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INVARIANT RINGS THROUGH CATEGORIES

JAROD ALPER AND A. J. DE JONG

Abstract. We formulate a notion of “geometric reductivity” in an abstract
categorical setting which we refer to as adequacy. The main theorem states
that the adequacy condition implies that the ring of invariants is finitely gen-
erated. This result applies to the category of modules over a bialgebra, the
category of comodules over a bialgebra, and the category of quasi-coherent
sheaves on a finite type algebraic stack over an affine base.
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1. Introduction

A fundamental theorem in invariant theory states that if a reductive group G over
a field k acts on a finitely generated k-algebra A, then the ring of invariants AG

is finitely generated over k (see [MFK94, Appendix 1.C]). Mumford’s conjecture,
proven by Haboush in [Hab75], states that reductive groups are geometrically re-
ductive; therefore this theorem is reduced to showing that the ring of invariants
under an action by a geometrically reductive group is finitely generated, which was
originally proved by Nagata in [Nag64].
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2 ALPER AND DE JONG

Nagata’s theorem has been generalized to various settings. Seshadri showed an
analogous result for an action of a “geometrically reductive” group scheme over a
universally Japanese base scheme (see [Ses77]). In [BFS92], the result is generalized
to an action of a “geometrically reductive” commutative Hopf algebra over a field
on a coalgebra. In [KT08], an analogous result is proven for an action of a “geo-
metrically reductive” (non-commutative) Hopf algebra over a field on an algebra.
In [Alp08] and [Alp10], analogous results are shown for the invariants of certain
pre-equivalence relations; moreover, [Alp10] systematically develops the theory of
adequacy for algebraic stacks.

These settings share a central underlying “adequacy” property which we formulate
in an abstract categorical setting. Namely, consider a homomorphism of commuta-
tive rings R → A. Consider an R-linear ⊗-category C with a faithful exact R-linear
⊗-functor

F : C −→ ModA

such that C is endowed with a ring object O ∈ Ob(C) which is a unit for ⊗. For
precise definitions, please see Situation 2.1. One can then define

Γ : C −→ ModR, F 7−→ MorC(O,F).

Adequacy means (roughly) in this setting that Γ satisfies: if A → B is a surjection
of commutative ring objects and if f ∈ Γ(B), then there exists g ∈ Γ(A) with
g 7→ fn for some n > 0. The main theorem of this paper is Theorem 13.5 which
states (roughly) that if Γ is adequate, then

(1) Γ(A) is of finite type over R if A is of finite type, and
(2) Γ(F) is a finite type Γ(A)-module if F is of finite type.

Note that additional assumptions have to be imposed on the categorical setting in
order to even formulate the result.

In the final sections of this paper, we show how the abstract categorical setting
applies to (a) the category of modules over a bialgebra, (b) the category of comod-
ules over a bialgebra, and (c) the category of quasi-coherent sheaves on a finite
type algebraic stack over an affine base. Thus the main theorem above unifies and
generalizes the results mentioned above, which was the original motivation for this
research.

What is lacking in this theory is a practical criterion for adequacy. Thus we would
like to ask the following questions: Is there is notion of reductivity in the categorical
setting? Is there an abstract analogue of Haboush’s theorem? We hope to return
to these question in future research.

Conventions. Rings are associative with 1. Abelian categories are additive cate-
gories with kernels and cokernels such that Im ∼= Coim for any morphism.

2. Setup

In this section, we introduce the types of structure we are going to work with. We
keep the list of basic properties to an absolute minimum, and later we introduce
additional axioms to impose.

Situation 2.1. We consider the following systems of data:

(1) R → A is a map of commutative rings,
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(2) C is an R-linear abelian category,
(3) ⊗ : C × C → C is an R-bilinear functor,
(4) F : C → ModA is a faithful exact R-linear functor,
(5) there is a given bifunctorial isomorphism

γF ,G : F (F)⊗A F (G) −→ F (F ⊗ G),

(6) there exist functorial isomorphisms

τF ,G,H : (F ⊗ G)⊗H −→ F ⊗ (G ⊗H)

which are compatible with the usual associativity of tensor products of
A-modules via γ, and

(7) there is an object O of C endowed with functorial isomorphisms µ : O ⊗
F → F , and µ : F ⊗ O → F such that F (O) = A and the isomorphisms
correspond to the usual isomorphisms A ⊗A M = M ⊗A A = M (via γ
above).

If an associativity constraint τ as above exists, then it is uniquely determined by
the condition that it agrees with the usual associativity constraint for A-modules
(as F is faithful). Hence we often do not list it as part of the data, and we say “Let
(R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1”.

Note that in particular O ⊗ O = O, and hence that O is a ring object of C (see
Section 8), and for this ring structure every object of C is in a canonical way an
O-module.

Definition 2.2. In the situation above we define the global sections functor to be
the functor

Γ : C −→ ModR, F 7−→ Γ(F) = MorC(O,F).

Note that Γ(F) ⊂ F (F) since the functor F is faithful. There are canonical maps
Γ(F)⊗R Γ(G) −→ Γ(F ⊗ G) defined by mapping the pure tensor f ⊗ g to the map

O = O ⊗O
f⊗g
−−−→ F ⊗R G

For any pair of objects F ,G of C there is a commutative diagram

Γ(F)⊗R Γ(G)

��

// Γ(F ⊗ G)

��

F (F)⊗A F (G) F (F ⊗ G)

In particular, there is a natural Γ(O)-module structure on Γ(F) for every object F
of C.

3. Axioms

The following axioms will be introduced throughout the text. For the convenience
of the reader, we list them here.

Definition 3.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axioms:

(D) The category C has arbitrary direct summands, and ⊗, F , and Γ commute
with these.
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(C) There exist functorial isomorphisms σF ,G : F ⊗ G −→ G ⊗ F such that
σF ,G is via F and γ compatible with the usual commutativity constraint
M ⊗A N ∼= N ⊗A M on A-modules.

(I) The category C has arbitrary direct products, and F commutes with them.
(S) For every object F of C and any n ≥ 1 there exists a quotient

F⊗n −→ Symn
C(F)

such that the map of A-modules F (F⊗n) −→ F (Symn
C (F)) factors through

the natural surjection F (F)⊗n → Symn
A(F (F)), and such that Symn

C(F) is
universal with this property.

(L) Every object F of C is a filtered colimit F = colim Fi of finite type objects
Fi such that F (F) = colim F (Fi).

(N) The ring A is Noetherian.
(G) The functor Γ is exact.
(A) For every surjection of weakly commutative ring objects A → B in C with

A locally finite, and any f ∈ Γ(B), there exists an n > 0 and an element
g ∈ Γ(A) such that g 7→ fn in Γ(B).

Terminology used above: An object F of C is finite type if F (F) is finite type, see
Definition 10.1. A ring object A, see Definition 8.1, is weakly commutative if F (A)
is commutative, see Definition 9.1. An object F of C is locally finite if it is a filtered
colimit F = colim Fi of finite type objects Fi such that also F (F) = colim F (Fi),
see Definition 11.2.

4. Direct summands

We cannot prove much without the following axiom.

Definition 4.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axiom:

(D) The category C has arbitrary direct summands, and ⊗, F , and Γ commute
with these.

This implies that C has colimits and that ⊗, F and Γ commute with these.

Lemma 4.2. Assume that we are in Situation 2.1 and that the axiom (D) holds.
Then Γ has a left adjoint

O ⊗R − : ModR −→ C

with O ⊗R R ∼= O, and F (O ⊗R M) = A⊗R M . Moreover, for any object F of C
there is a canonical isomorphism F ⊗ (O ⊗R M) = (O ⊗R M) ⊗ F which reduces
to the obvious isomorphism on applying F .

Proof. For any R-module M choose a presentation
⊕

j∈J R →
⊕

i∈I R → M → 0
and define

O ⊗R M = Coker(
⊕

j∈J
O −→

⊕

i∈I
O)

where the arrow is given by the same matrix as the matrix used in the presentation
for M . With this definition it is clear that F (O⊗RM) = A⊗RM . Moreover, since
there is an exact sequence

⊕

j∈J
O −→

⊕

i∈I
O −→ O ⊗R M −→ 0

it is straightforward to verify that MorC(O⊗R M,F) = MorR(M,Γ(F)). We leave
the proof of the last statement to the reader. �
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In the situation of the lemma we will write M ⊗R F instead of the more clumsy
notation M ⊗R O ⊗F .

Remark 4.3. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1, and further assume
(D) holds. By Lemma 4.2 above, we have a diagram of functors

ModR

O⊗R−
++

A⊗R−
((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

C

F

��

Γ

ll

ModA

where F ◦ (O ⊗R −) = (A⊗R −), and O ⊗R − is a left adjoint to Γ.

5. Commutativity

Definition 5.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axiom:

(C) There exist functorial isomorphisms σF ,G : F ⊗ G −→ G ⊗ F such that
σF ,G is via F and γ compatible with the usual commutativity constraint
M ⊗A N ∼= N ⊗A M on A-modules.

As in the case of the associativity constraint, if such maps σF ,G exist, then they
are unique.

6. Direct products

Definition 6.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axiom:

(I) The category C has arbitrary direct products, and F commutes with them.

If this is the case, then the category C has inverse limits and the functor F commutes
with them, which is why we use the letter (I) to indicate this axiom.

In the following lemma and its proof we will use the following abuse of notation.
Suppose that F , G are two objects of C, and that α : F (F) → F (G) is an A-module
map. We say that α is a morphism of C if there exists a morphism a : F → G in C
such that F (a) = α. Note that if a exists it is unique.

Lemma 6.2. Assume we are in Situation 2.1 and that (I) holds. Let F , G be two
objects of C. Let α : F (F) → F (G) be an A-module map. The functor

C −→ Sets, H 7−→ {ϕ ∈ MorC(G,H) | F (ϕ) ◦ α is a morphism of C}

is representable. The universal object G → G′ is a surjection.

Proof. Since C is abelian, any morphism π : G → H factors uniquely as G →
H′ → H where the first map π′ is a surjection and the second is an injection. If
F (π) ◦ α = F (a) is a morphism of C, then a factors through H′ and we see that
F (π′) ◦ α is a morphism of C. Hence it suffices to consider surjections. Consider
the set T = {π : G → Hπ} of surjections π such that F (π) ◦ α is a morphism of C.
Set

G′ = Im(G −→
∏

π∈T
Hπ).

The rest is clear. �



6 ALPER AND DE JONG

7. Symmetric products

We introduce the axiom (S) and show that either axiom (I) or (C) implies (S).

Definition 7.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axiom:

(S) For every object F of C and any n ≥ 1 there exists a quotient

F⊗n −→ Symn
C(F)

such that the map of A-modules F (F⊗n) −→ F (Symn
C (F)) factors through

the natural surjection F (F)⊗n → Symn
A(F (F)), and such that Symn

C(F) is
universal with this property.

Note that if axiom (S) holds, then the universality implies the rule F  Symn
C(F)

is a functor. Moreover, for every n,m ≥ 0 there are canonical maps

Symn
C(F)⊗ Symm

C (F) −→ Symn+m
C (F).

If axiom (D) holds as well, then this will turn
⊕

n≥0 Sym
n
C (F) into a weakly com-

mutative ring object of C (see Definitions 8.1 and 9.1 below).

Lemma 7.2. In Situation 2.1, if either axiom (C) or (I) holds, then axiom (S)
holds.

Proof. Suppose (C) holds. If F is an object of C, using the maps σF ,F we get an
action of the symmetric group Sn on n letters on F⊗n (to see that it is an action
of Sn apply the faithful functor F ). Thus, Symn

C(F) can be defined as the cokernel
of a map

⊕

τ∈Sn

F⊗n −→ F⊗n

where in the summand corresponding to τ we use the difference of the identity and
the map corresponding to τ .

Suppose (I) holds. Let F be an object of C. The quotient F⊗n → Symn
C(F) is

characterized by the property that if a : F⊗n → G is a map such that F (a) factors
through F (F)⊗n → Symn

A(F (F)) then a factors in C through the map to Symn
C(F).

To prove such a quotient exists apply Lemma 6.2 to the map
⊕

τ∈Sn

F (F)⊗n −→ F (F)⊗n

mentioned above. �

8. Ring objects

Definition 8.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1.

(1) A ring object A in C consists of an object A of C endowed with maps O → A
and µA : A ⊗A → A which on applying F induce an A-algebra structure
on F (A).

(2) If A is a ring object of C, then a (left) module object over A is an object F
endowed with a morphism µF : A ⊗ F → F such that F (A) ⊗A F (F) →
F (F) induces an F (A)-module structure on F (F).
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If A is a ring object of C, then Γ(A) inherits an R-algebra structure in a natural
manner. In other words, we have the following diagram of rings

R //

��

A

��

Γ(O) // Γ(A) // F (A)

In the same vein, given a A-module F the global sections Γ(F) are a Γ(A)-module
in a natural way. Let ModA denote the category of A-modules.

Lemma 8.2. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. If A is a ring
object in C, then the category ModA is abelian.

Proof. Let ϕ : F → G be a map of A-modules. Set K = Ker(ϕ) and Q = Coker(ϕ)
in C. We claim that both K and Q have natural A-module structure that turn them
into the kernel and cokernel of ϕ in ModA. To see this for K consider the map

A⊗K → A⊗F → F

Its composition with the map to G is zero as ϕ is a map of A-modules. Hence we
see that it factors into a map A⊗K → K. To get the module structure for Q, note
that the sequence

A⊗F → A⊗ G → A⊗Q → 0

is exact, because it is exact on applying F . Hence the module structure on G induces
one on Q. We omit checking that these structures do indeed give the kernel and
cokernel of ϕ in ModA. �

Let us use HomA(−,−) for the morphisms in the category ModA. Note that

Γ(F) = MorC(O,F) = HomA(A,F)

for F ∈ ModA. The map from the left to the right associates to f : O → F the
map

A = A⊗O
1⊗f
−−−→ A⊗F

µF

−−→ F .

Lemma 8.3. In Situation 2.1 assume axiom (D) and let A be a ring object in C.
Then the functor

Γ : ModA −→ ModΓ(A)

has a right adjoint

A⊗Γ(A) − : ModΓ(A) −→ ModA.

We have A⊗Γ(A) Γ(A) = A and F (A⊗Γ(A) M) = F (A)⊗Γ(A) M .

Proof. The proof is identical to the argument of Lemma 4.2 using that Γ(F) =
HomA(A,F) for any A-module F . �

Remark 8.4. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Assume axiom
(D). Let A be a ring object, and let S be a set. We can define the polynomial
algebra over A as the ring object

A[xs; s ∈ S] = A⊗Γ(A) (Γ(A)[xs; s ∈ S])

Explicitly A[xs; s ∈ S] =
⊕

I AxI where I runs over all functions I : S → Z≥0 with

finite support. The symbol xI =
∏

x
I(s)
s indicates the corresponding monomial.
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The multiplication on A[xs; s ∈ S] is defined by requiring the “elements” of A to
commute with the variables xs.

A homomorphism A[xs; s ∈ S] → B of ring objects is given by a homomorphism
A → B of ring objects together with some elements ys ∈ Γ(B) which commute with
all elements in the image of F (A) → F (B).

9. Commutative ring objects and modules

Definition 9.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. A ring object
A is called weakly commutative if F (A) is commutative.

Lemma 9.2. In Situation 2.1. If A is a weakly commutative ring and I ⊂ A is a
left ideal, then I is a two-sided ideal and A/I is a weakly commutative ring.

Proof. Consider the image I ′ of the multiplication A ⊗ I → A. By assumption
F (I ′) = F (I), hence we have equality. The final assertion is clear. �

In order to define the tensor product of two modules over a ring object we use the
notion of commutative modules.

Definition 9.3. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1.

(1) A ring object A is called commutative if there exists an isomorphism σ :
A ⊗ A → A ⊗ A which under F gives the usual flip isomorphism and
which is compatible with the multiplication (so in particular A is weakly
commutative).

(2) A module object F over a ring object A is said to be commutative if there
exists an isomorphism σ : F ⊗A → A⊗F which on applying F gives the
usual flip isomorphism.

It is clear that if axiom (C) holds, then any weakly commutative ring object is
commutative and all module objects are automatically commutative. Let us de-
note ModcA the category of all commutative A-modules. This category always has
cokernels, but not necessarily kernels.

Lemma 9.4. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Let A be a
commutative ring object of C. The category ModcA is abelian in each of the following
cases:

(1) axiom (C) holds, or
(2) the ring map F (A) → F (A)⊗A F (A) is flat.

The second condition holds for example if A → F (A) is either flat or surjective.

Proof. In case (1) we have ModA = ModcA so the statement follows from Lemma
8.2. For case (2), let ϕ : F → G be a map of commutative A-modules. We set
K = Ker(ϕ) and Q = Coker(ϕ) in C, and we know that these are kernels and
cokernels in ModA. The diagram with exact rows

F ⊗A //

σ

��

G ⊗ A //

σ

��

Q⊗A //

��

0

A⊗F // A⊗ G // A⊗Q // 0
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defines the commutativity map σ for Q. But in general we do not know that the
map K ⊗A → F ⊗A is injective. After applying F this becomes the map

F (K) ⊗A F (A) → F (F)⊗A F (A)

By our discussion in Section 8 we know that B = F (A) is a commutative A-algebra,
and F (K) ⊂ F (F) is an inclusion of B-modules. Note that for a B-module M we
have M ⊗A B = M ⊗B (B ⊗A B). Hence the injectivity of the last displayed map
is clear if property (2) holds, and in this case we get the commutativity restraint
for K also. �

If A is a commutative ring object of C and F , G are module objects over A, and F
is commutative then we define

F ⊗A G :=
Coequalizer of
going around
both ways








A⊗F ⊗ G
σ⊗1 //

µ⊗1

��

F ⊗A⊗ G

1⊗µ

��

F ⊗ G
1 // F ⊗ G








Then it is clear that there is a canonical isomorphism

γA : F (F)⊗F (A) F (G) −→ F (F ⊗A G)

which is functorial in the pair (F ,G). In particular, it is clear that there are
functorial isomorphisms

µA : A⊗A F −→ F , µA : F ⊗A A −→ F

for any commutative A-module F (via σ and the multiplication map for F).

Lemma 9.5. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Let A be a
commutative ring object of C. Assume the category ModcA is abelian. Then

(R → F (A),ModcA,⊗A, F, γA,A, µA)

is another set of data as in Situation 2.1. Furthermore, if axiom (D) is satisfied for
(R → A, C,⊗, F, γ,O, µ), then it is also satisfied for (R → F (A),ModcA,⊗A, F, γA,A, µA).

Proof. This is clear from the discussion above. �

In the situation of the lemma we have the global sections functor

ΓA : ModA −→ ModR, F 7−→ HomA(A,F).

We have seen in Section 8 that for an object F ∈ ModA we have ΓA(F) = Γ(F) as
R-modules. We will often abuse notation by writing Γ = ΓA.

10. Finiteness conditions

Here are some finiteness conditions we can impose.

Definition 10.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1.

(1) An object F of C is said to be of finite type if F (F) is a finitely generated
A-module.

(2) An ring object A of C is said to be of finite type if F (A) is a finitely
generated A-algebra.

(3) A module object F over a ring object A of C is said to be of finite type if
F (F) is of finite type over F (A).



10 ALPER AND DE JONG

Note that the ring objects in this definition need not be commutative. A noncom-
mutative algebra S over A is finitely generated if it is isomorphic to a quotient of
the free algebra A〈x1, . . . , xn〉 for some n.

11. Adequacy

The notion of adequacy, which is our analogue of geometric reductivity, can be
formulated in a variety of different ways.

Definition 11.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axiom:

(N) The ring A is Noetherian.

Definition 11.2. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. An object
F of C is called locally finite if it is a filtered colimit F = colim Fi of finite type
objects Fi such that also F (F) = colim F (Fi).

Definition 11.3. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the axiom:

(L) Every object F of C is locally finite.

Lemma 11.4. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. A quotient
of a locally finite object of C is locally finite. If axioms (N) and (D) hold, then a
subobject of a locally finite object is locally finite and the subcategory of locally finite
objects is abelian.

Proof. Suppose that F → Q is surjective and that F is locally finite. Write F =
colim Fi of finite type objects Fi such that also F (F) = colim F (Fi). Set Qi =
Im(Fi → Q). We claim that Q = colimi Qi and that F (Q) = colim F (Qi). The
last statement follows from exactness of F and the fact that colimits commute with
images in ModA. If βi : Qi → G is a compatible system of maps to an object of C,
then composing with the surjections Fi → Qi gives a compatible system of maps
also, whence a morphism β : F → G. But F (β) factors through F (F) → F (Q) and
hence is zero on F (Ker(F → Q). Because F is faithful and exact we see that β
factors as Q → G as desired.

Suppose that J → F is injective, that F is locally finite and that (N) and (D) hold.
Write F = colim Fi of finite type objects Fi such that also F (F) = colim F (Fi).
By the argument of the preceding paragraph applied to idF : F → F we may
assume Fi ⊂ Fi for each i. Set Ji = Fi ∩ J . Since axiom (N) holds we see that
each Ji is of finite type. As F is exact we see that colim F (Ji) = F (J ). As axiom
(D) holds we know that J ′ = colimJi exists and colim F (Ji) = F (J ′). Hence we
get a canonical map J ′ → J which has to be an isomorphism as F is exact and
faithful. This proves that J is locally finite.

Assume (N) and (D). Let α : F → G be a morphism of locally finite objects. We
have to show that the kernel and cokernel of α are locally finite. This is clear by
the results of the preceding two paragraphs. �

Lemma 11.5. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Assume axiom
(D) holds. The tensor product of locally finite objects is locally finite. For any
R-module M the object M ⊗R O is locally finite. If A is a locally finite ring object,
then A⊗Γ(A) M is locally finite for any Γ(A)-module M .
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Proof. This is clear since in the presence of (D), the tensor product commutes with
colimits. �

Lemma 11.6. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Assume axiom
(S) holds. Consider the following conditions

(1) For every surjection of finite type objects G → F and f ∈ Γ(F) there exists
an n > 0 and a g ∈ Γ(Symn

C (G)) which maps to fn in Γ(Symn
C (F)).

(2) For every surjection G → O with G of finite type and f ∈ Γ(O) there exists
an n > 0 and a g ∈ Γ(Symn

C (G)) which maps to fn in Γ(O).
(3) For every surjection of weakly commutative ring objects A → B in C with

A locally finite, and any f ∈ Γ(B), there exists an n > 0 and an element
g ∈ Γ(A) such that g 7→ fn in Γ(B).

We always have (1) ⇒ (2) and (1) ⇒ (3). If axiom (N) holds, then (2) ⇒ (1). If
axiom (D) holds, then (3) ⇒ (1). Furthermore, consider the following variations

(1’) For every surjection of objects G → F and f ∈ Γ(F) there exists an n > 0
and a g ∈ Γ(Symn

C(G)) which maps to fn in Γ(Symn
C(F)).

(2’) For every surjection G → O and f ∈ Γ(O) there exists an n > 0 and a
g ∈ Γ(Symn

C (G)) which maps to fn in Γ(O).
(3’) For every surjection of weakly commutative ring objects A → B in C, and

any f ∈ Γ(B), there exists an n > 0 and an element g ∈ Γ(A) such that
g 7→ fn in Γ(B).

If axiom (L) holds, then (1) ⇔ (1′), (2) ⇔ (2′), and (3) ⇔ (3′).

Proof. It is clear that (1) implies (2). Assume (N) + (2) and let us prove (1).
Consider G → F and f as in (1). Let H = G ×F O. Then H → O is surjective,
and F (H) = F (G) ×F (F) A. By assumption (N) this implies that F (H) is a finite
A-module.

Let us prove that (1) implies (3). LetA → B and f be as in (3). Write A = colimi Gi

as a directed colimit such that F (A) = colimi F (Gi) and such that each Gi is of

finite type. Think of f ∈ Γ(B) ⊂ F (B). Then for some i there exists a f̃ ∈ F (Gi)
which maps to f . Set G = Gi, set F = Im(Gi → B). The map G → F is surjective.
Since F is exact we see that f ∈ F (F) ⊂ F (B). Hence, as Γ is left exact we
conclude that f ∈ Γ(F) as well. Thus property (1) applies and we find an n > 0
and a g ∈ Γ(Symn

C(G)) which maps to fn in Γ(Symn
C(F)). Since A and B are ring

objects we obtain a canonical diagram

G⊗n //

��

F⊗n

��

A // B

Since A and B are weakly commutative this produces a commutative diagram

Symn
C(G) //

��

Symn
C(F)

��

A // B

Hence the element g ∈ Γ(Symn
C (G)) maps to the desired element of Γ(A).
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If (D) holds, then given G → F as in (1) we can form the map of “symmetric”
algebras

Sym∗
C(G) −→ Sym∗

C(F)

and we see that (3) implies (1).

The final statement is clear. �

We do not know of an example of Situation 2.1 where axiom (D) does not hold. On
the other hand, we do know cases where (S) does not hold, namely, the category
of comodules over a general bialgebra. Hence we take property (3) of the lemma
above as the defining property, since it also make sense in those situations.

Definition 11.7. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axiom:

(A) For every surjection of weakly commutative ringsA → B in C with A locally
finite, and any f ∈ Γ(B), there exists an n > 0 and an element g ∈ Γ(A)
such that g 7→ fn in Γ(B).

A much stronger condition is the notion of goodness, which is our analogue of linear
reductivity. It can hold even in geometrically interesting situations.

Definition 11.8. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. We introduce
the following axiom:

(G) The functor Γ is exact.

12. Preliminary results

Let A be a weakly commutative ring object of C. This implies that Γ(A) ⊂ F (A)
is a commutative ring. Let I ⊂ Γ(A) be an ideal. Assuming the axiom (D) we have
the object A⊗Γ(A) I (see Lemma 8.3) and a canonical map

(12.1) A⊗Γ(A) I −→ A.

Namely, this is the adjoint to the map I → Γ(A). Applying F to the the map
(12.1) gives the obvious map F (A) ⊗Γ(A) I → F (A). The image of (12.1) will be
denoted AI in the sequel. We have F (AI) = F (A)I by exactness of the functor F .

For an ideal I of a commutative ring B we set

I∗ = {f ∈ B | ∃n > 0, fn ∈ In}.

Note that it is not clear (or even true) in general that I∗ is an ideal. (Our notation is
not compatible with notation concerning integral closure of ideals in algebra texts.
We will only use this notation in this section.)

Lemma 12.1. Assume that we are in Situation 2.1 and that axiom (D) holds. Let
A be a locally finite, weakly commutative ring object of C. Let I ⊂ Γ(A) be an ideal.
Consider the ring map

ϕ : Γ(A)/I −→ Γ(A/AI).

(1) If the axiom (G) holds, ϕ is an isomorphism.
(2) If the axiom (A) holds, then

(a) the kernel of ϕ is contained in I∗Γ(A)/I; in particular it is locally
nilpotent, and

(b) for every element f ∈ Γ(A/AI) there exists an integer n > 0 and an
element g ∈ Γ(A)/I which maps to fn via ϕ.
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Proof. The surjectivity of ϕ in (1) is immediate from axiom (G). The ring object
A/AI is weakly commutative (by Lemma 9.2). Hence (2b) is implied by axiom
(A).

Suppose that f ∈ Γ(A) maps to zero in Γ(A/AI). This means that f ∈ Γ(AI).
Choose generators fs ∈ I, s ∈ S for I. Consider the ring map

A[xs; s ∈ S] −→ B =
⊕

InA

which maps xs to fs ∈ Γ(IA), see Remark 8.4. This is a surjection of ring objects
of C. Hence if (G) holds, then we see that f is in the image of

⊕

s∈S Γ(A) → Γ(AI),
i.e., f is in Γ(A)I and injectivity in (1) holds. For the rest of the proof assume
(A). Clearly the polynomial algebra A[xs; s ∈ S] is weakly commutative and locally
finite. Hence (A) implies there exists an n > 0 and an element

g ∈ Γ(A[xs; s ∈ S])

which maps to fn in the summand Γ(AIn) of Γ(B). Hence we may also assume
that g is in the degree n summand

Γ(
⊕

|J|=n
AxJ )

of Γ(A[xs; s ∈ S]). Now, note that there is a ring map B → A and that the
composition

A[xs; s ∈ S] −→ B −→ A

in degree n maps Γ(
⊕

|J|=nAxJ ) into Γ(A)In, because xs maps to fs. Hence

fn ∈ In. This finishes the proof. �

Let A be a weakly commutative ring object of C. Let Γ(A) → Γ′ be a homomor-
phism of commutative rings. Write Γ′ = Γ(A)[xs; s ∈ S]/I. Assume axiom (D)
holds. Then we see that we have the equality

A⊗Γ(A) Γ
′ = A[xs; s ∈ S]/(A[xs; s ∈ S])I

where the polynomial algebra is as in Remark 8.4 and the tensor product as in
Lemma 8.3. The reason is that there is an obvious map (from right to left) and
that we have

F (A⊗Γ(A) Γ
′) = F (A)⊗Γ(A) Γ

′ = F (A)[xs; s ∈ S]/(F (A)[xs; s ∈ S])I

by the properties of the functor F and the results mentioned above. Hence A⊗Γ(A)

Γ′ is a weakly commutative ring object (see Lemma 9.2). Note that if A is locally
finite, then so is A⊗Γ(A) Γ

′, see Lemma 11.5.

Lemma 12.2. Assume that we are in Situation 2.1 and that axiom (D) holds. Let
A be a ring object.

(1) Assume that also axiom (G) holds. If M is a left Γ(A)-module, then the
adjunction map

ϕ : M −→ Γ(A⊗Γ(A) M)

is an isomorphism.
(2) Assume the axiom (A) holds, and that A is locally finite and weakly commu-

tative. Let Γ(A) → Γ′ be a commutative ring map. Consider the adjunction
map

ϕ : Γ′ −→ Γ(A⊗Γ(A) Γ
′)

(a) the kernel of ϕ is locally nilpotent, and
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(b) for every element f ∈ Γ(A⊗Γ(A) Γ
′) there exists an integer n > 0 and

an element g ∈ Γ′ which maps to fn via ϕ.

Proof. For (1), since both functors A⊗Γ(A)− and Γ commute with arbitrary direct
sums, the map ϕ is an isomorphism when M is free. Furthermore, since A⊗Γ(A) −
is right exact and Γ is exact, the general case follows. For (2), the map is an
isomorphism when Γ′ is a polynomial algebra (since we are assuming all functors
commute with direct sums). And the general case follows from this, the discussion
above the lemma and Lemma 12.1. �

Lemma 12.3. Assume that we are in Situation 2.1 and that axioms (D) and (A)
hold. Then for every locally finite, weakly commutative ring object A of C the map

Spec(F (A)) −→ Spec(Γ(A))

is surjective.

Proof. Let Γ(A) → K be a ring map to a field. We have to show that the ring

F (A)⊗Γ(A) K = F (A⊗Γ(A) K)

is not zero. This follows from Lemma 12.2 and the fact that K is not the zero
ring. �

In the following lemma we use the notion of a universally subtrusive morphism
of schemes f : X → Y . This means that f satisfies the following valuation lifting
property: for every valuation ring V and every morphism Spec(V ) → Y there exists
a local map of valuation rings V → V ′ and a morphism Spec(V ′) → X such that

X

��

Spec(V ′)oo

��

Y Spec(V )oo

is commutative. It turns out that if f : X → Y is of finite type, and Y is Noetherian,
then this notion is equivalent to f being universally submersive.

Lemma 12.4. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Let A be a ring
object. Assume that

(1) axioms (D) and (A) hold, and
(2) A is locally finite and weakly commutative.

Then Spec(F (A)) → Spec(Γ(A)) is universally subtrusive. If in addition,

(3) R → A is finite type,
(4) A is of finite type, and
(5) Γ(A) is Noetherian.

Then Spec(F (A)) → Spec(Γ(A)) is universally submersive.

Proof. To show the first part, let Spec(V ) → Spec(Γ(A)) be a morphism where V
is a valuation ring with fraction field K. We must show that

f : Spec(F (A) ⊗Γ(A) V ) −→ Spec(V )

is subtrusive. Let η ∈ Spec(V ) be the generic point. It suffices to show that the
closure of f−1(η) in Spec(F (A)⊗Γ(A) V ) surjects onto Spec(V ). If we set

I = ker(A⊗Γ(A) V −→ A⊗Γ(A) K)
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then F (I) is the kernel of F (A)⊗Γ(A) V → F (A)⊗Γ(A) K and defines the closure

of f−1(η). The ring object (A⊗Γ(A)V )/I is weakly commutative and locally finite.
By Lemma 12.3,

Spec(F ((A ⊗Γ(A) V )/I)) −→ Spec(Γ((A⊗Γ(A) V )/I))

is surjective. Axiom (A) applied to the surjection A ⊗Γ(A) V → (A ⊗Γ(A) V )/I
implies that

Spec(Γ((A⊗Γ(A) V )/I)) −→ Spec(V )

is integral. Therefore the composition of the two morphisms above is surjective so
that the closure of f−1(η) surjects onto Spec(V ).

The hypotheses in the second part imply that Γ(A) → F (A) is of finite type and
Γ(A) is Noetherian, hence the remark preceding the lemma applies. �

Below we will use the following algebraic result to get finite generation.

Theorem 12.5. Consider ring maps R → B → A such that

(1) B and R are noetherian,
(2) R → A is of finite type, and
(3) Spec(A) → Spec(B) is universally submersive.

Then R → B is of finite type.

Proof. This is a special case of Theorem 6.2.1 of [Alp10]. It was first discovered
while writing an earlier version of this paper. �

13. The main result

The main argument in the proof of Theorem 13.5 is an induction argument. In
order to formulate it we use the following condition.

Definition 13.1. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Let A be a
weakly commutative ring object. Consider the following property of A

(⋆) The ring Γ(A) is a finite type R-algebra and for every finite type module
F over A the Γ(A)-module Γ(F) is finite.

Lemma 13.2. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Let A → B be
a surjection of ring objects. Assume

(1) R is Noetherian and axiom (A) holds,
(2) A is locally finite and weakly commutative, and
(3) Γ(B) is a finitely generated R-algebra.

Then Γ(B) is a finite Γ(A)-module and there exists a finitely generated R-subalgebra
B ⊂ Γ(A) such that

Im(Γ(A) −→ Γ(B)) = Im(B −→ Γ(B)).

Proof. Since A is weakly commutative, so is B. Hence Γ(B) is a commutative R-
algebra. Pick f1, . . . , fn ∈ Γ(B) which generate as an R-algebra. By axiom (A)
we can find g1, . . . , gn ∈ Γ(A) which map to fn1

1 , . . . , fnn

n in Γ(B) for some ni > 0.
Then we see that Γ(B) is generated by the elements

fe1
1 . . . fen

n , 0 ≤ ei ≤ ni − 1

and so Γ(B) is finite over Γ(A). As a first approximation, let B = R[g1, . . . , gn] ⊂
Γ(A). Then the equality of the lemma may not hold, but in any case Γ(A) is
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finite over B. Since B is a Noetherian ring, Im(Γ(A) → Γ(B)) is a finite B-module
so be choose finitely many generators gn+1, . . . , gn+m ∈ Γ(A). Hence by setting
B = R[g1, . . . , gn+m], the lemma is proved. �

Lemma 13.3. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Let A be a ring
object and let I ⊂ A be a left ideal. Assume

(1) R is Noetherian and axiom (A) holds,
(2) A is locally finite and weakly commutative,
(3) (⋆) holds for A/I, and
(4) there is a quotient A → A′ such that (⋆) holds for A′ and such that I is a

finite A′-module.

Then (⋆) holds for A.

Proof. Since A is weakly commutative and locally finite so are A/I and A′. By
Lemma 13.2 the rings Γ(A′) and Γ(A/I) are finite Γ(A)-algebras. Consider the
exact sequence

0 → Γ(I) → Γ(A) → Γ(A/I).

By (⋆) for A′ we see that Γ(I) is a finite Γ(A′)-module, hence a finite Γ(A)-module.
Choose generators x1, . . . , xs ∈ Γ(I) as a Γ(A)-module. By Lemma 13.2 we can
find a finite type R-subalgebra B ⊂ Γ(A) such that the image of B in Γ(A′) and
the image of B in Γ(A/I) is the same as the image of Γ(A) in those rings. We
claim that

Γ(A) = B[x1, . . . , xs]

as subrings of Γ(A). Namely, if h ∈ Γ(A) then we can find an element b ∈ B which
has the same image as h in Γ(A/I). Hence replacing h by h − b we may assume
h ∈ Γ(I). By our choice of x1, . . . , xs we may write h =

∑
aixi for some ai ∈ Γ(A).

But since I is a A′-module, we can write this as h =
∑

a′ixi with a′i ∈ Γ(A′) the
image of ai. By choice of B we can find bi ∈ B mapping to a′i. Hence we see
that h ∈ B[x1, . . . , xs] as desired. This proves that Γ(A) is a finitely generated
R-algebra.

Let F be a finite type A-module. Set IF equal to the image of the map I⊗F → F
which is the restriction of the multiplication map of F . Consider the exact sequence

0 → IF → F → F/IF → 0

This gives rise to a similar short exact sequence on applying F , and a surjective
map F (I) ⊗A F (F) → F (IF) which factors through F (I) ⊗F (A) F (F) as A is
weakly commutative. Since F (F) is finite as a F (A)-module, and F (I) is finite as
a F (A′)-module, we conclude that F (IF) is a finite F (A′)-module, i.e., that IF
is a finite A′-module. In the same way we see that F/IF is a finite A/I-module.
Hence in the exact sequence

0 → Γ(IF) → Γ(F) → Γ(F/IF)

we see that the modules on the left and the right are finite Γ(A)-modules. Since
Γ(A) is Noetherian by the result of the preceding paragraph we see that Γ(F) is a
finite Γ(A)-module. This conclude the proof that property (⋆) holds for A. �

Lemma 13.4. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Let A be a ring
object, and let I ⊂ A be a left ideal. Assume that

(1) axioms (N) and (A) hold and R is Noetherian,
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(2) A is locally finite, weakly commutative and of finite type,
(3) In = 0 for some n ≥ 0, and
(4) A/I has property (⋆).

Then A has property (⋆).

Proof. We argue by induction on n and hence we may assume that I2 = 0. Then
we get an exact sequence

0 → I → A → A/I → 0.

Because (N) holds and A is of finite type we see that F (A) is a finitely generated
A-algebra hence Noetherian. Thus I is a finite type A-module, and hence also a
finite type A/I-module. This means that Lemma 13.3 applies, and we win. �

Theorem 13.5. Let (R → A, C,⊗, F, γ,O, µ) be as in Situation 2.1. Assume

(1) R is Noetherian,
(2) R → A is of finite type, and
(3) the axioms (A) and (D) hold.

Then for every finite type, locally finite, weakly commutative ring object A of C
property (⋆) holds.

Proof. Let A be a finite type, locally finite, weakly commutative ring object A of
C. For every left ideal I ⊂ A the quotient A/I is also a finite type, locally finite,
weakly commutative ring object of C. Consider the set

{I ⊂ A | (⋆) fails for A/I}.

To get a contradiction assume that this set is nonempty. By Noetherian induction
on the ideal F (I) ⊂ F (A) we see there exists a maximal left ideal Imax ⊂ A such
that (⋆) holds for any ideal strictly containing Imax but (⋆) does not hold for Imax.
Replacing A by A/Imax we may assume (in order to get a contradiction) that (⋆)
does not hold for A but does hold for every proper quotient of A.

Let f ∈ Γ(A) be nonzero. If Ker(f : A → A) is nonzero, then we see that we get
an exact sequence

0 → (f) → A → A/(f) → 0

Since we are assuming (⋆) holds for both A/Ker(f : A → A) and A/(f) and since
Ker(f) is a finite A/(f)-module, we can apply Lemma 13.3. Hence we see that
we may assume that any nonzero element f ∈ Γ(A) is a nonzero divisor on A. In
particular, Γ(A) is a domain.

Again, assume that f ∈ Γ(A) is nonzero. Consider the sequence

0 → A
f
−→ A → A/fA → 0

which gives rise to the sequence

0 → Γ(A)
f
−→ Γ(A) → Im(Γ(A) → Γ(A/fA)) → 0

We know that the ring on the right is a finite type R-algebra which is finite over
Γ(A), see Lemma 13.2. Hence any ideal I ⊂ Γ(A) containing f maps to a finitely
generated ideal in it. This implies that Γ(A) is Noetherian.

Next, we claim that for any finite type A-module F the module Γ(F) is a finite
Γ(A)-module. Again we can do this by Noetherian induction applied to the set

{G ⊂ F is an A-submodule such that finite generation fails for Γ(F/G)}.
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In other words, we may assume that F is a minimal counter example in the sense
that any proper quotient of F gives a finite Γ(A)-module. Pick s ∈ Γ(F) nonzero
(if Γ(F) is zero, we’re done). Let A · s ⊂ F denote the image of A → F which is
multiplying against s. Now we have

0 → A · s → F → F/A · s → 0

which gives the exact sequence

0 → Γ(A · s) → Γ(F) → Γ(F/A · s)

By minimality we see that the module on the right is finite over the Noetherian
ring Γ(A). On the other hand, the module on the left is Γ(A/I) for the ideal
I = Ker(s : A → F). If I = 0 then this is Γ(A) and therefore finite, and if I 6= 0
then this is a finite Γ(A)-module by Lemma 13.2 and minimality of A. Hence we
conclude that the middle module is finite over the Noetherian ring Γ(A) which is
the desired contradiction.

Finally, we show that Γ(A) is of finite type over R which will finish the proof.
Namely, by Lemma 12.4 the morphism of schemes

Spec(F (A)) −→ Spec(Γ(A))

is universally submersive. We have already seen that Γ(A) is a Noetherian ring.
Thus Theorem 12.5 kicks in and we are done. �

Remark 13.6. We note that the proof of Theorem 13.5 can be simplified if the
axiom (G) is also satisfied. In fact, if axiom (G) holds in addition to the conditions
(1) - (3) of Theorem 13.5, then for every finite type, weakly commutative (but not
necessarily locally finite) ring object A, property (⋆) holds. Lemma 12.2 implies
that for any ideal I ⊆ Γ(A), I = IF (A) ∩ Γ(A); therefore Γ(A) is Noetherian.
We can then apply Theorem 12.5 to conclude that Γ(A) is a finite type R-algebra.
Furthermore, a simple noetherian induction argument shows that for every finite
type module F over A the Γ(A)-module Γ(F) is finite type.

14. Quasi-coherent sheaves on algebraic stacks

Let S = Spec(R) be an affine scheme. Let X be a quasi-compact algebraic stack
over S. Let p : T → X be a smooth surjective morphism from an affine scheme
T = Spec(A).

Lemma 14.1. In the situation above, the category QCoh(OX ) endowed with its
natural tensor product, pullback functor F : QCoh(OX ) → QCoh(OT ) = ModA
and structure sheaf O = OX is an example of Situation 2.1. The functor Γ :
QCoh(OX ) → ModR is identified with the functor of global sections

F 7−→ Γ(X ,F).

Axioms (D), (C), and (S) hold. If X is noetherian (eg. X is quasi-separated and
A is Noetherian), then axiom (L) holds.

Proof. The final statement is [LMB00, Prop 15.4]. The rest is clear. �

The following definition reinterprets the adequacy axiom (A).
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Definition 14.2. Let X be an quasi-compact algebraic stack over S = Spec(R).
We say that X is adequate if for every surjection A → B of quasi-coherent OX -
algebras with A locally finite and f ∈ Γ(X ,B), there exists an n > 0 and a g ∈
Γ(X ,A) such that g 7→ fn in Γ(X ,B).

Lemma 14.3. Let X be an quasi-compact algebraic stack over S = Spec(R). The
following are equivalent:

(1) X is adequate.
(2) For every surjection of finite type OX -modules G → F and f ∈ Γ(X ,F),

there exists an n > 0 and a g ∈ Γ(X , SymnG) such that g 7→ fn in
Γ(X , SymnF).

If X is noetherian, then the above are also equivalent to:

(3) For every surjection G → O with G of finite type and f ∈ Γ(X ,OX ), there
exists an n > 0 and a g ∈ Γ(X , SymnG) such that g 7→ fn in Γ(X ,OX ).

(1’) For every surjection A → B of quasi-coherent OX -algebras and f ∈ Γ(X ,B),
there exists an n > 0 and a g ∈ Γ(X ,A) such that g 7→ fn in Γ(X ,B).

(2’) For every surjection of OX -modules G → F and f ∈ Γ(X ,F), there exists
an n > 0 and a g ∈ Γ(X , SymnG) such that g 7→ fn in Γ(X , SymnF).

(3’) For every surjection G → O and f ∈ Γ(X ,OX ), there exists an n > 0 and
a g ∈ Γ(X , SymnG) such that g 7→ fn in Γ(X ,OX ).

Proof. This is Lemma 11.6. �

Corollary 14.4. Let X be an algebraic stack finite type over an affine noetherian
scheme Spec(R). Suppose X is adequate. Let A be a finite type OX -algebra. Then
Γ(X ,A) is finitely generated over R and for every finite type A-module F , the
Γ(X ,A)-module Γ(X ,F) is finite.

Proof. This is Theorem 13.5. �

15. Bialgebras, modules and comodules

In this section we discuss how modules and comodules over a bialgebra form an
example of our abstract setup. If A is a commutative ring, recall that a bialgebra H
over A is an A-module H endowed with maps (A → H,H⊗AH → A, ǫ : H → A, δ :
H → H⊗AH). Here H⊗AH → H and A → H define an unital A-algebra structure
on H , the maps δ and ǫ are unital A-algebra maps. Moreover, the comultiplication
µ is associative and ǫ is a counit.

Let H be a bialgebra over A. A left H-module is a left module over the R-algebra
structure on H ; that is, there is a A-module homomorphism H ⊗A M → M sat-
isfying the two commutative diagrams for an action. A left H-comodule M is an
R-module homomorphism σ : M → H ⊗A M satisfying the two commutative dia-
gram for a coaction. See [Kas95, Chapter 3] and [Mon93, Chapter 1] for the basic
properties of H-modules and H-comodules.

Definition 15.1. Let A be a commutative ring. Let H be a bialgebra over A.

(1) Let ModH be the category of left H-modules. It is endowed with the
forgetful functor to A-modules, the tensor product

(M,N) 7−→ M ⊗A N

where H acts on M ⊗A N via the comultiplication, and the object O given
by the module A where H acts via the counit.
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(2) Let ComodH be the category of left H-comodules. It is endowed with the
forgetful functor to A-modules, the tensor product

(M,N) 7−→ M ⊗A N

where comodule structure on M ⊗AN comes from the multiplication in H ,
and the object O given by the module A where H acts via the A-algebra
structure H .

Lemma 15.2. Let R → A be a map of commutative rings. Let H be a bialgebra
over A.

(1) The category ModH with its additional structure introduced in Definition
15.1 is an example of Situation 2.1. The functor Γ : ModH → ModR is
identified with the functor of invariants

M 7−→ MH = {m ∈ M | h ·m = ǫ(h)m}.

Axioms (D), (I) and (S) hold. Axiom (C) holds if H is cocommutative.
(2) The category ComodH with its additional structure introduced in Definition

15.1 is an example of Situation 2.1. The functor Γ : ComodH → ModR is
identified with the functor of coinvariants

M 7−→ MH = {m ∈ M | σ(m) = 1⊗m}

where σ : M → H ⊗A M indicates the coaction of M . Axiom (D) holds.
Axiom (C) holds if H is commutative.

Proof. The first two statements in both part (1) and (2) are clear. It also clear
that axiom (D) holds in both cases. Arbitrary direct products exist in the category
ModH , which is axiom (I), and so by Lemma 7.2 axiom (S) holds. The final
statement concerning axiom (C) is straightforward, see [Mon93, Section 1.8]. �

16. Adequacy for a bialgebra

Let R → A be map of commutative rings. Let H be a bialgebra over A. Let M
be an H-module. We can identify Symn

HM := Symn
ModH

M of axiom (S) with the
H-module

M ⊗A · · · ⊗A M
︸ ︷︷ ︸

n

/M ′

whereM ′ is the submodule generated by elements h·((· · ·⊗mi⊗· · ·⊗mj⊗· · · )−(· · ·⊗
mj⊗· · ·⊗mi⊗· · · )) for h ∈ H andm1, . . . ,mn ∈ M . And SymHM :=

⊕

n Sym
n
HM

is the largest H-module quotient of the tensor algebra on M which is commutative.

An H-algebra is an H-module C which is an algebra over the algebra structure on
H such that A → C and C⊗AC → C are H-module homomorphisms. We say that
C is commutative if C is commutative as an algebra. An H-module M is locally
finite if it is the filtered colimit of finite type H-modules.

The following definition reinterprets adequacy axiom (A) for the category ModH .

Definition 16.1. Let R → A be map of commutative rings. Let H be a bialgebra
overA. We say thatH is adequate if for every surjection of commutativeH-algebras
C → D in ModH with C locally finite, and any f ∈ DH , there exists an n > 0 and
an element g ∈ CH such that g 7→ fn in DH .
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Lemma 16.2. Let R → A be map of commutative rings. Let H be a bialgebra over
A. The following are equivalent:

(1) H is adequate.
(2) For every surjection of finite type H-modules N → M and f ∈ MH , there

exists an n > 0 and a g ∈ (Symn
HN)H such that g 7→ fn in (Symn

HM)H .

If A is Noetherian, then the above are also equivalent to:

(3) For every surjection of finite type H-modules N → A and f ∈ A, there
exists an n > 0 and a g ∈ (Symn

HN)H such that g 7→ fn in A.

Proof. This is Lemma 11.6. �

Corollary 16.3. Let R → A be a finite type map of commutative rings where R is
Noetherian. Let H be an adequate bialgebra over A. Let C be a finitely generated,
locally finite, commutative H-algebra. Then CH is a finitely generated R-algebra
and for every finite type C-module M, the CH-module MH is finite.

Proof. This is Theorem 13.5. �

Remark 16.4. If R = A = k where k is a field, then [KT08] define a Hopf algebra
H over k to be geometrically reductive if any finite dimensional H-module M and
any non-zero homomorphism of H-modules N → k there exist n > 0 such that
Symn

H(N)H → k is non-zero. By Lemma 16.2, H is geometrically reductive if and
only if H is adequate.

In [KT08, Theorem 3.1], Kalniuk and Tyc prove that with the hypotheses of the
above corollary and with R = A = k is a field, CH is finitely generated over k.

17. Coadequacy for a bialgebra

Let R → A be map of commutative rings. Let H be a bialgebra over A. An H-
coalgebra is an H-comodule C which is an algebra over the algebra structure on
H such that A → C and C ⊗A C → C are H-comodule homomorphisms; C is
commutative if C is commutative as an algebra. An H-comodule M is locally finite
if it is the filtered colimit of finite type H-comodules.

Here we reinterpret the adequacy axiom (A) for the category ComodH .

Definition 17.1. Let R → A be map of commutative rings. Let H be a bialgebra
over A. We say that H is coadequate if for every surjection of commutative H-
coalgebras C → D with C locally finite, and any f ∈ DH , there exists an n > 0
and an element g ∈ CH such that g 7→ fn in DH .

Recall that we only know that axiom (S) holds for ComodH whenH is commutative.

Lemma 17.2. Let R → A be map of commutative rings. Let H be a commutative
bialgebra over A. The following are equivalent:

(1) H is adequate.
(2) For every surjection of finite type H-modules N → M and f ∈ MH , there

exists an n > 0 and a g ∈ (Symn
HN)H such that g 7→ fn in (Symn

HM)H .

If A is Noetherian, then the above are also equivalent to:

(3) For every surjection of finite type H-modules N → A and f ∈ A, there
exists an n > 0 and a g ∈ (Symn

HN)H such that g 7→ fn in A.

Proof. This is Lemma 11.6. �
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Corollary 17.3. Let R → A be a finite type of commutative rings where R is
Noetherian. Let H be an adequate bialgebra over A. Let C be a finitely generated,
locally finite, commutative H-coalgebra. Then CH is a finitely generated R-algebra
and for every finite type C-module M , the CH-module MH is finite.

Proof. This is Theorem 13.5. �
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