati− 2 of the neighbors are among the first
k − (L + 1) processed symbols, one neighbor is the symbol
processed at stepk − L, and the last neighbor is among the
L−R+ 1 unprocessed symbols which are not already in the
ripple. Hence,



q(i, L,R) =

(

k−(L+1)
i−2

)(

1
1

)(

L−R+1
1

)

(

k

i

)

=
(L−R+ 1) (k−(L+1))!

(i−2)!(k−(L+1)−(i−2))!

k!
i!(k−i)!

=
(L−R+ 1)i!(k − i)!(k − (L+ 1))!

(i− 2)!k!(k − (L+ 1)− (i − 2))!

=
i(i− 1)(L−R+ 1)

∏i−3
j=0 (k − (L + 1)− j)

∏i−1
j=0 (k − j)

.

Lemma 2. (Redundancy Probability): Assuming a constant
ripple size R, the probability that a symbol of original degree
i is redundant is

r(i, R) = 1−
k−i+1
∑

L=R

q(i, L,R)

for i = 2, ..., k −R+ 1,

R = 1, ..., k − 1.

Proof: When summingq(i, L,R) for all L, we get the
probability that the symbol, at some point, will be released
and be useful to us. The remaining probability mass accounts
for the events where the symbol is released, but provides an
input symbol which is already in the ripple. When this happens
the symbol is redundant.

Lemma 2 is quite important, since it tells us much about
when redundancy occur in an LT code. Fig. 2 shows a plot
of r(i, R) for k = 100. Note thatr(i, 1) = 0, ∀ i, which
was expected, since a ripple size of one means that a released
symbol has zero probability of already being in the ripple.
That is why the Ideal Soliton distribution is optimal for
expected behavior. However, we must have a more robust
ripple size, and even atR only slightly larger than one, high
degree symbols are very likely to be redundant. In general,
as i increases,r(i, R) becomes a faster and faster increasing
function ofR. The following fact can be deduced from Figs.
1 and 2:

Fact. Early in the decoding process, when mostly low degree
symbols are released, a ripple size larger than one induces a
relatively low probability of redundancy. Conversely, late in
the decoding process, when high degree symbols are released,
a ripple size larger than one induces a relatively high proba-
bility of redundancy.

As mentioned in section II, Luby sets forth a design goal of
having a constant ripple size at a reasonable level above one.
This was motivated by the trade-off between overhead and
robustness against variance in the ripple size. The design goal
is formalized in a strict and approximate version in Definitions
1 and 2.

Definition 1. (Constant Ripple Size): An LT code has a
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Fig. 2. The probability that an encoded symbol is redundant as a function
of its degree and the ripple size at the point of release.

constant ripple size iff

ΠL(1) = Πk(1) for Πk(1) ≤ L ≤ k,

where ΠL(1) is the expected number of unprocessed degree
one symbols, i.e. the ripple, when the total number of unpro-
cessed input symbols is L.

Definition 2. (App. Constant Ripple Size): An LT code is said
to have an (ǫ, δ)-approximately constant ripple size iff

|ΠL(1)−Πk(1)| ≤ ǫΠk(1) for δk ≤ L ≤ k,

The parameterǫ represents the chosen tolerance level, i.e.
the deviation from the initial ripple size we will accept. The δ
parameter indicates for how long we require the ripple size to
stay within the tolerance levels. We cannot expect the ripple
size to stay constant throughout the entire decoding process,
since it must approach zero in the end where the number of
unprocessed symbols approach zero.

In order to determine whether a certain degree distribution
provides either a constant or approximately constant ripple
size, we must be able to calculate how the ripple size evolves
during the decoding process. For this purpose we present a
set of equations, which have been derived using the same
assumption as for the derivation of the ISD in [1]. This
assumption is that the encoding and decoding processes follow
expected behavior, i.e. that all realizations of random variables
result in the expected value.

Lemma 3. (Ripple Evolution): The evolution of the ripple
size, given expected behavior in the encoding and decoding
processes, can be evaluated with the following set of equa-
tions:



Πk(i) = (1 + α)kπ(i),

for i = 1, 2, ..., k,

ΠL−1(1) = ΠL(1)− 1 +
2(L−ΠL(1))

L(L− 1)
ΠL(2),

ΠL−1(i) = ΠL(i)− i

L
ΠL(i) +

i+ 1

L
ΠL(i + 1),

for i = 2, 3, ..., L− 1,

ΠL−1(L) = 0,

where ΠL(i) is the amount of degree i symbols left in the
decoding process, for an LT code with any degree distribution,
π(i), when L input symbols remain unprocessed.

Proof: The probability that a symbol of degreei has
the processed symbol as neighbor isi

L
. When a symbol of

degree two is released, it is added to the ripple with probability
L−ΠL(1)

L−1 .

Example. If ΠL(1) = 5, ΠL(2) = 10 and L = 90, the
expected number of released degree two symbols isi

L
ΠL(2) =

2·10
90 . Out of these, an expected fraction ofL−ΠL(1)

L−1 = 90−5
90−1

is added to the ripple. Moreover, processing a symbol will
result in a decrease by one in the ripple size. Thus,Π89(1) =
5− 1 + 20

90
85
89 = 4.21. Similarly, Π89(i) for i = 2, 3, ..., L− 1

can be calculated using Lemma 3.

It was shown in [1] that the ISD satisfies the condition in
Definition 1. However, it remains to be shown whether the
RSD satisfies any of the conditions in Definitions 1 and 2.
Using Lemma 3 the expected ripple evolution of the RSD has
been evaluated at differentα values. The RSD parameters are
c = 0.1 and δ = 1, since they have been found to provide
the lowest average overhead in [8]. Fig. 3 shows the results.It
is seen that the condition of an approximately constant ripple
size is satisfied at roughlyα = 0.16, when ǫ = 0.15 and
δ = 0.2 are chosen. The tolerance levels are indicated with
dashed lines. In this casek = 1000 has been chosen, but the
evaluation has been performed for a wide range ofk values.
This has revealed that the overhead required to satisfy the
condition in Definition 2 is a decreasing function ofk.

Although the RSD provides an approximately constant
ripple size, it can not do so at arbitrary target ripple size,R.
This lack of flexibility is inconvenient when designing a degree
distribution which aims at minimizing the overhead. We will
now present a degree distribution,γ(i), with approximately
constant arbitrary ripple size,R. The details on how we have
derived this distribution are found in the Appendix.

Definition 3. (App. Constant R-Ripple Degree Distribution):
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Fig. 3. The ripple evolution of the RSD atk = 1000 and α =
{0.10, 0.12, 0.14, 0.16}. The dashed lines indicate the tolerance levels.

γ(1) =
R

n
,

γ(2) =
k(k − 1)

2n(k −R)
,

γ(i) =

(

i− 2

i
+

2(i− 1)− 4

i(∆(k,R)− 2)

)

γ(i− 1) for i ∈ A,

γ(i) =
k − i+ 1

k − i+ 1 + ((i−1)−∆(k,R))(1−R)
k−R−∆(k,R)

γ(i− 1) for i ∈ B,

A = {3, ...,∆(k,R)− 1} ,
B = {∆(k,R), ..., k −R+ 1} ,

∆(k,R) =(0.384R−1+19.1R−2
−104R−3+232R−4

−185R−5)(k−R−2)+2,

where n is chosen such that
∑k

i=1 γ(i) = 1.

Lemma 3 is used to evaluate the ripple evolution ofγ(i).
The result is shown in Fig. 4 fork = 1000 andR values of
5, 15 and 30. The ripple size stays within the tolerance levels,
indicated with dashed lines, at the chosenR values, when
ǫ = 0.15 and δ = 0.2. A wider range ofR values has been
evaluated. This revealed that the degree distribution is able
to provide an approximately constant ripple size atR values
between 2 and 40 fork = 1000. Higher k makes it possible
to increaseR even further.

The distribution in Definition 3 provides an approximately
constant ripple size at arbitraryR. However, the necessary
overhead factor is very high. Atk = 1000 a ripple size of 5 can
only be kept constant ifα is in the area of107, which makes
the distribution totally inapplicable in practice. The reason for
this extreme price in overhead is the fact thatγ(i) relies much
more on high degree symbols than the RSD. We concluded
from Figs. 1 and 2 that high degree symbols have a high
probability of being redundant, when they are released at a
point where the ripple size is larger than one. Thus, sinceγ(i)
aims at a robust ripple size, we should expect a high amount
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of redundancy.

A. Decreasing Ripple Size

Based on the observations so far, we argue that the degree
distribution of an LT code should not aim at a constant ripple
size. Instead the ripple size should decrease during decoding,
in order to make sure that the ripple size is low near the end
of the decoding process, where mainly high degree symbols
are released. The main argument is the fact thatr(i, R) is
increasing much faster as a function ofR at high i compared
to at low i. Thus, the price, in terms of redundancy, of having
a robust ripple size increases significantly during the decoding
process. For this reason, a decreasing ripple size will provide
a better trade-off between robustness and overhead.

Using the same design approach as forγ(i), a degree
distribution with a decreasing ripple size has been found. A
modification in the design has been made, which limits the
amount of encoded symbols in the higher third of the degree
spectrum. The details are described in the Appendix. We have
already established that the flow into the ripple is based on
symbols of increasing degrees, as decoding approaches the
end. Thus, since we have decreased the amount of high degree
symbols compared to the design ofγ(i), we should expect a
ripple size which begins at the target size,R, and gradually
decreases during decoding.

Definition 4. (Decreasing Ripple Degree Distribution):

θ(1) =
R

n

θ(2) =
k(k − 1)

2n(k −R)

θ(i) =
i− 2

i
θ(i− 1) for i < ⌊k/3⌉

θ(i) = θ(i − 1) for ⌊k/3⌉ ≤ i < ⌊2k/3⌉

θ(i) =
k − i+ 1

k − i
θ(i− 1) for ⌊2k/3⌉ ≤ i ≤ k −R + 1
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Fig. 5. The ripple evolution ofθ(i) at k = 1000 andR = 20 compared to
the RSD at sameα value.

where n is chosen such that
∑k

i=1 θ(i) = 1.

Fig. 5 shows the ripple evolution ofθ(i) at k = 1000
andR = 20. As desired, the ripple size decreases during the
decoding process, and is quite low, yet still larger than one,
near the end. It is worth noticing that this ripple evolutionis
achieved already atα = 0.05. In the same figure, the ripple
evolution of the RSD is plotted at the sameα value. It is
clear that the ripple ofθ(i) experiences a significantly more
robust evolution than that of the RSD. Hence, we expectθ(i)
to outperform the RSD with respect to average overhead. Such
a comparison is presented in the next section.

IV. N UMERICAL RESULTS

In this section, the performance ofθ(i) is simulated and
compared to the RSD and the distribution proposed in [6],
denotedβ(i). The performance metric is average overhead
required for successful decoding of allk input symbols. The
distributions are simulated atk equal to 256, 512, 1024 and
2048. Well performingR values forθ(i) has been found for
eachk value through Monte Carlo simulations. The results
were 15, 17, 21 and 25, respectively. The RSD is simulated
with parametersc = 0.1 and δ = 1, since these have been
found to provide the smallest average overhead in [8]. The
parameters forβ areδ = 0.01 andR = 2+ 4

√
k, as suggested

in [6]. The results are the average of 5000 simulations.
The results in Fig. 6 show thatθ(i) significantly outperforms

the other distributions at all simulatedk values. The gain
compared to the RSD seems constant in absolute values for
increasingk, while the gain compared toβ(i) is increasing.
For example atk = 2048, θ(i) decreasesα by roughly
0.04 compared to the other distributions, which translatesinto
a decrease of roughly 30% in the average overhead. This
confirms the claims in section III.

V. CONCLUSIONS

In this paper LT codes have been analyzed with the purpose
of identifying the sources of redundancy. We arrived at the



400 600 800 1000 1200 1400 1600 1800 2000
1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

k

A
vg

 O
ve

rh
ea

d 
F

ac
to

r 
(1

+α
)

 

 
RSD
β(i)
θ(i)

Fig. 6. Simulation results for the RSD,θ(i) andβ(i).

conclusion, that the probability of a symbol being redundant
is a much faster increasing function of the ripple size when
the symbol degree is high compared to when it is low. Since
high degree symbols are utilized late in the decoding process,
this means that the price of maintaining a high ripple size
increases during the decoding process. Motivated by this
result, we proposed a novel design in which the aim is to
achieve a decreasing ripple size, as opposed to the existing
strategy of keeping it constant. A degree distribution which
provides a decreasing ripple size has been proposed and
evaluated through simulations. The results show a noticeable
performance increase compared to state of the art degree dis-
tributions. It can thus be concluded, that it is a misconception
that a constant ripple size is a desirable feature of an LT code.
Instead LT codes should provide a decreasing ripple size, since
this gives a better trade-off between robustness and overhead.

APPENDIX

DEGREEDISTRIBUTION ANALYSIS

This appendix describes the analysis related to the deriva-
tions of the degree distributions presented in Definitions 3and
4. With the distribution in Definition 3, we wish to ensure a
constant arbitrary ripple size,R, during the decoding process.
How we have achieved this is first described. As discussed
in section III, the resulting degree distribution is inapplicable
in practice. It was argued that instead we should aim at a
decreasing ripple size. The design of such a degree distribution
is also described.

A. Constant Ripple Degree Distribution

Our design of a constant ripple degree distribution is in-
spired by an interesting property held by the ISD, which we
call the Russian Doll property. For a definition of the ISD see
[1]. The Russian Doll property is connected to the expected
degree evolution of the entire buffer content, i.e. unreleased
symbols, during the decoding process. This buffer content is
referred to asthe cloud. We can show that the degrees of the

symbols in the cloud will follow the ISD throughout the entire
decoding process, if decoding follows expected behavior. This
property is expressed in the following theorem.

Theorem 1. (The Russian Doll Property): k encoded symbols,
whose degrees follow the ISD with parameter k, will reduce
to k− 1 encoded symbols, whose degrees follow the ISD with
parameter k − 1, when a single symbol from the ripple is
processed.

Proof: By E[ILk (i)], we denote the expected number of
degreei symbols left in the cloud, whenL out of k symbols
remain unprocessed and the applied degree distribution is the
ISD. Hence, the goal is to show thatE[Ik−1

k (i)] = E[Ik−1
k−1 (i)],

∀i. We know from [1] that for every processed symbol, the
expected number of released symbols, i.e. degree two symbols
which contain the processed symbol, is one. This holds only
when k symbols have been received. The expected number
of degree two symbols which have the processed symbol as
neighbor is denotedE[ILk (2) → ILk (1)]. We need to derive
E[ILk (i) → ILk (i− 1)] for i = 2, 3, ..., k. Initially we note that
the expected number of received symbols with degreei, when
k symbols have been received and decoding has not started, is
E[Ikk (i)] =

k
i(i−1) . The total number of non unique neighbors

of these is k
i−1 , since each of them havei neighbors. The first

processed symbol is expected to constitute a fraction of1
k

of
these, which means that

E[Ikk (i) → Ikk (i− 1)] =
1

i− 1
, i = 2, 3, ..., k. (1)

With this result it is possible to evaluate the expected number
of degreei symbols in the cloud, after a single symbol has
been processed,E[Ik−1

k (i)]. Note that the net decrease is
E[Ikk (i) → Ikk (i − 1)] − E[Ikk (i + 1) → Ikk (i)], with a
special case fori = k, where the net decrease isE[Ikk (k) →
Ikk (k − 1)], sinceE[Ikk (k + 1) → Ikk (k)] = 0 by definition,
hence

E[Ik−1
k (i)] =E[Ikk (i)]− E[Ikk (i) → Ikk (i− 1)]

+ E[Ikk (i + 1) → Ikk (i)]

=
k

i(i− 1)
− 1

i− 1
+

1

i

=
k

i(i− 1)
− i

i(i− 1)
+

i− 1

i(i− 1)

=
k − 1

i(i− 1)
, i = 2, 3, ..., k − 1, (2)

E[Ik−1
k (k)] =

k

k(k − 1)
− 1

k − 1
= 0. (3)

The expected values expressed in (2) and (3) correspond to
the expected initial values for an ISD with parameterk − 1,
E[Ik−1

k−1 (i)], whenk − 1 symbols have been received.
The Russian Doll property essentially means that when

processing a symbol, the support of the cloud distribution is
decreased by one, however the shape of the distribution stays



the same. Since the resulting distribution is also an ISD, it
still holds the Russian Doll property. This interpretationis the
inspiration for the name. The property is desirable, since it
implies a constant ripple size. We therefore use the property as
the design goal of our degree distribution,γk(i), with constant
arbitrary ripple size,R.

The ISD is able to achieve the Russian Doll property, and
thereby constant ripple, at the reception of onlyk symbols, i.e.
no overhead. Unfortunately, that is not possible for arbitrary
R, hence we must consider the case ofn collected symbols
instead. Initially, we state that in order to have an expected
initial ripple size ofR, we have thatγk(1) = R

n
. In order to

keep the ripple size constant, we need to ensure that every
time we process a symbol, the expected number of released
symbols, not already in the ripple, is equal to one. A symbol
is released and put in the ripple when a degree two symbol
has the processed symbol and one other symbol, which is
not already in the ripple, as neighbors. Hence,γk(2) can be
derived as follows:

E[Γk
k(2) → Γk

k(1)] = 1

γk(2) · n ·
(

1
1

)(

k−R

1

)

(

k
2

) = 1

γk(2) =
k(k − 1)

2n(k −R)
. (4)

When determiningγk(i) for i > 2, the property in Theorem
1 is used as the design criteria. Hence, we need to ensure that
E[Γk−1

k (i)] = E[Γk−1
k−1(i)], which means the following must

hold:

E[Γk

k
(i)]−E[Γk

k
(i)→Γk

k
(i−1)]+E[Γk

k
(i+1)→Γk

k
(i)]=E[Γk−1

k−1
(i)]

E[Γk

k
(i−1)]−E[Γk

k
(i−1)→Γk

k
(i−2)]+E[Γk

k
(i)→Γk

k
(i−1)]=E[Γk−1

k−1
(i−1)]

γk(i− 1)n− γk(i− 1)n
i− 1

k
+ γk(i)n

i

k
= γk−1(i− 1)n

γk(i) =
k

i
γk−1(i− 1)− k − i+ 1

i
γk(i − 1). (5)

Through recursion, (5) can be rewritten to expressγk(i)
as a linear combination ofγk−j(2), j = 0, 1, ..., d− 2, all of
which can be found using (4). In this way the remainder of the
distribution can be found. However, atk above approximately
40, this solution gives an invalid distribution with negative
entries. Hence, it can be concluded that the property in
Theorem 1 can not be achieved in LT codes with more than
40 input symbols andR > 1. This conclusion is similar to the
conclusion in [6], where an ill-conditioned matrix makes it
impossible to find valid distributions, which ensure a constant
expected ripple size for highk. As a result, we need to make
an approximation in (5).

The aim in this approximation is to eliminate the term
includingγk−1(i−1), since this is the source of the increasing
number of variables in the linear combination found through
recursion. We do this by observing the ratiosγk−1(i−1)

γk(i−1) and
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Fig. 7. The observed ratios atk = 30 andR = {2, 4, 6}.

γk−1(i−1)
γk(i)

for increasingk, in the range where the exact solu-
tion can be found,k < 40. It turns out that a pattern appears,
which can be utilized to expressγk−1(i− 1) as a function of
eitherγk(i−1) or γk(i). The observed ratios have been plotted
in Fig. 7 along with a number of reference lines. Initially itis
observed that the two ratios always intersect atk+1

k
regardless

of R. Plots at differentk show that this holds for anyk as well.
These plots have been left out due to space considerations.
The location of the intersection with respect toi is a function
of k and R and is denoted∆(k,R). Through polynomial
regression an approximation of this function has been found
as∆(k,R) = (0.384R−1 + 19.1R−2 − 104R−3 + 232R−4 −
185R−5)(k−R−2)+2. Other important observations are that
γk−1(i−1)
γk(i−1) is approximatelyk−1

k
at i−1 = 2 and thatγk−1(i−1)

γk(i)

is approximatelyk−R+2
k

at i−1 = k−R. We now have enough
fix points to approximateγk−1(i − 1). For i < ∆(k,R) we
use a linear approximation ofγk−1(i−1)

γk(i−1) based on the fix points
(

2, k−1
k

)

and
(

∆(k,R), k+1
k

)

. Similarly, for i ≥ ∆(k,R) we
use a linear approximation ofγk−1(i−1)

γk(i)
based on the fix points

(

∆(k,R), k+1
k

)

and
(

k −R, k−R+2
k

)

. See Fig. 8. Hence,

γk−1(i−1) ≈







(

k−1
k

+ 2(i−1)−4
k(∆(k,R)−2)

)

γk(i−1), for i ∈ A,
(

k+1
k

+ ((i−1)−∆(k,R))(1−R)
k(k−R−∆(k,R))

)

γk(i), for i ∈ B,

A = {3, ...,∆(k,R)− 1} ,
B = {∆(k,R), ..., k −R+ 1} .

(6)

By combining (5) and (6) we arrive at the remaining part of
the distribution presented in Definition 3.

B. Decreasing Ripple Degree Distribution

In section III it is concluded that the distribution in Defi-
nition 3 is inapplicable in practice due to high overhead. For
this reason a degree distribution with a decreasing ripple size
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Fig. 8. The observed ratios atk = 30 andR = 4 compared to the applied
approximations.

was presented in Definition 4, which reduces the amount of
high degree symbols compared to the distribution in Definition
3. This is achieved by applying a different substitution for
γk−1(i− 1) than the approximation just explained. We divide
the degree spectrum into three sections and use the following
substitutions:

γk−1(i−1) ≈











k−1
k

γk(i−1), for i < ⌊k/3⌉ ,
k+1
k

γk(i−1), for ⌊k/3⌉ ≤ i < ⌊2k/3⌉ ,
γk(i), for ⌊2k/3⌉ ≤ i ≤ k −R+ 1.

(7)

For the lower two sections, we have used the approxima-
tions k−1

k
γk(i − 1) and k+1

k
γk(i − 1) respectively. For the

higher section, containing high degree symbols, we substitute
γk−1(i−1) with γk(i), i.e. ratio one. This ratio is significantly
higher than the linearly decreasing ratio applied in (6), which
can be seen by comparing in Fig. 8. What this does to our
degree distribution can be seen from the following, where we
denote the ratio applied in the substitutiona.

γk(i) =
k

i
γk−1(i − 1)− k − i+ 1

i
γk(i− 1),

≈ k

i
aγk(i)−

k − i+ 1

i
γk(i− 1),

=
k − i+ 1

ak − i
γk(i− 1). (8)

Hence, by choosinga = 1 instead of the ratio applied in (6),
which approachesk−R+2

k
for i approachingk − R + 1, we

decrease the amount of high degree symbols, forR > 2. Since
high degree symbols are released late in the decoding process,
this provides the desired decreasing ripple size. Combining (5)
and (7) we arrive at the distribution presented in Definition3.
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