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Abstract

We consider rules for discarding predictors in lasso regression and related problems, for computational
efficiency. El Ghaoui et al. (2010) propose “SAFE” rules that guarantee that a coefficient will be zero in
the solution, based on the inner products of each predictor with the outcome. In this paper we propose
strong rules that are not foolproof but rarely fail in practice. These can be complemented with simple
checks of the Karush-Kuhn-Tucker (KKT) conditions to provide safe rules that offer substantial speed
and space savings in a variety of statistical convex optimization problems.

1 Introduction

We consider the problem of prediction using a linear model, with ℓ1-type regularization. In particular we
consider a problem with N observations and p predictors. Denote by y the N -vector of predictors, and let
X be the N × p matrix of predictors with jth column xj and ith row xi. We assume that the predictors and
outcome are centered, and so we can omit an intercept from the model.

The lasso (Tibshirani 1996) minimizes the criterion

1

2
||y −Xβ||2 + λ||β||1 (1)

where λ ≥ 0 is a tuning parameter. There has been considerable work in the past few years deriving fast
algorithms for solving this problem, for large values ofN and p. Some methods like coordinate descent deliver
the solution over a grid of λ values, using warm starts along the way. This is implemented for example in
the glmnet package (Friedman et al. 2008).

Wu et al. (2009) proposed screening rules for penalized logistic regression based on the inner products
|xT

j y|. A lasso fit is computed using a small selected subset of the predictors with largest inner products,
and then the KKT conditions are checked for violations. This same predictor ordering is proposed and
studied by Fan & Lv (2008) in their “Sure Independence Screening” method. El Ghaoui et al. (2010) use a
clever argument to derive a surprising rule for discarding predictors in the lasso and related problems. Their
“SAFE” rule discards predictors if |xT

j y| is less that a certain bound that depends on λ. They prove that

their rule is safe, that is, if the predictor is discarded then β̂j is guaranteed to be zero for the lasso solution
at λ. They show that the SAFE rule can save both time and memory in the overall computation.

In this paper we propose strong rules for discarding predictors. These rules discard more predictors than
the SAFE rules, but are not foolproof and can fail in practice. However these failures are rare and the
new rules can be combined with simple checks of the Karush-Kuhn-Tucker (KKT) conditions to provide
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safe rules. As a result, they offer a substantial speed and space savings in a variety of statistical convex
optimization problems.

In Section 2 we review the SAFE rules of El Ghaoui et al. (2010). The strong rules are introduced and
studied in Section 3, for the lasso and elastic net, and a condition for exactness of the rule is also given. We
discuss logistic regression in Section 4. A form of the strong rules for general convex optimization problems
is given in Section 5 and applied to the graphical lasso method. We discuss and illustrate implementation
of the sequential strong rule in our glmnet algorithm in Section 6 and finally Section 7 contains some final
discussion.

2 A review of SAFE rules for discarding variables

The basic SAFE rule of El Ghaoui et al. (2010) is defined as follows: fitting at λ, can discard predictor j if

|xT
j y| < λ− ||y|||xj ||

λmax − λ

λmax

(2)

where λmax = maxj |xT
j y|, is the smallest λ at for which all coefficients are zero. This is the basic SAFE

bound. They also derive a more complicated, somewhat better bound called “recursive SAFE” (RECSAFE).
The (basic) SAFE bound is derived by looking at a dual of the lasso. Here is a sketch of their argument.

One version of the dual problem is to maximize

G(θ) = yTy/2− (y + θ)T (y + θ)/2 (3)

subject to |xT
j θ| ≤ λ ∀j. The relationship between the primal and dual variables at the solution is θ̂ = Xβ̂−y.

They find a dual feasible point of the form θ = sy, (s is a scalar) and hence γ = G(sy) represents a lower
bound for the value of G at the solution. Then for each predictor j they find the maximum mj of |θTxj |
over the set G(θ) ≥ γ; if this maximum is less than λ, this tells us that the quantity |θTxj | must be < λ at
the solution, i.e. βj must be zero at the solution. Hence we can discard predictor j. Finally, rewriting the
condition mj < λ yields condition (2).

Figure 1 shows some examples. There are four scenarios with various values of N and p; in the first
three panels, the X matrix is dense, while it is sparse in the bottom right panel. The population correlation
among the feature is zero, positive, negative and zero in the four panels. Finally, 25% of the coefficients are
non-zero, with a standard Gaussian distribution. In the plots, we are fitting along a path of decreasing λ
values and the plots show the number of predictors left after screening at each stage. We see that the SAFE
and RECSAFE bounds only exclude predictors near the beginning of the path. The “strong” rules (orange
and red lines) are discussed in section 3.

The RECSAFE method uses the solution at a given point λ0 to derive a rule for discarding predictors at
λ < λ0. Here is another way to (potentially) apply the SAFE rule in a sequential manner. Suppose that we

have β̂0 = β̂(λ0), and r = y −Xβ̂0, and we consider the fit at λ < λ0, with r = y −Xβ̂0. Defining

λ0 = maxj(|xT
j r|); (4)

we discard predictor j if

|xT
j r| < λ− ||r|||xj ||

λ0 − λ

λ0
(5)

We have been unable to prove the correctness of this rule, and do not know if it is infallible. At the same
time, we have been not been able to find a numerical example in which it fails.

3 Strong screening rules

Here we propose some alternative screening rules in the lasso setting, and then consider extensions to the
elastic net.
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Figure 1: Lasso regression: results of different discarding rules applied to four different scenarios. There are
four scenarios with various values of N and p; in the first three panels the X matrix is dense, while it is
sparse in the bottom right panel. The population correlation among the feature is zero, positive, negative and
zero in the four panels. Finally, 25% of the coefficients are non-zero, with a standard Gaussian distribution.
In the plots, we are fitting along a path of decreasing λ values and the plots show the number of predictors
left after screening at each stage. The proportion of variance explained by the model is shown along the top
of the plot is shown.

3



3.1 The lasso

First note that the subgradient equation for the lasso is

XT (y −Xβ) = λ · s(λ) (6)

where s(λ) = (s1(λ), s2(λ), . . . sp(λ)) and sj(λ) = sign(βj(λ)) if βj(λ) 6= 0 and sj(λ) ∈ [−1, 1] otherwise. Let
λmax = maxj |xT

j y| and cj(λ) = xT
j (y −Xβ(λ)).

Suppose that predictor j is not in the model at λmax so that |cj(λmax)| < λmax. Consider the slope
dcj(λ)/dλ. For an active variable cj(λ) = λ and hence |dcj(λ)/dλ| = 1. Suppose that in general we could
assume that

∣

∣

∣

dcj(λ)

dλ

∣

∣

∣
≤ 1 (7)

for all variables, active and inactive, except for the finite set of λ values where dcj(λ)/dλ is not differentiable.
This is plausible since

dcj(λ)

dλ
= sj(λ) + λ · dsj(λ)

dλ
(8)

For variables that remain active at λ dsj(λ)/dλ = 0; if we can ignore the second term above for all variables,
then (7) would follow since |sj(λ)| ≤ 1 Note also in the orthonormal design case (XTX = I), it is easy to
show that dcj(λ)/dλ = −1,+1, or 0, where this derivative exists.

Hence assume for the moment that (7) holds. We know that predictor j enters the model at λ if

cj(λ) = cj(λmax) + [cj(λ)− cj(λmax)] = λ (9)

Since |dcj(λ)
dλ

| ≤ 1, we have

|cj(λ)− cj(λmax)| =
∣

∣

∫ λ

λmax

dcj(λ)

dλ
dλ

∣

∣

≤
∫ λ

λmax

|dcj(λ)
dλ

|dλ
= λ− λmax. (10)

Here we have integrated over the piecewise linear segments between the points of discontinuity. Therefore
we can discard predictor j if

|xT
j y| < λ− (λmax − λ) = 2λ− λmax. (11)

We call this the strong screening rule. Figure 2 illustrates the SAFE and strong rules in an example. It
shows the inner product of the active and inactive predictors with the residual as λ decreases. If we can
assume that the absolute slope of each inner-product curve is at most one, then we can bound the amount
that any such inner-product rises as we move from λmax to the value λ. Hence if the initial inner-product
starts too far below the maximal achieved inner-product, then it can’t “catch up” in time.

It turns out be more effective to apply the strong rule sequentially. Suppose that we have a solution at
λ0 yielding solution β̂(λ0) and residual r = y −Xβ̂(λ0), and wish to discard predictors for a fit at λ < λ0.
The sequential version of the strong rule (11) is to discard predictor j if

|xT
j r| < 2λ− λ0 (12)

We call this the strong sequential rule. Note that as λ0 → λ, the sequential rule becomes

|xT
j r| < λ (13)
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Figure 2: SAFE and strong global bounds in an example with 10 predictors. The dotted vertical line is drawn
at λmax; the broken vertical line is drawn at λ. The strong rule keeps only predictor #3, while the SAFE
bound keeps predictors #8 and #1 as well.

This is just the KKT condition for excluding a variable in the solution at λ. Hence in effect the sequential
rule (12) at λ0 “anticipates” the KKT conditions at λ.

To compare the SAFE and strong rules, note that the SAFE bound (2) is unchanged if we standardize
the predictors and response. Then comparing (2) to (11) in the standardized case (i.e the outcome and each
feature having unit norm), since (λmax − λ)/λmax ≥ (λmax − λ), we have

2λ− λmax ≥ λ− (λmax − λ)/λmax. (14)

Therefore the bound in (11) is larger than that in (2) and will discard more predictors.
There is another way to view the SAFE bound (2). With standardized data, the bound says that the

inner product xT
j r cannot change more than (λmax − λ)/λmax, as we move from λmax to λ. This means

that the average slope of the inner product XT
j r is bounded by 1/λmax in absolute value. Since the data

are standardized, λmax ≤ 1 and so this bound on the slope is ≥ 1. Thus it is perhaps not surprising that an
upper bound for the slopes of one does not hold in general, as we show next.

3.2 Violation of the slope condition

It turns out that the key slope condition (7) is nearly true, but can be violated for short stretches, especially
when p ≈ N and for small values of λ in the “overfit” regime of a lasso problem. Figure 3 shows an
example where it is violated. Using this kind of example, we can easily construct a problem in which rule
(12) erroneously discards predictors. We suspect that a counter-example for the global rule (11) can also
be constructed but have not yet found one. Such a counter example would require that the average slope
exceed one from λmax to λ, rather than just for a short stretch of λ values.

In section 3.4 we derive a condition for the data matrix X under which (7) is guaranteed to hold; but this
condition will not be true in general. Nonetheless the strong rules (11) and (12) can very useful in practice.
In fact, the rules never made an error in any of the numerical examples in this paper, and hence the name
strong.
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Figure 3: Example of a violation in the sequential rule (12), where absolute value of correlation slope exceeds
one. The data were generated as standard Gaussian N = 100, p = 80 and no signal. The long red lines
are the envelop of maximal inner products achieved by predictors in the model for each λ. For clarity we
only show the profiles for a subset of the predictors. The vertical broken line is drawn at λ0, and we are
considering the new value λ < λ0 (dotted vertical line). The horizontal black line is the bound (12). In the
top right part of the plot, inner product for the predictor depicted in red starts below the bound but enters the
model at λ. The slope of the red segment between λ0 and λ exceeds one. A black line with slope -1 is drawn
beside the red segment for reference.
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But counter-examples do exist, as shown in Figure 3. Hence to use the strong rules in practice, one has
to check for violations. Consider in particular the sequential rule (12). At a given λ we apply this rule and
discard the corresponding predictors. We fit on the remaining variables, and then finally check the KKT
condition of the resulting solution. If they are satisfied, we are done; otherwise we add the variables that
violate the KKT conditions into the current model and refit. In principle we we might have to repeat this
sequence many times, although the total number is bounded by the number of predictors that can ever enter
the model, which is min(N, p). We implement a strategy like this in our glmnet algorithm in Section 6.

3.3 Example: continued

Figure 1 show the results for approximate global and sequential rules (orange and red lines). There were no
violations in any of these figures, that is no predictor was discarded that had a non-zero coefficient at the
actual solution. We see that the strong sequential rule performs extremely well, leaving only a small number
of excess predictors at each stage. The lack of violations is due to the fact that p ≫ N : we discuss in Section
3.2. Fortuitously, the large p setting is one where discarding predictors is especially attractive.

3.4 A condition for the unit slope bound

Tibshirani & Taylor (2010) provide a general result that can be used to give the following sufficient condition
for the unit slope bound (7). Recall that a matrix A is diagonally dominant if |Aii| ≥

∑

j 6=i |Aij | for all i.
Their results give us the following:

Theorem. Suppose X is N × p and of full rank, with N ≥ p. If

(XTX)−1 is diagonally dominant (15)

then the unit slope condition (7) holds at all points where cj(λ) is differentiable.

Note that (15) is a weaker condition than the positive cone condition used in Efron et al. (2004): the
positive cone condition implies (15). A sketch of the proof is given in the Appendix.

One example where diagonal dominance holds is the equi-correlation model where corr(Xj , Xk) = r for
all j, k. Assuming standardized features, the inverse of XTX is

(XTX)−1 = I · 1

1− r
− 1

1− r

( eeT

1 + r(p− 1)

)

(16)

where e is a vector of ones. This is diagonally dominant as long as r ≥ 0.
Another example is the Haar basis, in which the jth column of X has the form I(zi > tj). Here zi

i = 1, 2, . . .N is a scalar variable and tj , j = 1, 2, . . . p are a set of cutpoints. This arises, for example in the
one-dimensional fused lasso where we minimize

1

2

N
∑

i=1

(yi − βi)
2 + λ

N−1
∑

i=1

|βi+1 − βi|. (17)

(We have left out the usual λ2

∑ |βi| term, which can be dealt with separately.) If we transform this problem
to the parameters θi = βi+1 − βi, we get a lasso problem with design matrix L being a lower triangular
matrix of ones, and (LTL)−1 is diagonally dominant.

3.5 A numerical investigation of the strong sequential rule violations

We generated Gaussian data with N = 100, varying values of the number of predictors p and pairwise
correlation 0.5 between the predictors. One quarter of the coefficients were non-zero, with the indices of the
nonzero predictors randomly chosen and their values equal to ±2. We fit the lasso for 80 equally spaced
values of λ from λmax to 0, and recorded the number of violations of the strong sequential rule. Figure
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Figure 4: Total number of violations (out of p predictors) of the strong sequential rule, for simulated data
with N = 100 and varying values of p. A sequence of models is fit, with decreasing values of λ as we move
from left to right. The features are uncorrelated. The results are averages over 100 simulations.

4 shows the number of violations (out of p predictors) averaged over 100 simulations: we plot versus the
percent variance explained instead of λ, since the former is more meaningful. Since the vertical axis is the
total number of violations (averaged over 100 simulations), we see that violations are quite rare in general
never averaging more than 0.3 out of p predictors. They are more common near the right end of the path.
They also tend to occur when p is fairly close to N . When p ≫ N (p = 500 or 1000 here), there were no
violations. Not surprisingly, then, there were no violations in the numerical examples in this paper since
they all have p ≫ N .

Looking at (13), it suggests that if we take a finer grid of λ values, there should be fewer violations of
the rule. However we have not found this to be true numerically: the average number of violations at each
grid point λ stays about the same.

3.6 Screening rules for the elastic net

In the elastic net we solve the problem 1

minimize
1

2
||y −Xβ||2 + 1

2
λ2||β||2 + λ1||β||1 (18)

Letting

X∗ =

(

X√
λ2 · I

)

; y∗ =

(

y

0

)

, (19)

1This differs from the original form of the “naive” elastic net in Zou & Hastie (2005) by the factors of 1/2, just for notational
convenience.
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Figure 5: Elastic net: results for different rules for three different values of the mixing parameter α. In the
plots, we are fitting along a path of decreasing λ values and the plots show the number of predictors left after
screening at each stage. The proportion of variance explained by the model is shown along the top of the plot
is shown.

we can write (18) as

minimize
1

2
||y∗ −X∗β||2 + λ1||β||1. (20)

In this form we can apply the SAFE rule (2) to obtain a rule for discarding predictors. Now |x∗
j
Ty∗| = |xT

j y|,
||x∗

j || =
√

||xj ||2 + λ2, ||y∗|| = ||y||. Hence the global rule for discarding predictor j is

|xT
j y| < λ1 − ||y|| ·

√

||xj ||2 + λ2 ·
λ1max − λ1

λ1max

(21)

Note that the glmnet package uses the parametrization ((1 − α)λ, αλ) rather than (λ2, λ1). With this
parametrization the basic SAFE rule has the form

|xT
j y| <

(

αλ− ||y|| ·
√

||xj ||2 + (1− α)λ · λmax − λ

λmax

)

(22)

The strong screening rules turn out to be the same as for the lasso. With the glmnet parametrization
the global rule is simply

|xT
j y| < α(2λ− λmax) (23)

while the sequential rule is

|xT
j r| < α(2λ− λ0). (24)

Figure 5 show results for the elastic net with standard independent Gaussian data, n = 100, p = 1000,
for 3 values of α. There were no violations in any of these figures, i.e. no predictor was discarded that had a
non-zero coefficient at the actual solution. Again we see that the strong sequential rule performs extremely
well, leaving only a small number of excess predictors at each stage.
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Figure 6: Logistic regression: results for newsgroup example, using the new global rule (28) and the new
sequential rule (29). The black curve is the 45o line, drawn on the log scale.

4 Logistic regression

Here we have a binary response yi = 0, 1 and we assume the logistic model

Pr(Y = 1|x) = 1/(1 + exp(−β0 − xTβ)) (25)

Letting pi = Pr(Y = 1|xi), the penalized log-likelihood is

ℓ(β0,β) = −
∑

i

[yi log pi + (1− yi) log(1− pi)] + λ||β||1 (26)

El Ghaoui et al. (2010) derive an exact global rule for discarding predictors, based on the inner products
between y and each predictor, using the same kind of dual argument as in the Gaussian case.

Here we investigate the analogue of the strong rules (11) and (12). The subgradient equation for logistic
regression is

XT (y − p(β)) = λ · sign(β) (27)

This leads to the global rule: letting p̄ = 1ȳ, λmax = max|xT
j (y − p̄)|, we discard predictor j if

|xT
j (y − p̄)| < 2λ− λmax (28)

The sequential version, starting at λ0, uses p0 = p(β̂0(λ0), β̂(λ0)):

|xT
j (y − p0)| < 2λ− λ0. (29)

Figure 6 show the result of various rules in an example, the newsgroup document classification problem
(Lang 1995). We used the training set cultured from these data by (Koh et al. 2007). The response is binary,
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and indicates a subclass of topics; the predictors are binary, and indicate the presence of particular tri-gram
sequences. The predictor matrix has 0.05% nonzero values. 2 Results for are shown for the new global rule
(28) and the new sequential rule (29). We were unable to compute the logistic regression global SAFE rule
for this example, using our R language implementation, as this had a very long computation time. But in
smaller examples it performed much like the global SAFE rule in the Gaussian case. Again we see that the
strong sequential rule (29), after computing the inner product of the residuals with all predictors at each
stage, allows us to discard the vast majority of the predictors before fitting. There were no violations of
either rule in this example.

Some approaches to penalized logistic regression such as the glmnet package use a weighted least squares
iteration within a Newton step. For these algorithms, an alternative approach to discarding predictors would
be to apply one of the Gaussian rules within the weighted least squares iteration.

Wu et al. (2009) used |xT
j (y− p̄)| to screen predictors (SNPs) in genome-wide association studies, where

the number of variables can exceed a million. Since they only anticipated models with say k < 15 terms,
they selected a small multiple, say 10k, of SNPs and computed the lasso solution path to k terms. All the
screened SNPs could then be checked for violations to verify that the solution found was global.

5 Strong rules for general problems

Suppose that we have a convex problem of the form

minimizeβ

[

f(β) + λ ·
p

∑

j=1

g(βj)
]

(30)

where f and g are convex functions, f is differentiable and β = (β1,β2, . . .βp) with each βj being a scalar
or vector. Suppose further that the subgradient equation for this problem has the form

f ′(β) + λsj = 0; j = 1, 2, . . . p (31)

where each subgradient variable sj satisfies ||sj ||q ≤ A, and ||sj ||q = A when the constraint g(βj) = 0 is

satisfied (here || · ||q is a norm). Suppose we have two values λ < λ0, and corresponding solutions β̂(λ), β̂(λ0).
Then following the same logic as in Section 3, we can derive the general strong bound

max||f ′(β̂0j)||q < (1 +A)λ−Aλ0 (32)

This can be applied either globally or sequentially. In the lasso regression setting, it is easy to check that
this reduces to the rules (11),(12) where A = 1.

The rule (32) has many potential applications. For example in the graphical lasso for sparse invariance
covariance estimation (Friedman et al. 2007), we observe N multivariate normal observations of dimension p,
with mean 0 and covariance Σ, with observed empirical covariance matrix S. Letting Θ = Σ−1, the problem
is to maximize the penalized log-likelihood

log detΘ− tr(SΘ)− λ||Θ||1, (33)

over non-negative definite matrices Θ. The penalty ||Θ||1 sum the absolute values of the entries of Θ; we
assume that the diagonal is not penalized. The subgradient equation is

Σ− S − λ · Γ = 0, (34)

where Γij ∈ sign(Θij). The graphical lasso algorithm proceeds in a blockwise fashion, optimizing one whole
row and column at a time. For some row i, denote by Si,−i by s12 and similarly σ12 and Γ12 for Σ and Γ,
respectively. Then the subgradient equation for one row has the form

σ12 − s12 − λ · Γ12 = 0, (35)

2This dataset is available as a saved R data object at http://www-stat.stanford.edu/ hastie/glmnet
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Figure 7: Strong global and sequential rules applied to the graphical lasso.

Now given two values λ < λ0, and solution Σ̂0 at λ0, we have the strong sequential rule

max|σ̂0
12 − s12| < 2λ− λ0 (36)

If this rule is satisfied, we discard the entire ith row and column of Θ, and hence set them to zero (but
retain the ith diagonal element). Figure 7 shows an example with N = 100, p = 300, standard independent
Gaussian variates. No violations of the rule occurred.

Finally, we note that strong rules can be derived in a similar way, for other problems such as the group
lasso (Yuan & Lin 2007).

6 Implementation and numerical studies

The strong sequential rule (12) can be used to provide potential speed improvements in convex optimization

problems. Generically, given a solution β̂(λ0) and considering a new value λ < λ0, let S(λ) be the indices of
the predictors that survive the screening rule (12): we call this the strong set. Denote by E the eligible set
of predictors. Then a useful strategy would be

1. Set E = S(λ).

2. Solve the problem at value λ using only the predictors in E.

3. Check the KKT conditions at this solution for all predictors. If there are no violations, we are done.
Otherwise add the predictors that violate the KKT conditions to the set E, and repeat steps 2 and 3.

Depending on how the optimization is done in step 2, this can be quite effective. Now in the glmnet

procedure, coordinate descent is used, with warm starts over a grid of decreasing values of λ. In addition,
an “ever-active” set of predictors A(λ) is maintained, consisting of the indices of all predictors that have a

12
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Figure 8: Gaussian lasso setting, N = 200, p = 20, 000, pairwise correlation between features of 0.7. The first
50 predictors have positive, decreasing coefficients. Shown are the number of predictors left after applying
the strong sequential rule (12) and the number that have ever been active (i.e. had a non-zero coefficient in
the solution) for values of λ larger than the current value. The right-hand plot is a zoomed version of the
left plot.

non-zero coefficient for some λ′ greater than the current value λ under consideration. The solution is first
found for this active set: then the KKT conditions are checked for all predictors. if there are no violations,
then we have the solution at λ; otherwise we add the violators into the active set and repeat.

The two strategies above are very similar, with one using the strong set S(λ) and the other using the
ever-active set A(λ). Figure 8 shows the active and strong sets for an example. Although the strong
rule greatly reduces the total number of predictors, it contains more predictors than the ever-active set;
accordingly, violations occur more often in the ever-active set than the strong set. This effect is due to the
high correlation between features and the fact that the signal variables have coefficients of the same sign. It
also occurs with logistic regression with lower correlations, say 0.2.

In light of this, we find that using both A(λ) and S(λ) can be advantageous. For glmnet we adopt the
following combined strategy:

1. Set E = A(λ).

2. Solve the problem at value λ using only the predictors in E.

3. Check the KKT conditions at this solution for all predictors in S(λ). If there are violations, add these
predictors into E, and go back to step 1 using the current solution as a warm start.

4. Check the KKT conditions for all predictors. If there are no violations, we are done. Otherwise add
these violators into A(λ), recompute S(λ) and go back to step (1) using the current solution as a warm
start.

Note that violations in step 3 are fairly common, while those in step 4 are rare. Hence the fact that the size
of S(λ) is ≪ p can make this an effective strategy.

We implemented this strategy and compare it to the standard glmnet algorithm in a variety of problems,
shown in Tables 1–4. Details are given in the table captions. We see that the new strategy offers a speedup
factor of five or more in some cases, and never seems to slow things down.

13



The strong sequential rules also have the potential for space savings. With a large dataset, one could
compute the inner products {xT

j r}p1 offline to determine the strong set of predictors, and then carry out the
intensive optimization steps in memory using just this subset of the predictors.

7 Discussion

In this paper we have proposed strong global and sequential rules for discarding predictors in statistical
convex optimization problems such as the lasso. When combined with checks of the KKT conditions, these
can offer substantial improvements in speed while still yielding the exact solution. We plan to include these
rules in a future version of the glmnet package.
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Appendix

A sketch of the proof of Theorem 1: Tibshirani & Taylor (2010) consider a generalized lasso problem of the
form

1

2
||y −Xβ||2 + λ||Dβ||1 (37)

where D is a general m×p penalty matrix. Letting X+ = (XTX)−1XT (a pseudo-inverse of X), ỹ = XX+y,
D̃ = X+D, then derive the dual problem with dual variables uλ satisfying max|uλ| ≤ λ. At the solution,

the primal and dual variables are related by β̂λ = X+(ỹ − D̃′ûλ). Tibshirani & Taylor (2010) discuss a
boundary lemma which says that once an element of ûλ is equal to λ (“on the boundary”) for some λ, it
will remain there for all λ′ < λ. They show that a sufficient condition for this is that D̃D̃T be diagonally
dominant, and in the process show that this implies that the slopes of all of the ûλ variables are less than
one in absolute value. Now in the case of the lasso, D is the identity matrix, an element of ûλ being on the
boundary means that the variable has a non-zero coefficient, and the slopes of the ûλ variable are the slopes
dcj(λ)/dλ. Finally D̃D̃T = (XTX)−1 and we have (15).
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Method Population correlation
0.0 0.25 0.5 0.75

glmnet 4.07 6.13 9.50 17.70
with seq-strong 2.50 2.54 2.62 2.98

Table 1: Glmnet timings (seconds) for fitting a lasso problem in the Gaussian setting. There are p = 100, 000
predictors, N = 200 observations, 30 nonzero coefficients, with the same value and signs alternating; signal-
to-noise ratio equal to 3.

Method Time (sec.)
glmnet 4.14
with seq-strong 2.52

Table 2: Glmnet timings (seconds) fitting a lasso problem in the Gaussian setting. Here the data matrix is
sparse, consisting of just zeros and ones, with 0.1% of the values equal to 1. There are p = 50, 000 predictors,
N = 500 observations, with 25% of the coefficients nonzero, having a Gaussian distribution; signal-to-noise
ratio equal to 4.3.

Method α
1.0 0.5 0.2 0.1 0.01

glmnet 9.49 7.98 5.88 5.34 5.26
with seq-strong 2.64 2.65 2.73 2.99 5.44

Table 3: Glmnet timings (seconds) for fitting an elastic net problem. There are p = 100, 000 predictors,
N = 200 observations, 30 nonzero coefficients, with the same value and signs alternating; signal-to-noise
ratio equal to 3
.

Method Population correlation
0.0 0.5 0.8

glmnet 11.71 12.41 12.69
with seq-strong 6.31 9.491 12.86

Table 4: Glmnet timings (seconds) fitting a lasso/logistic regression problem. Here the data matrix is sparse,
consisting of just zeros and ones, with 0.1% of the values equal to 1. There are p = 50, 000 predictors,
N = 800 observations, with 30% of the coefficients nonzero, with the same value and signs alternating;
Bayes error equal to 3%.
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