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Abstract—In this paper we propose a new design of LT codes, ripple size hits zero. For this reason the ISD is optimal in
which decreases the average amount of redundancy in compari theory, however, it lacks robustness against variance én th
son to existing designs. The design focuses on a parametertbé ripple size, which makes it inapplicable in practice. Inerd

LT decoding process called the ripple size. This parameter as . )
also a key element in the design proposed in the original worky to counter this problem, Luby developed the Robust Soliton

Luby. Specifically, Luby argued that an LT code should provide distribution (RSD), which aims at ensuring a ripple sizeéar
a constant ripple size during decoding. In this work we argue than one, yet still constant. The performance of the RSD is

that the ripple size should decrease during decoding, in orr  significantly better than that of the ISD, and it is the de dact
to reduce the redundancy. Initially we motivate this claim by gianqard for LT codes. I1]6] the authors address the problem

analytical results related to the redundancy within an LT cade. - C . . .
We then propose a new degree distribution, which provides th of finding a degree distribution, which provides a ripple of

desired decreasing ripple size. The new degree distributivis @ given predefined constant siZe Initially, they show that
evaluated and compared to the current state of the art throug such a degree distribution does not exist for higrand then

simulations. This reveals a noticeable increase in perforance describe an approximate solution. [fi [7] the variance of the
with respect to the average amount of redundancy. ripple size is derived with the purpose of designing a robust
degree distribution. The analysis is based on an assumption
which makes it valid for only “most of the decoding process”.
Rateless codes are capacity achieving erasure correcfiitg authors state that their next step is to work around this
codes. Common for all rateless codes is the ability to geaerassumption, in order to solve the design problem.
a potentially infinite amount of encoded symbols frérmput In this work we investigate the trade-off between robustnes
symbols. Decoding is possible when ¢l encoded symbols against variance in the ripple size and required overhelaat T
have been received, whetds close to zero. The generation ofis, the amount of encoded symbols, in excesé,afiecessary
encoded symbols can be done on the fly during transmissiom,order to successfully decode, i.ek. We argue that the
which means the rate of the code decreases as the transmissjaimal robust degree distribution for LT codes does nok see
proceeds, as opposed to fixed rate codes, hence the name. Ratestant ripple size. Rather a degree distribution shouddie
less codes are attractive due to their flexible nature. Riéess  a ripple size which decreases during the decoding process. W
of the channel conditions, a rateless code will approach thepport this claim by showing that a new degree distribytion
channel capacity without the need for feedback. Moreovemoposed in this paper, outperforms both the RSD and the
practical implementations of rateless codes can be made wdistribution developed in [6].
very low encoder and decoder complexity. The most successfuThe remainder of this paper is organized as follows. Section
examples are LT codes|[1] and Raptor codés [2]. Originallyl provides a brief overview of LT codes, explaining the
rateless codes were intended for reliable file downloading €ncoding and decoding processes and relevant paramehters. T
broadcast channels][3]. However, lately rateless codes hanalytical work of this paper is presented in secfioh lllileh
drawn significant interest in the area of mobile multimedigimulation results are given in sectiénllV. Conclusions are
broadcast([4][[5]. drawn in sectior V/, followed by an Appendix explaining the
LT codes were developed by Luby and were the firstetails of the degree distribution design.
practical capacity achieving rateless code. A key part difyl'si
design was the degree distribution, which is essential to a
well-performing LT code. Initially Luby presented the Idea” LT Codes
Soliton distribution (ISD), which was shown to be optimal in In this section an overview of regular LT codes is given.
terms of overhead, when all random processes follow exgectsssume we wish to transmit a given amount of data, e.g. a
behavior. By this we mean that when modeling the encodifite or slice of video from a stream. This data is divided ikto
and decoding processes for analysis, all random varialées anput symbols. From these input symbols a potentially infinite
assigned their expected value. Optimal behavior is actlievemount of encoded symbols, also calledtput symbols,
with the ISD, by keeping a parameter called the ripple sizge generated. Output symbols are XOR combinations of
constantly equal to one throughout the decoding process. Timput symbols. The number of input symbols used in the
parameter is described in details in sectidn II. A rippleesizXOR is referred to as theegree of the output symbol, and
above one introduces overhead, while decoding fails if tledl input symbols contained in an output symbol are called

I. INTRODUCTION

Il. BACKGROUND


http://arxiv.org/abs/1011.2078v1

neighbors of the output symbol. The output symbols of an  0.09
encoder follow a certain degree distributior(;), which is a 0.08}
key element in the design of good LT codes. The encoding
process of an LT code can be broken down into three steps:  097[

£ 006}

Encoder: I
. : _ § 0.05f

1) Randomly choose a degrédy samplingr(i). &
2) Choose uniformly at randomof the k possible input 3 0.04¢
symbols. 3 o003l

3) Perform bitwise XOR of the chosen input symbols. &

The resulting symbol is the output symbol. 0.02

This process can be iterated as many times as needed, whi  o0.01}
results in a rateless code. 0 )
Decoding of an LT code is based on performing the reverst o 20 40 60 80 100

XOR operations. Initially all degree one output symbols are Decoding Step (k-L)

identified .and mpved to a storage referred to a_s riipele. Fig. 1. The release probability as a function of the decoditep for fixed
Symbols in the ripple arprocessed one by one, which means yegrees 4.

that they are removed as content from all buffered symbols

through XOR operations. Once a symbol has been processed,

it is removed from the ripple and considered decoded. The, \iohje It is parameterized b¥, the number of remaining
processing of symbols in the ripple will potentially reducg,,,cessed symbols. The relationship is given as a priityabi
some of the buffered symbols to degree one, in which caggss function, pmf, which expresses the release prohyahdit
they are mov_ed to the ripple. This is called a symisbéase. a function of L and the original degree, Fig.[ is a plot of
Th|s_ makes 'F poss!ble f_or the Qecoder t(_) Process Symbﬂ‘% function for a number of fixed degreeéss 2,4, ..., 20, and
continuously in an iterative fashion. The iterative deogdi . _ 1 The figure clearly shows that as the degree increases,
process can be explained in two steps: the symbol is more likely to be released late in the decoding
process, which follows intuition. However, it also showstth
Decoder: already at quite low degrees, there is a significant prothabil
1) Identify all degree one output symbols and add them {Rat the symbol is not released until very late in the deapdin
the ripple. process.
2) Process a symbol from the ripple and remove it after- tpe pmf in Lubys Proposition 7 expresses the release
wards. Go to step 1. probability only and therefore does not take into accouat th
Decoding is successful when all input symbols have begrobability of a redundant symbol, i.e. when the achieved
recovered. If at any point before this, the ripple size egjughput symbol is already in the ripple. This has been taken
zero, decoding has failed. This hints that a well performingto account in Lemmal 1.

LT code should ensure a high ripple size during the decoding , o
process. However, when a symbol is released, there is-gMma 1. (Release and Ripple Add Probability): The prob-

risk that it is already contained in the ripple, in which cas@0llity that a symbol of original degree i is released and
the symbol is redundant. Hence, to minimize the risk @tdded to the ripple, when L out of & input symbols remain
redundancy, the ripple size should be kept low. This tradd?Processed, given that the ripple size is R at the point of
off was the main argument for the design goallih [1], that tH&'€ase, is
ripple size should be kept constant at a reasonable levekabo

one. q(i, L, R) =
Il. ANALYSIS

i(i—1)(L— R+ (k— (L+1)—j)
IT=o (k= J)
for i=2,..,k—R+1,
L=R,..k—i+1,

It is clear from the description of LT codes in section
[ that the ripple size is a very important parameter. The
evolution of the ripple size is determined by the degree R=1,...k-1
distribution. Thus, to obtain high decoding performante, t
degree distribution should be chosen carefully, such that a Proof: As in the proof of Proposition 7 in_[1], this is
desirable ripple evolution is achieved. The relation bemve the probability that — 2 of the neighbors are among the first
the degree of an encoded symbol and the point of release was (L + 1) processed symbols, one neighbor is the symbol
derived by Luby in Proposition 7 in_[1]. By point of releaseprocessed at step — L, and the last neighbor is among the
we mean the point in the decoding process, where the symliol R + 1 unprocessed symbols which are not already in the
is reduced to one of the input symbols and potentially addedripple. Hence,



() () (I

q(i, L, R) = —=2—1 > y
G (k= (L+1)! ” .
—(L+1))!
B (L-R+1) —2)1(k—(L+1)—(i—2))! 70 o7
= Kl
T N 60 00
(L - R+ Dilk — i)k — (L + 1))! 2 50 os
G2k —(L+1)— (i —2)) =
- _ € 40
- )(L - R+ DT (k= (L+1) =) 0
T2 (k=) '
20
u 10§
Lemma 2. (Redundancy Probability): Assuming a constant -
ripple size R, the probability that a symbol of original degree 20 40Degree60 % o

1 isredundant is
Fig. 2. The probability that an encoded symbol is redundana éunction

k—i+1 ) ) ¢ :
T(i, R) —1_ Z q(i, L R) of its degree and the ripple size at the point of release.
L=R
for i=2,..,k—R+1, . o
Re1,..k—1 constant ripple size iff
Proof: When summing;(i, L, R) for all L, we get the % (1) = *(1) for I*(1) < L <k,

probability that the symbol, at some point, will be released

and be useful to us. The remaining probability mass accoumiisere 117(1) is the expected number of unprocessed degree

for the events where the symbol is released, but provides @ik symbols, i.e. the ripple, when the total number of unpro-

input symbol which is already in the ripple. When this hagpemessed input symbols is L.

the symbol is redundant. ] o ) _ o
Lemmal2 is quite important, since it tells us much abolR€finition 2. (App. Constant Ripple Size): An LT code s said

when redundancy occur in an LT code. Fig. 2 shows a plt have an (¢, 6)-approximately constant ripple size iff

of r(i, R) for k = 100. Note thatr(i,1) = 0, V ¢, which

was expected, since a ripple size of one means that a released  |[TT1%(1) — TT¥(1)| < €lT*(1) for 6k < L <k,

symbol has zero probability of already being in the ripple.

That is why the Ideal Soliton distribution is optimal for 1o parameter represents the chosen tolerance level, i.e.
expected behavior. However, we must have a more robyst yeiation from the initial ripple size we will accept. &#
ripple size, and even & on_ly slightly larger than one, high parameter indicates for how long we require the ripple size t
degr,ee symbols' are very likely to be redundant. !n gengrg{ay within the tolerance levels. We cannot expect the &ippl
ast |_ncreasesr(z, R) bec_omes a faster and faster INCreasing, e to stay constant throughout the entire decoding pspces
function of . The following fact can be deduced from Figsg;a it must approach zero in the end where the number of
@ and2: unprocessed symbols approach zero.
Fact. Early in the decoding process, when mostly low degree |n order to determine whether a certain degree distribution
symbols are released, a ripple size larger than one inducegr@vides either a constant or approximately constant eippl
relatively low probability of redundancy. Conversely,dah sjze, we must be able to calculate how the ripple size evolves
the decoding process, when high degree symbols are releaggging the decoding process. For this purpose we present a
a ripple size larger than one induces a relatively high probget of equations, which have been derived using the same
bility of redundancy. assumption as for the derivation of the ISD in [1]. This
As mentioned in sectidnlll, Luby sets forth a design goal @éssumption is that the encoding and decoding processew/foll
having a constant ripple size at a reasonable level above oexpected behavior, i.e. that all realizations of randonavees
This was motivated by the trade-off between overhead arebult in the expected value.
robustness against variance in the ripple size. The desigh g

Egzr(;n[;\hzed in a strict and approximate version in Deforig size, given expected behavior in the encodiing and decoding
' processes, can be evaluated with the following set of equa-
Definition 1. (Constant Ripple Sze): An LT code has a tions

Lemma 3. (Ripple Evolution): The evolution of the ripple



% (i) = (1 + a)kn (i),

for i =1,2,...,k, o i
} 2(L — 1T-(1)) 2 '
L—1/1y — 17L(1) _ L g .
TTE1(1) = TTE(1) — 1+ -1 " 2), H :
. . 1 [hd :

E-4 () = () — 2112 () + =T (i + 1),
for i =2,3,....,L—1,
HL_I(L):Oa :
0

0 200 400 600 800 1000
Decoding Step (k-L)
L . . . .
where I1%(7) is the amount of degree i symbols left in the o 3. The ripple evolution of the RSD a — 1000 and o —

. : o i
decoding process, for an LT code with any degree distribution, 1010, 0.12,0.14,0.16}. The dashed lines indicate the tolerance levels.
m(i), when L input symbols remain unprocessed.

Proof: The probability that a symbol of degreehas
the processed symbol as neighborzis When a symbol of

R
degrLee two is released, it is added to the ripple with prditybi (1) = P
L, . k(k —1)
7(2) = k1)’
Example. If T1%(1) = 5, I¥*(2) = 10 and L = 90, the

expected number of released degree two symbt%sﬁé

219, Out of these, an expected fraction éf—l o

. (122 . i(2A(z'(k—’;))—_42)>7(i_1) for i€ 9,

is added to the ripple. Moreover, processmg a symbol will (i) = k—i+1 y(i — 1) for i€ B,
result in a decrease by one in the ripple size. T[ﬁL?@( )= k—i+1+ L= 1) A(k Alh ))]% B)
5—1+ 2255 = 4.21. Similarly, IT* (i) for i = 2,3,...,L — 1 A= {3, ... Alk R)—l}

can be calculated using Lem 3.
ulated using Lemifa B = {AK,R), .. k— R+1},

It was shown in ”.] that the ISD satisfies the condition "A(k R) =(0.384R~'4+19.1R"2—104R3+232R*—185R %) (k—R—2)+2,
Definition [1. However, it remains to be shown whether the
RSD satisfies any of the conditions in Definitidis 1 &nd avhere n is chosen such that S-F | (i) = 1.
Using LemmdB the expected ripple evolution of the RSD has
been evaluated at differentvalues. The RSD parameters arg-,

¢ =01 andé = 1, since they have been found to prowd% 15 and 30. The ripple size stays within the tolerance $vel
the lowest average overheadiin [8]. ig. 3 shows the resjtjltsInd|cated with dashed lines, at the chosBnvalues, when

is seen that the condition of an approximately constanﬂmpp — 0.15 and§ — 0.2. A wider range ofR values has been

size is satisfied at roughly = 0.16, when ¢ _.O %5 and evaluated. This revealed that the degree distribution ls ab
0 =02 are chose_n. The tolerance levels are indicated wfg provide an approximately constant ripple sizeRavalues
dashed_ lines. In this cage= 1000 has b_een chosen, but theoetween 2 and 40 fok = 1000. Higher k makes it possible
evaluation has been performed for a wide rangé eflues. -

: : _ 0 increaseR even further.
This .has .reveal.e(.j- that .the overheaq reqwrgd fo satisfy t €The distribution in Definitio B provides an approximately
condition in Definition(2 is a decreasing function kf constant ripple size at arbitrari®. However, the necessary

Although the RSD provides an approximately constamverhead factor is very high. At= 1000 a ripple size of 5 can
ripple size, it can not do so at arbitrary target ripple sige, only be kept constant if is in the area ofi0”, which makes
This lack of flexibility is inconvenient when designing a deg the distribution totally inapplicable in practice. The sea for
distribution which aims at minimizing the overhead. We wilthis extreme price in overhead is the fact thét) relies much
now present a degree distribution(i), with approximately more on high degree symbols than the RSD. We concluded
constant arbitrary ripple sizé?. The details on how we havefrom Figs.[1 and2 that high degree symbols have a high
derived this distribution are found in the Appendix. probability of being redundant, when they are released at a

point where the ripple size is larger than one. Thus, sifée

Definition 3. (App. Constant R-Ripple Degree Distribution):  aims at a robust ripple size, we should expect a high amount

Lemmal3 is used to evaluate the ripple evolutiony¢f).
e result is shown in Fidg.]4 fok = 1000 and R values of
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Fig. 4. The ripple evolution of(i) at k = 1000 and R = {5, 15, 30}. Fig. 5. The ripple evolution of(¢) at k = 1000 and R = 20 compared to
the RSD at samev value.

of redundancy. where n is chosen such that Y%, 6(i) = 1.

Fig. @ shows the ripple evolution of(i) at & = 1000
) and R = 20. As desired, the ripple size decreases during the
Based on the observations so far, we argue that the degfig@oding process, and is quite low, yet still larger than, one
distribution of an LT code should not aim at a constant ripplgear the end. It is worth noticing that this ripple evolutien
size. Instead the ripple size should decrease during degodi;chieved already at = 0.05. In the same figure, the ripple
in order to make sure that the ripple size is low near the e@gg|ution of the RSD is plotted at the samevalue. It is
of the decoding process, where mainly high degree symbejgar that the ripple of(i) experiences a significantly more
are released. The main argument is the fact tatR) is ropust evolution than that of the RSD. Hence, we expét

increasing much faster as a function@fat highi compared o gytperform the RSD with respect to average overhead. Such

a robust ripple size increases significantly during the dewp
process. For this reason, a decreasing ripple size willigeov IV. NUMERICAL RESULTS
a better trade-off between robustness and overhead. In this section, the performance éfi) is simulated and
Using the same design approach as fdi), a degree compared to the RSD and the distribution proposed_in [6],
distribution with a decreasing ripple size has been found. denoted3(i). The performance metric is average overhead
modification in the design has been made, which limits thequired for successful decoding of &llinput symbols. The
amount of encoded symbols in the higher third of the degrdistributions are simulated &t equal to 256, 512, 1024 and
spectrum. The details are described in the Appendix. We ha2@48. Well performingR values for6(i) has been found for
already established that the flow into the ripple is based éachk value through Monte Carlo simulations. The results
symbols of increasing degrees, as decoding approacheswese 15, 17, 21 and 25, respectively. The RSD is simulated
end. Thus, since we have decreased the amount of high degvéb parameters: = 0.1 and§ = 1, since these have been
symbols compared to the design ofi), we should expect a found to provide the smallest average overhead in [8]. The
ripple size which begins at the target siZe, and gradually parameters fop ares = 0.01 and R = 2+ vk, as suggested

A. Decreasing Ripple Sze

decreases during decoding. in [6]. The results are the average of 5000 simulations.
_ _ ) o The results in Fid.16 show théf:) significantly outperforms
Definition 4. (Decreasing Ripple Degree Distribution): the other distributions at all simulatell values. The gain
R compared to the RSD seems constant in absolute values for
(1) = n increasingk, while the gain compared t@(¢) is increasing.
k(k—1) For example atk = 2048, (i) decreasesx by roughly
0(2) = (k- R) 0.04 compared to the other distributions, which trans|atts
i 9 a decrease of roughly 30% in the average overhead. This
0(i) = ——0(i = 1) for i< [k/3] confirms the claims in sectidnll!.
0(i) =6(: — 1) for |k/3] <i< |2k/3] V. CONCLUSIONS
6(i) = k—i + 19(1. ~1) for |2k/3]<i<k-R+1 In this_ paper LT codes have been analyzed with .the purpose
kE—1 of identifying the sources of redundancy. We arrived at the



1.24 i i i i i i i i i symbols in the cloud will follow the ISD throughout the estir
decoding process, if decoding follows expected behaviois T
property is expressed in the following theorem.

1.22

1.2} Theorem 1. (The Russian Doll Property): k encoded symbols,
whose degrees follow the 1SD with parameter &, will reduce
to k — 1 encoded symbols, whose degrees follow the |SD with
parameter k& — 1, when a single symbol from the ripple is

processed.

Proof: By E[I}(i)], we denote the expected number of
degreei symbols left in the cloud, wheh out of & symbols
remain unprocessed and the applied degree distributidreis t
ISD. Hence, the goal is to show th&{rr ' (i)] = E[I;~{ (i)],

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Vi. We know from [1] that for every processed symbol, the
400 600 800 1000 1200 1400 1600 1800 2000 expected number of released symbols, i.e. degree two sgmbol
K which contain the processed symbol, is one. This holds only
when k£ symbols have been received. The expected number
of degree two symbols which have the processed symbol as
neighbor is denoted?[I}(2) — IF(1)]. We need to derive

conclusion, that the probability of a symbol being redunda® [/ (i) = Ii; (i — 1)] for i = 2,3,.... k. Initially we note that

is a much faster increasing function of the ripple size whéR€ expected number of received symbols with degreeénen
the symbol degree is high compared to when it is low. SindeSymbols have been received and decoding has not_started, is
high degree symbols are utilized late in the decoding pmceg[lf(i)] = 1(1%1) The total number of non unique neighbors
this means that the price of maintaining a high ripple siZef these is-;, since each of them haveneighbors. The first
increases during the decoding process. Motivated by ttfigocessed symbol is expected to constitute a fractiof of
result, we proposed a novel design in which the aim is tbese, which means that

achieve a decreasing ripple size, as opposed to the existing

strategy of keeping it constant. A degree distribution \whic N "o 1 )

provides a decreasing ripple size has been proposed and Bl (i) = (i = 1] = i—1 =23,k (1)
evaluated through simulations. The results show a notleeaev

. ith this result it is possible to evaluate the expected nermb
performance increase compared to state of the art degree d , . .
N . . . of degreei symbols in the cloud, after a single symbol has
tributions. It can thus be concluded, that it is a misconioept

. e : een processedZ[IF~!(i)]. Note that the net decrease is
that a constant ripple size is a desirable feature of an LECO(%[I,’j(z‘) S IR 1) = E[IMG + 1) — I8, with a

Instead LT codes should provide a decreasing ripple siaeesi . . &
this gives a better trade-off between robustness and oaatérhes|,?ecIal case_for . k:,kwhere the ”it decrease K1, (k) -
Ii(k —1)], sinceE[I}}(k + 1) — (k)] = 0 by definition,

APPENDIX hence
DEGREEDISTRIBUTION ANALYSIS
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Fig. 6. Simulation results for the RSB(%) and 8(z).

This appendix describes the analysis related to the deriva- E[IM1()] =E[I(i
tions of the degree distributions presented in Definit[dand b K
[4. with the distribution in Definitioh]3, we wish to ensure a

constant arbitrary ripple sizé, during the decoding process. _ ko1 4=
How we have achieved this is first described. As discussed i(i—1) i—-1 4
in sectionT], the resulting degree distribution is inaippble _ ki " 1—1
in practice. It was argued that instead we should aim at a Cdi—1)  i(i—1) di(i—1)
decreasing ripple size. The design of such a degree distibu kE—1 ,
is also described. -1 T 2,3, .., k=1, @
A. Constant Ripple Degree Distribution k—1 __k 1
Pple Deg B 0 =g~ o1 = 3)

Our design of a constant ripple degree distribution is in-
spired by an interesting property held by the I1SD, which we The expected values expressed[ih (2) and (3) correspond to
call the Russian Doll property. For a definition of the ISD setlne expected initial values for an ISD with parameter 1,

[1]. The Russian Doll property is connected to the expectdd ;! (i)], whenk — 1 symbols have been received. =
degree evolution of the entire buffer content, i.e. unsdegla The Russian Doll property essentially means that when
symbols, during the decoding process. This buffer contentgrocessing a symbol, the support of the cloud distribut®n i
referred to aghe cloud. We can show that the degrees of theecreased by one, however the shape of the distributios stay



the same. Since the resulting distribution is also an ISD, it 1.1y
still holds the Russian Doll property. This interpretatisrihe
inspiration for the name. The property is desirable, sirice i
implies a constant ripple size. We therefore use the prppert
the design goal of our degree distribution{i), with constant
arbitrary ripple size R. 1r
The ISD is able to achieve the Russian Doll property, anc.g
thereby constant ripple, at the reception of ohlgymbols, i.e.
no overhead. Unfortunately, that is not possible for aalpjtr
R, hence we must consider the casenotollected symbols
instead. Initially, we state that in order to have an exmkcte 0.9+
initial ripple size of R, we have thaty,(1) = %. In order to
keep the ripple size constant, we need to ensure that eve
time we process a symbol, the expected number of release

1.051

<
~0.95¢

symbols, not already in the ripple, is equal to one. A symbol 5 10 15 20 25
is released and put in the ripple when a degree two symbc. (-1

has the processed symbol and one other symbol, which is
not already in the ripple, as neighbors. Hengg(2) can be
derived as follows:

Fig. 7. The observed ratios &= 30 and R = {2, 4, 6}.

W%(i’l) for increasingk, in the range where the exact solu-

A
E[Tk(©2) = 1) =1 tlor_1 can be foun_o_llf < 40. It turns out. that a pattern appears,
I\ (kR which can be utilized to expresg_1(i — 1) as a function of
e(2) - n- (1)% -1 faith(_arvk(i—l) or_%(z'). The observed ratios have be_e.n p!o_tted
(5) in Fig.[4 along with a number of reference lines. Initiallyist
k(k—1) observed that the two ratios always intersedf;?lt regardless
"(2) = 2n(k— R)’ (4 of R. Plots at different: show that this holds for ank as well.

o . These plots have been left out due to space considerations.

When determiningy (i) for i > 2, the property in Theorem The location of the intersection with respectitis a function
[ is used as the design criteria. Hence, we need to ensure #fat. and R and is denotedA (k, R). Through polynomial
E[T} ()] = E[}Z1(i)], which means the following must regression an approximation of this function has been found
hold: asA(k,R) = (0.384R~' +19.1R"2 — 104R~3 4 232R~* —

185R~°)(k— R—2)+2. Other important observations are that
Ye—1(i=1) - ; -1 : _ Ye—1(i—1)
) ) . . ) o 21Ul is approximatelyi =L ati—1 = 2 and thatZ:=t=2)
E[TE (i)] = E[DE (6) = TE (i—= 1)+ E[F (i41) > Tk (6)]=E[T* "1 (6 i (i=1) k V1. (4)

@I B2 G DB (D 2 D ORI () is approximately:=F+2 atj—1 = k—R. We now have enough
- ! fix points to approximatey,—1(i — 1). Fori < A(k, R) we
(i — 1) — v (i — 1)n% + %(i)n% =y 1(i —1)n use a linear approximation df;;(l%’l)l) based on the fix points

. (2,57L) and (A(k, R), &2). Similarly, fori > A(k, R) we
k—i1+1 . k. . K (i—1) . .
f%(l = 1). (5) use alinear approximation éﬁ‘% based on the fix points

(A(k,R), 5tL) and (k — R, =2). See Fig[B. Hence,

E[LF(i—1)]—E[[§ (i—1)=TF (i—2)]+E[LF ()= TF (i—-1)]=E[LF "1 (i—1)]

Vi (i) = ?%—1(1' -1) -

Through recursion,[{5) can be rewritten to expres$:)

as a linear combination ofx—;(2), j =0,1,...,d — 2, all of _

which can be found using@l(4). In this way the remainder of the ‘ % + %) Vi (i—1), for i € 2,
distribution can be found. However, atabove approximately 7%-1(-1 "~ ¢, n ((i—l)—A(k,R))(l—R)) (o). forie B
40, this solution gives an invalid distribution with negati k k(k—R—-A(k,R)) ’ ’

entries. Hence, it can be concluded that the property in A={3,...,A(k,R) — 1},
TheorenTL can not be achieved in LT codes with more than B ={AkR),...k—R+1}.
40 input symbols an® > 1. This conclusion is similar to the ©6)
conclusion in [[6], where an ill-conditioned matrix makes it
impossible to find valid distributions, which ensure a canst By combining [5) and[{6) we arrive at the remaining part of
expected ripple size for high. As a result, we need to makethe distribution presented in Definitidn 3.
an approximation in{5).

The aim in this approximation is to eliminate the tern®. Decreasing Ripple Degree Distribution
including~x—1(i—1), since this is the source of the increasing In section[Tl it is concluded that the distribution in Defi-
number of variables in the linear combination found throughition 3 is inapplicable in practice due to high overhead. Fo
recursion. We do this by observing the ratiégs;(li(i—z)l) and this reason a degree distribution with a decreasing ripe s



[1]
[3]
.9 L4
s 1r
o=t R - [4]
0.954_ _ _ k—1(i—
Y (i—1) 5]
Yre—1(i—
Vi (7) ) .
- - = Approximation (6]
0.9 5 10 15 20 25

(i—1)

Fig. 8. The observed ratios &t= 30 and R = 4 compared to the applied
approximations.

(8]

was presented in Definition 4, which reduces the amount of
high degree symbols compared to the distribution in Definiti

3. This is achieved by applying a different substitution for
~vk—1(i — 1) than the approximation just explained. We divide
the degree spectrum into three sections and use the foljowin
substitutions:

Ed -1, fori < |k/3],

Te-16-1) & ¢ By o1, for |k/3] < i< |2k/3],
Ve(@), for |2k/3] <i<k—-R+1.

()

For the lower two sections, we have used the approxima-
tions -2+, (i — 1) and &L, (i — 1) respectively. For the
higher section, containing high degree symbols, we suibstit
~vi—1(i—1) with v (4), i.e. ratio one. This ratio is significantly
higher than the linearly decreasing ratio appliedin (6)iclvh
can be seen by comparing in FIg. 8. What this does to our
degree distribution can be seen from the following, where we

denote the ratio applied in the substitution

. k . k—i1+1 .
(i) = e (i = 1) = ————w(i = 1),
k . k—i1+1 .
r —am(i) = ————m(i = 1),
k—i+1
= —— (i —1). 8
(i =1) 8)

Hence, by choosing = 1 instead of the ratio applied ifl(6),
which approache$=2+£2 for  approachingc — R + 1, we
decrease the amount of high degree symbolsRfor 2. Since
high degree symbols are released late in the decoding @,oces
this provides the desired decreasing ripple size. Combih
and [T) we arrive at the distribution presented in Definifgbn

REFERENCES

Michael Luby, “LT Codes,” inProceedings. The 43rd Annual |IEEE Sym-
posium on Foundations of Computer Science., pp. 271-280, November
2002.

Amin Shokrollahi, “Raptor codes,|EEE Transactions on Information
Theory., pp. 2551-2567, 2006.

John W. Byers, Michael Luby, and Michael Mitzenmache# Digital
Fountain Approach to Asynchronous Reliable Multica$EEE Journal
on Selected Areas in Communications., pp. 1528-1540, 2002.

Dino Sejdinovi¢, Dejan Vukobratovi¢, Angela Doufexiojin Senk, and
Robert J. Piechocki, “Expanding Window Fountain Codes foreglal
Error Protection,”|EEE Transactions on Communications., pp. 2510—
2516, 2009.

Jean-Paul Wagner, Jacob Chakareski and Pascal Frp§S&nehming of
Scalable Video from Multiple Servers using Rateless C8das)EEE
International Conference on Multimedia and Expo., pp. 1501-1504, 2006.
Hongpeng Zhu, Gengxin Zhang and Guangxia Li, “A Novel BegDis-
tribution Algorithm of LT Codes,” inl1th |EEE International Conference
on Communication Technology., pp. 221-224, 2008.

Ghid Maatouk and Amin Shokrollahi, “Analysis of the SecbMoment
of the LT Decoder,” inlEEE International Symposium on Information
Theory., pp. 2326—2330, 2009.

Frank Uyeda, Huaxia Xia and Andrew A. Chien, “Evaluatioha High
Performance Erasure Code Implementatide¢hnical Report, University
of California, San Diego, 2004.



	I Introduction
	II Background
	II-A LT Codes

	III Analysis
	III-A Decreasing Ripple Size

	IV Numerical Results
	V Conclusions
	Appendix: Degree Distribution Analysis
	A Constant Ripple Degree Distribution
	B Decreasing Ripple Degree Distribution

	References

