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A NEW LAX-OLEINIK TYPE SEMIGROUP FOR
TIME-PERIODIC POSITIVE DEFINITE LAGRANGIAN
SYSTEMS

KAIZHI WANG!:2 AND JUN YAN!?

ABSTRACT. In this paper we introduce a new Lax-Oleinik type semigroup asso-
ciated with positive definite Lagrangian systems for both the time-independent
case and the time-periodic case. We show that the new Lax-Oleinik type
semigroup can take the place of the Lax-Oleinik semigroup in the weak KAM
theory. More than that, the new Lax-Oleinik type semigroup converges to a
backward weak KAM solution faster than the Lax-Oleinik semigroup in the
time-independent case, and the new Lax-Oleinik type semigroup converges to
a backward weak KAM solution in the time-periodic case, while it is shown
by Fathi and Mather that there is no such convergence of the Lax-Oleinik
semigroup.

1. INTRODUCTION

M be a compact and connected smooth manifold. Denote by T'M its tangent

bundle and T*M the cotangent one. Consider a C*° Lagrangian L : TM x R! —
RY, (z,v,t) — L(x,v,t). We suppose that L satisfies the following conditions
introduced by Mather [17]:

(H1)

(H2)

(H3)

(H4)

Periodicity. L is 1-periodic in the R! factor, i.e., L(x,v,t) = L(x,v,t+1)
for all (z,v,t) € TM x R!.

Positive Definiteness. For each © € M and each t € R!, the restriction
of L to T,M x t is strictly convex in the sense that its Hessian second
derivative is everywhere positive definite.

Superlinear Growth. lim, |, 4 % = 400 uniformly on x € M,
t € R, where || - || denotes the norm induced by a Riemannian metric
on T, M. By the compactness of M, this condition is independent of the
choice of the Riemannian metric.

Completeness of the Euler-Lagrange Flow. The maximal solutions of
the Euler-Lagrange equation, which in local coordinates is:

d oL, . oL, .
E%(x,x,t) = —(x,,t),

ox
are defined on all of R!.
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The Euler-Lagrange equation is a second order periodic differential equation on
M and generates a flow of diffeomorphisms ¢F : TM x S' — TM x S', t € R,
where S! denotes the circle R!/Z, defined by

oF (20,0, t0) = (x(t +to), 2(t + to), (t + o) mod 1),
where z : R! — M is the maximal solution of the Euler-Lagrange equation with ini-
tial conditions xz(ty) = xo, ©(t9) = vo. The completeness and periodicity conditions
grant that this correctly defines a flow on TM x S'.
We can associate with L a Hamiltonian, as a function on T*M x R: H(z,p,t) =
Supyer, (P, v)e—L(x,v,t)}, where (-, -), represents the canonical pairing between
the tangent and cotangent space. The corresponding Hamilton-Jacobi equation is

(11) ut+H($uu17t) ZC(L)u

where ¢(L) is the Manié critical value [16] of the Lagrangian L. In terms of Mather’s
a function ¢(L) = a(0).

In this paper we also consider time-independent Lagrangians on M. Let L, :
TM — RY (x,v) = L4(z,v) be a C? Lagrangian satisfying the following two
conditions:

(H2’) Positive Definiteness. For each (z,v) € TM, the Hessian second deriv-

. 2 . oy . .
ative 88 sza (x,v) is positive definite.

LG/("E7’U)
vl

(H3’) Superlinear Growth. lim,, -4 = 400 uniformly on z € M.
It is well known that the Euler-Lagrange flow (th * is complete under the assump-
tions (H2’) and (H3’). See, for example, [2] or [9].
For x € M, p € T} M, the conjugated Hamiltonian H, of L, is defined by:
H(z,p) = sup,er, ;i (P, v)e — L(z,v)}. The corresponding Hamilton-Jacobi equa-
tion is

(1.2) H,(z,uy) = ¢(Lg).

The Lax-Oleinik semigroup (hereinafter referred to as L-O semigroup) ([10, 13|
19]) is well known in several domains, such as PDE, Optimization and Control
Theory, Calculus of Variations and Dynamical systems. In particular, it plays an
essential role in the weak KAM theory [9].

Let us first recall the definitions of the L-O semigroups associated with L, (time-
independent case) and L (time-periodic case), respectively. For each u € C(M,R!)
and each t > 0, let

(13) reute) =t {ur0) + [ Lalo(s). 406005}

¥
for all x € M, and

(1.4) Tyu(w) = inf {u(y(0)) + /Ot L(3(s),(s), $)ds |

by

for all z € M, where the infimums are taken among the continuous and piecewise
C* paths 7 : [0,t] — M with y(t) = 2. In view of (L3)) and (L4), for each ¢t > 0,
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T and Ty are operators from C(M,RY) to itself. It is not difficult to check that
{Tf}i>0 and {T)}nen are one-parameter semigroups of operators, which means
T§ = I (unit operator), T, = TP o T8, Vt, s >0, and To = I, Ty = Ty 0 Thyy,
Vn, m € N, where N = {0,1,2,---}. {T/}i>0 and {7, }nen are called the L-O
semigroup associated with L, and L, respectively.

The L-O semigroup is used to obtain backward weak KAM solutions (viscosity
solutions) first by Lions, Papanicolaou and Varadhan [I5] on the n-torus T™ and
later by Fathi [6] for arbitrary compact manifolds. More precisely, for the time-
independent case, Fathi [6] proves that there exists a unique ¢y € R? (¢ = ¢(Lg)),
such that the semigroup 7 : u — Tfu+ cot, t > 0 has a fixed point u* € C(M,R?)
and that any fixed point is a backward weak KAM solution of (I2)). In the particular
case M = T", the backward weak KAM solution obtained by Fathi is just the
viscosity solution obtained earlier by Lions, Papanicolaou and Varadhan. Moreover,
Fathi points out that the above results for the time-independent case are still correct
for the time-periodic dependent case [9]. Furthermore, for the time-independent
case, he shows in [7] that for every u € C'(M,R"), the uniform limit lim; o Tfu =
u exists and is a fixed point of {Tta}tzo, i.e., u is a backward weak KAM solution
of (L2). In the same paper Fathi raises the question as to whether the analogous
result holds in the time-periodic case. This would be the convergence of T}, u+nc(L),
Vu € C(M,R'), as n — +oo, n € N. In view of the relation between T}, and the
Peierls barrier h (see [18] or [, [l []), if the liminf in the definition of the Peierls
barrier is not a limit, then the L-O semigroup in the time-periodic case does not
converge. Fathi and Mather [8] construct examples where the liminf in the definition
of the Peierls barrier is not a limit, thus answering the above question negatively.

The main aim of the present paper is to introduce a new Lax-Oleinik type semi-
group (hereinafter referred to as new L-O semigroup) associated with positive defi-
nite Lagrangian systems for both the time-independent case and the time-periodic
dependent case. The new L-O semigroup can take the place of the L-O semigroup
in the weak KAM theory. More significantly, the new L-O semigroup with an
arbitrary u € C(M,R!) as initial condition converges to a backward weak KAM
solution of (L2) faster than the L-O semigroup in the time-independent case, and
the new L-O semigroup with an arbitrary L-dominated function u € C(M x S', R!)
as initial condition converges to a backward weak KAM solution of (L)) in the
time-periodic case.

Without loss of generality, we will from now on always assume ¢(L,) = ¢(L) = 0.

We are now in a position to introduce the new L-O semigroups mentioned above
associated with L, (time-independent case) and L (time-periodic case), respectively.

1.1. Time-independent case.

Definition 1.1. For each u € C(M,R') and each ¢ > 0, let
Tru@) = jnf, it {ur0) + [ Lo 3(m)ir)

for all z € M, where the second infimum is taken among the continuous and
piecewise C'! paths v : [0, s] — M with y(s) = .

It is easy to check that {T{};>0 : C(M,R') — C(M,R') is an one-parameter
semigroup of operators. We call it the new L-O semigroup associated with L,. We
show that u € C(M,R') is a fixed point of {T}};>¢ if and only if it is a fixed point
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of {Tf}¢>0, and that for each u € C(M,RY), the uniform limit lim; o T0u =
lim; s 4 oo 7w = . For more properties of Tta we refer to Section 3.

How fast does the L-O semigroup converge? It is an interesting question which is
well worth discussing. We believe that there is a deep relation between dynamical
properties of Mather sets (or Aubry sets) and the rate of convergence of the L-
O semigroup. To the best of our knowledge there are now two relative results:
In [11], Ttwrriaga and Sénchez-Morgado prove that if the Aubry set consists in
a finite number of hyperbolic periodic orbits or hyperbolic fixed points, the L-O
semigroup converges exponentially. Recently, in [2I] the authors deal with the rate
of convergence problem when the Mather set consists of degenerate fixed points.
More precisely, consider the standard Lagrangian in classical mechanics L9 (x,v) =
%vQ +U(x), z € St, v € R, where U is a real analytic function on S' and has
a unique global minimum point zy. Without loss of generality, one may assume
z9 = 0, U(0) = 0. Then ¢(L%) = 0 and the Mather set My = {(0,0)}. An
upper bound estimate of the rate of convergence of the L-O semigroup is provided
in [2I] under the assumption that {(0,0)} is a degenerate fixed point: for every
u € C(S*,RY), there exists a constant C' > 0 such that

C
[THu — Ul < T
where k£ € N, k > 2 depends only on the degree of degeneracy of the minimum
point of the potential function U.

Naturally, we also care the problem of the rate of convergence of the new L-O
semigroup. We compare the rate of convergence of the new L-O semigroup to the
rate for the L-O semigroup as follows. First, we show that for each u € C(M,R'),
1T u—1| oo < || T*tu—1||00, ¥t > 0. It means that the new L-O semigroup converges
faster than the L-O semigroup for L,.

Then, in particular, we consider a class of C? positive definite and superlinear
Lagrangians on T"

vt > 0,

(1.5) Llll(a:,v) = %(A(:z:)(v —w),(v=—w)) + f(z,v—w), x€T" veR",

where A(z) is an n X n matrix, w € S"! is a given vector, and f(z,v — w) =
O(|Jv — w||?) as v —w — 0. Tt is clear that ¢(L}) = 0 and the Mather set My =
the Aubry set Ao = the Maiié set Ny = Uzern (2, w), which is a quasi-periodic
invariant torus with frequency vector w of the Euler-Lagrange flow associated to
L!. For the Lagrangian system (LT, we obtain the following two results on the
rates of convergence of the L.-O semigroup and the new L-O semigroup, respectively.

Theorem 1.2. For any u € C(T™,R'), there is a constant K > 0 such that

K
||Ttau—ﬁ||oo < 7, Vt>0,
where K depends only on n and u.
We recall the notations for Diophantine vectors: for p > n — 1 and a > 0, let

Dipe) = {B 8" {8, =

where k| = >0 |kil.

vk € Z"\{o}},



5

Theorem 1.3. Given any frequency vector w € D(p, ), for each u € C(T",RY),
there is a constant K > 0 such that

1 Tfu — oo < Kt~ OFom), vt >0,

where K depends only on n, p, a and u.

Finally, we construct an example (Example [3.9) to show that the result of The-
orem is sharp in the sense of order. Therefore, in view of Theorems [[.2] T3
and Example 1, we conclude that the new L-O semigroup converges faster than
the L-O semigroup in the sense of order when the Aubry set Ay of the Lagrangian
system (LA is a quasi-periodic invariant torus with Diophantine frequency vector
w € D(p, a).

1.2. Time-periodic case. For each u € C(M x S',R!) and each n € N, let

t
Thu(z,t) = }Crelg inf {u(*y(t —k),t mod 1) + / L(y(s),%(s), s)ds}
n<k<2n v t—k

for all (z,t) € M x R!, where the second infimum is taken among the continuous
and piecewise C! paths « : [t — k,t] — M with v(t) = .

From the compactness of M, the periodicity and the superlinearity of L, it is
easy to see that for each n € N, Tju(z,t) € R and Tu(z,t + 1) = T,u(z,t) for all
u € C(MxSY, R and all (z,t) € M xR!. It follows that for each u € C(M xS, R?)

and each n € N, T,,u is 1-periodic in the R! factor. And, consequently, we can define
T,u as a function on M x S' as follows:

Definition 1.4. For each u € C(M x S!,R') and each n € N, let

T

Tou(x,7) = inf inf {’U/(’}/(T —k),T) —|—/

keN
n<k<2n v T—k

L(¥(s).4(s), s)ds |

for all (z,7) € M x S!, where the second infimum is taken among the continuous
and piecewise C! paths 7 : [T — k, 7] — M with (1) = .

T, is an operator from C(M x S',R") to itself for each n € N (see Proposition
[1). And in view of the periodicity of L, {T} }nen is a semigroup of operators. We

call it the new L-O semigroup associated with L.
The main result of the paper is the following.

Theorem 1.5. For any u € C(M x S}, RY),
Jim Ty, 1) = inf (u(y,7) + e (3, 2))

for all (z,7) € M x St. Let i = lim,_ Tou. Furthermore, if u is dominated by
L, then u is a backward weak KAM solution of the Hamilton-Jacobi equation

(1.6) ur + H(z,up,7) = 0.

Remark 1.6. For the definition of the (extended) Peierls barrier h, see [18] or [8} 1], 4].
For completeness’ sake, we recall the definition in Section 4. See (1) in Definition
for the definition of L-dominated functions, which are denoted by u < L.
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In addition, we show that

(1.7) S_={aecCM xS",RY)| Jue C(M x S",RY), u< L, a= lim T,u},

n—-+o0o
where S_ denotes the set of backward weak KAM solutions of (L6]).

The rest of the paper is organized as follows. In Section 2 we introduce the basic
language and notation used in the sequel. In Section 3 we first study the properties
of the new L-O semigroup for the time-independent case and then give the proofs
of Theorems and [[3l At last, we construct the example mentioned above
(Example [39). In Section 4 we discuss the properties of the new L-O semigroup
for the time-periodic case and prove Theorem

2. NOTATION AND TERMINOLOGY

Consider the flat n-torus T™, whose universal cover is the Euclidean space R™.
We view the torus as a fundamental domain in R™

A=10,1] x --- x [0,1]

n times
with opposite faces identified. The unique coordinates z = (z1,...,2,) of a point
in T™ will belong to the half-open cube

A=10,1) x---x[0,1).

n times
In these coordinates the standard universal covering projection 7 : R® — T takes
the form

ﬂ-(i) = ([571]7 R [*’in])a

where [Z;] = #; mod 1, denotes the fractional part of Z; (Z; = {Z;} + [%;], where
{Z;} is the greatest integer not greater than Z;). We can now define operations on
T™ using the covering projection: each operation is simply the projection of the
usual operation with coordinates in R™. Thus the flat metric dr» may be defined
for any pair of points x, y € T™ by d=(z,y) = ||x — yl||, where || - || is the usual
Euclidean norm on R™. And the distance between points on the torus is at most
@. For x € T" and R > 0, Br(z) = {y € T"| dr~(x,y) < R} denotes the open
ball of the radius R centered on x in T™.

We choose, once and for all, a C*° Riemannian metric on M. It is classical that
there is a canonical way to associate to it a Riemannian metric on TM. We use
the same symbol “d” to denote the distance function defined by the Riemannian
metric on M and the distance function defined by the Riemannian metric on T'M.
Denote by | - ||+ the norm induced by the Riemannian metric on the fiber T,, M for
x € M, and by (-, -), the canonical pairing between T, M and T*M. In particular,
for M = T™, we denote (-, ), by (-, ) for brevity. We use the same notation (-, -) for
the standard inner product on R™. However, this should not create any ambiguity.

We equip C(M,R!) and C(M x S',R!) with the usual uniform topology (the
compact-open topology, or the C%-topology) defined by the supremum norm || - || .
We use u = const. to denote a constant function whose values do not vary.



3. THE NEW L-O SEMIGROUP: TIME-INDEPENDENT CASE

As mentioned in the Introduction, in this section we first discuss the main prop-
erties of the new L-O semigroup for the time-independent case, and then give the
proofs of Theorems and [[L3l Finally, we construct an example to show that the
new L-O semigroup converges faster than the L-O semigroup in the sense of order
when the Aubry set Ag of the Lagrangian system (L) is a quasi-periodic invariant
torus with Diophantine frequency vector w € D(p, a).

3.1. Properties of the new L-O semigroup. Let us recall the definition (Def-
inition ) of the new L-O semigroup {T{};>o associated with L,. For each
u € C(M,R"') and each t > 0,

Tru@) = ot it {ur0) + [ Lo 3(m)ir)
for all € M, where the second infimum is taken among the continuous and
piecewise C! paths v : [0, s] — M with y(s) = .

Obviously Tfu(z) = inf,< <o Tu(zx). Tt follows that —oo < Tlu(z) < Tlu(x)
which yields Ttau(:zz) € R!, Vo € M. Moreover, for each t > 0, Tt“ is an operator
from C(M,R') to itself. In fact, for any u € C(M,R'), from [9] the function
(s,2) — Tu(z) is continuous on [0, 400) x M and thus Tfu(-) = inf,<s<ar Tou(-)
is a continuous function on M since the infimum of continuous functions over a
compact set is also continuous. Furthermore, from the definition it is not difficult
to check that {T};>0 is a semigroup of operators.

Proposition 3.1. For given t > 0, u € C(M,R!) and z € M, there exist s € [t, 2t]
and an extremal curve v : [0, s] — M such that v(t) = z and

Tou(x) = u(1(0)) + / " La(v.4)dr.

Proof. Since s — T%u(z) is continuous on [t,2t] and Tfu(x) = inficcor T0u(x),
then there is so € [t,2t] such that Tou(z) = T¢ u(x). From the property of the
operator T¢ (see Lemma 4.4.1 in [9]), there exists an extremal curve «y : [0, so] — M
such that vy(sg) =  and

~ S0
Tou(e) = Thu(o) = u(0) + [ La(y.3)dr
0
O
Some fundamental properties of Tt“ are discussed in the following proposition.

Proposition 3.2.

(a) For u, v e C(M,R"), if u < v, then Tfu < Tv, V¥t > 0.
(b) If ¢ is a constant and u € C'(M,R"), then T¢(u + ¢) = Tfu + ¢, Yt > 0.
(¢) For each u, v € C(M,R"') and each t > 0, | Tt — T||oo < ||t — | oo-
(d) For each u € C(M,RY), limy_,o+ Tfu = u.
(e) For each u € C(M,RY), (t,) — Tfu(x) is continuous on [0, +00) x M.

Remark 3.3. The property (a) is monotonicity. The property (c) says that the
maps T} are non-expansive. The property (d) means that the semigroup {7}};>0
is continuous at the origin or of class Cy [12].
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Proof. Since T has the monotonicity property (see Corollary 4.4.4 in [9]), then
Ta — a < i a _ a
T u(x) tgl?Sth Tiu(z) < tglggfms Tiv(x) = Tiv(x), Vt>0, Voe M,

ie., (a) holds. (b) results from the definition of T directly. Note that for any
reM,

—llu=vllee +v(z) < u(@) < flu— vl +v(@).
By the properties of T¢ (see Corollary 4.4.4 in [9]), for each ¢ > 0 we have

Tiv(z) — |lu—v]leo < Tou(z) < Tév(x) + [lu— V|0, Vs € [t,2t].
Taking the infimum on s over [t, 2t] yields

. ar () ol < 0y <
(b Tiv(@) —[lu —vljeo < inf Tiu(w) <

and thus (c) holds.

Next we prove (d). For each u € C(M,R') and each ¢ > 0, there is w €
CH(M,RY) such that |ju — w||~ < € since C*(M,R?!) is a dense subset of C(M,R")
in the topology of uniform convergence. Thus, we have

inf T2v(x)+ ||lu—v]e, Vo€ M,
t<s<2t

1T u = ulloe < T u — Tiwl|oo + |7 w — wlleo + lw — ullo
(3.1) < 2flw — ulloo + [ Tiw — w]|oo
< 2+ ||Tt“w — W, VE>0,

where we have used (¢). Since M is compact, then w is Lipschitz. Denote the
Lipschitz constant of w by K,,, and by the superlinearity of L, there exists Cx, €
R! such that

Lo(z,v) > Ky|v|lz + Ck,,, VY(z,v)€TM.

For each x € M, t > 0, and any continuous and piecewise C* path v : [0,s] — M
with y(s) = 2 and t < s < 2¢, since

d((0),7(s)) < / Ay,

then

/ La(7,7)dr = Kud(7(0),7(s)) + Cx,. 8 > w(7(s)) —w(7(0)) + Ck,, 5.
0
Thus, by the definition of T¢ we have

Tiw(x) > w(z) + Ck,,s.
Taking the infimum on s over [¢, 2¢] on both sides of this last inequality yields

(3.2) Trw(z) > w(x) + O(t), ast— 0t

where O(t) is independent of x. Using the constant curve 7, : [0,s] = M, 7 — =z,
we have



Téw(x) < w(x) 4+ Lo(z,0)s.
Taking the infimum on s over [t, 2t], we obtain

(3.3) Trw(z) < w(x) +O0(t), ast— 0t
where O(t) is independent of . Combing (BI), (32) and B3], we have

lim || T — ul|se = 0,
—0t

i.e., (d) holds.
Finally, we prove (e). For any (to,z9) € [0,+00) x M, from the semigroup
property and (¢) we have

T u(z) — Tt‘zu(;voﬂ <

| Tiu(z) — Tiu(wo)| + |Tiu(o) — Ty u(zo)]
(3.4) <]
|

(
Tou(z) — Tou(xo)| + || T0u — Tt‘f)uHOO
Tiu(e) — Tiu(wo)| + 1Tji_ o u — tlls.
From @), Tfu(-) € C(M,R") and (d), we conclude that (e) holds. O
The proposition below establishs a relationship between Tta and T7.

Proposition 3.4.
(f) For each u € C(M,R"), the uniform limit lim;_, o, T/u exists and

lim Tfu= lim Tfu = .
t——+o00 t—+o0
(g) For each t > 0 and each u € C(M,NRl), | T0u — @)oo < || TU — | oo-
(h) uwe C(M,R?) is a fixed point of {T}};>0 if and only if it is a fixed point of
{T¢} o0

Remark 3.5. From (f) limy_, 4 oo Tu exists and is a backward weak KAM solution of
the Hamilton-Jacobi equation H,(x,u,) = 0. (g) essentially says that the new L-O
semigroup converges faster than the L-O semigroup. (h) implies that u € C(M,R!)
is a backward weak KAM solution if and only if it is a fixed point of {T};>0.

Proof. First we prove (f). Assume by contradiction that there exist g > 0, t, —
+o00 and x,, € M such that

T2 () — )| = <o.
From the compactness of M, without loss of generality we assume that z, — xo,
n — 4o00. In view of the definition of T}, there exist s,, € [tn, 2t,] such that

T3 u(xn) — u(zn)| > €o.
Let n — 4o00. Since (s,z) — T%u(x) is continuous, then we have

lim Tou(xg) # a(xo),

s——+oo
which contradicts limg_s o0 Teu = 4.
Next we show (g). For each ¢t > 0 and each x € M, there exists ¢t < s, < 2t such
that
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T u(z) — ()] = |T5, u(z) — alz)|.
Since @ is a fixed point of {T};+>0, then we have that |T¢ u(z) —u(x)| = [T u(z) —
T ()| < T8 u— T2 allow = [T, o Tfu— T2 _, o Toalow < |ITfu — Tiaoo =
| Tfuw — 1]| oo, where we have used the non-expansiveness property of T , (see
Corollary 4.4.4 in [9]). Hence (g) holds.
At last, we show (h). Suppose that u is a fixed point of {T}*}i>0, i.e., Tfu = u,
Yt > 0. Then lim;_, 4o Tu = u. From (g) we have

||Ttau —Ulloo < || THu — uljoo =0, ¥t >0,

which implies that u is a fixed point of {Tta}tZO- Suppose conversely that u is a fixed
point of {T¥};>0. Then from (f) limy—,yoo Tfu = u = limy— 4 oo Tu. Hence u is a
backward weak KAM solution of H,(x,u,) = 0 and a fixed point of {T¥}1>0. O

3.2. Rates of convergence of the L-O semigroup and the new L-O semi-
group. Recall the C? positive definite and superlinear Lagrangian (5]

Llll(a:,v) = %(A(a:)(v —w),(v—w)h) + f(z,v—w), xzeT" veR™

The conjugated Hamiltonian H} : T® x R® — R! of L! has the following form

Hp) = (0.0} + 5 (A7 @) p) + 9(2,1),

where g(z,p) = O(||p||?) as p — 0. It is clear that H!(z,0) = 0 and thus w =
const. is a smooth viscosity solution of the corresponding Hamilton-Jacobi equation
H!(x,u,;) = 0. In view of the Legendre transform,

Li(z,v) = LL(2,v) — (we,v) > —H}(2,w,;) = —H(2,0) =0, V(z,v) € T" x R".
Furthermore, if (z,v) € Mg = Ugern (,w), then w, = 9L (z,v) (see Theorem 4.8.3
in [9]), from which we have

Ll(z,v) = L} (2,v) — (wg,v) = —H}(z,w,) = —H}(x,0) = 0.

Hence

L. >0, Y(z,v)€T"xR"

and in particular,

Llll|ume'ﬂ'" (mvw) = 0

For each u € C(T",R'), because of ¢(Ll) = 0 we have lim; o Tyu = .
Note that both w = const. and @ are viscosity solutions of H}(x,u,) = 0. Hence
U = const. since the viscosity solution of H}(z,u,) = 0 is unique up to constants
when Ag = T™ (see [14]), where A is the projected Aubry set.
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3.2.1. Rate of convergence of the L-O semigroup. We present here the proof of
Theorem [[.2] For this, the following lemma is needed.

Lemma 3.6. For each u € C(T",R!), 4 = mingern u(z).

Proof. For any x € T™, from the definition of T}* we have

@(z) = lim Tfu(z)= lim inf {u(z)—l—/o L (v.,%.)ds},

t—+4o0 t—+4o0 z€Tn™
where v, : [0,¢] — T" is a Tonelli minimizer (see for example, [I7, Tonelli’s the-
orem]) with v,(0) = z, 7.(t) = x. Since L. > 0, then 4(z) > min,e7» u(2) and
therefore it suffices to show that @(z) < minern u(2).
Take y € T™ with u(y) = min,e» u(z). Consider the following two curves

Yo 1 [0,8] = T, s —ws+y
and

Yo 2 [0,8] = T, s> w's+y
with 7,/ (t) = z, where w’ € S""1 and ¢t > 0. It is clear that 7, is a curve in T"
connecting y and z. Let A = v,/ (t) — Y, (t) = 2 — (wt + y). Then [|A] < 4 and
Ao =w' = % + w. Therefore, we have

Tou(z) < ulyu(0)) + / L (s Ao )

=)+ [ (FHAGIE — ) ! =)+ Flours! — ) ds

2
=u(y) + /Ot (%<A(w)% %> + f(ers %))ds

C 1
<u(y) + n + O(t_2)’

where C' is a constant, which depends only on n.
From the arguments above we know that for any € > 0, there exists T' > 0 such
that for any ¢ > T there exists 7, : [0,t] — T™ with .- (¢) = z, and

t
Tou(e) < o (0) + [ LG )ds < min u(z) + e
0 zel™

Hence @(x) = limy— 400 TPu(z) < min,ern u(2). O

Proof of Theorem [[L2 In order to prove our result, it is sufficient to show that
for each u € C(T™,R!), there exists a constant K > 0 such that the following two
inequalities hold.

Tiu(z) —a(x) < —, Vt>0, Ve eT (I1)

o=

a(r) — Tiu(x) < - YVt >0, Vo e T (12)

Obviously, (I2) holds. In fact, for each t > 0 and each « € T™, from the definition
of T} we have
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Tiu(z) = inf {u(z)—i—/o L (v.,%.)ds},

zeT™

where 7, : [0,¢] = T™ is a Tonelli minimizer with ~,(0) = z, 7,(t) = z. In view of
L! >0 and Lemma [3.6] we have

True) = nf () + [ Li0mA0ds) > min u(z) = a(o)

Thus @(z) — Tfu(x) <0, Ve > 0, Vo € T™ and (12) holds.
Next we prove (I1). It suffices to show that there exists a constant C' > 0 such
that for sufficiently large t > 0,

(3.5) Tiu(z) —a(x) <

c
?, YV ETn,

where C' depends only on n. In deed, since (s,z) — Tsu(z) is continuous on
[0,00) x T™, if (B3] holds, then there exists a constant K > 0 such that

Tiu(x) — u(x) < vt >0, Ve e T",

75
where K depends only on n and .
Take y € T™ with u(y) = min,e» u(z). Let us consider the following curve in
’]I"ﬂ
Yo : [0,t] = T, s +— ws+y,

where t > 0. Then for each x € T", let

Yor 1 [0,] = T™, s+ w's+y

be a curve in T" connecting y and x, where w’ € S"™1. Let A = ,/(t) — 7, (t) =
x — (wt +y). Then ||A] < 4 and 4,y =w’ = £ +w. Hence,

Tou(z) < ulyu (0)) + / L (s A )

2

=u(y) + /Ot (%<A(w)é7 %> + f(ers %))ds

t
C 1
<uly)+ - +0(5),

—u()+ [ (HAGE ~ ) ! =) + T — ) s

where Cy is a constant which depends only on n. From Lemma [B.6] we have
Tru(x) — a(x) < % for ¢ > 0 large enough, where C is a constant which still
depends only on n, i.e., (3.5) holds. O
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3.2.2. Rate of convergence of the new L-O semigroup. To complete the proof of
Theorem[I.3] we review preliminaries on the ergodization rate for linear flows on the
torus T™, i.e., the rate at which the image of a point fills the torus when subjected
to linear flows. There is a direct relationship between the rate of convergence of the
new L-O semigroup and the ergodization rate for linear flows on the torus T". Let
us recall the following result of Dumas’ [5] concerning the estimate of ergodization
time.

For each t € R! and each w € S"~!, consider the one-parameter family of
translation maps w; : T — T", z — x + wt. A rectilinear orbit of T™ with
direction vector w and initial condition z is defined as the image of x under the
linear flow w; over some closed interval [tg,t;] C RY, i.e.,

U wi).

to<t<ti
Given R > 0, the direction vector w € S"! is said to ergodize T" to within R
after time 7T if

(3.6) U wi(Br(z)=1"

for all z € T".
As defined in the Introduction, for p > n — 1 and a > 0,

Dip,a) = {# € 8" B, R)| > s vk € Z\{0}
whose elements can not be approximated by rationals too rapidly.
Theorem 3.7 (Dumas [0]). Let 0 < R < 1. Given any highly nonresonant direction
vector w € D(p, a), rectilinear orbits of T™ with direction vector w will ergodize T™
to within R after time T, where

_ 2[Villa
~ amRrtn/2
is independent of w.

Remark 3.8. The constant |Vi||a is a Sobolev norm of a certain “smoothest test
function” and it depends only on n and p. See [5] for complete details.

We are now in a position to give the proof of Theorem
Proof of Theorem [I.3. Our purpose is to show that for each u € C(T", R!), there
exists a constant K > 0 such that the following two inequalities hold.

Tou(z) — a(z) < Kt~ Hem), ve>0, Vo e T™ (I3)

u(z) — Tru(z) < Kt~ Hem) ve>0, Vo e T (14)
First we show (I4). For each t > 0 and each = € T", by the definition of T} we
have

Ttau(x)z inf inf {u(z)+/ Li(wz,ﬁz)dT},
0

t<s<2t zET™
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where 7, : [0, s] — T™ is a Tonelli minimizer with «,(0) = 2z, v,(s) = . In view of
L! >0 and Lemma [3.6] we have

Ta — . . > — 97 .
Tu(w) = inf - inf {u(z) + /0 Lg(v2,2)dr} min u(z) = a(z)
Thus a(z) — Tfu(z) <0, ¥Vt >0, Vo € T, i.e., (I4) holds.

Then it remains to show (I3). When R = 1, according to Theorem [B77 the
ergodization time T = % For any t > T, let R, = ™% 2”;/;!A. Then
0< Ry <1.

Take y € T with u(y) = min,er» u(z). Let y, = wi(y) = wt +y. For R, defined
above, since w € D(p, o), then from Theorem 37 and (B:6) we have

U wo(Bar, () = T"

0<o<t

Therefore, for each x € T", there exists 0 < ¢’ < ¢ such that dn (ws (ye),z) <
Ry, ie., drn(w(t + ') + y,z) < R:. Equivalently this means that there exists
t < s’ < 2t such that

d’]l‘n (OJS/ + Y, ZC) S Rt,

where s’ = ¢t + o’. Consider the following curve in T"

w 0,8 =T, 7= W't +y
w1th Yo (8') = x, where w’ € S~ It is clear that 7, connects y and x. Let
= ’yw( )—ws( ) =z — (ws' +y). Then ||A]| = dp(z,ws’ +y) < R, and
Yor = W' A + w. Hence we have

’

Touz) — a(z) < u(r(0)) + / " L (s ) — ()

’

— /OS (1<A(%/)(w’ —w), (W —w) + fly,w — w))dT

2
< CR?
-t
for sufficiently large ¢+ > 0 and some constant C' > 0. Since R} = (%)Pﬁb/?,

then for ¢t > 0 large enough we have

Tou(z) — a(z) < Cit~ %) | v e T,
where C is a constant which depends only on n, p and «. From (e) of Proposition
B2 (7,2) — T%u(z) is continuous on [0,00) x T". Hence there exists a constant
K > 0 such that
Tou(z) — a(z) < Kt~ %), vt >0, Vo e T,

where K depends only on n, p, & and u, i.e., (I3) holds. O
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3.2.3. An example.
Example 3.9. Consider the following integrable C? Lagrangian

- 1
Li(z,v) = 5(1} —wv—w), €T veR"” wesS"
It is easy to see that L} is a special case of L.. For L}, we show that there exist

u € C(T",R'), 2° € T" and t,, — +00 as m — +oo such that

1
T, u(@") = a@®)| = O(=), m = +oo,
m
which implies that the result of Theorem is sharp in the sense of order.
Recall the universal covering projection 7 : R® — T". Let 2° € T™ such that
each point 2% € R™ in the fiber over 20 (72° = 2°) is the center of each fundamental
domain in R™. Define a continuous function on R™ as follows: for z € R"

0, otherwise,

where 0 < § < 4. We then define a continuous function on T" as u(z) = @() for
all x € T", where  is an arbitrary point in the fiber over . Thus, from Lemma
B8 @ = mingern u(z) = 0.

Now fix a point #J in the fiber over 2°. Then there exist {Z%,}:5°° in the fiber

over 2° and t,, — +oo as m — 400 such that [[(20, — wty) — Z| < 3. Let

Zm = &9, — Wty Then [|Z, — 5| < §. For each t,, there exists y,, € T" such that

tm B
T u(c®) = ulym) + / L (A )ds,
0
0

where 7., @ [0,tm] — T™ is a Tonelli minimizer with v,,, (0) = ym, Yy, (tm) = 2°.
In view of the lifting property of the covering projection, there is a unique curve
Yy 1 10, tm] = R™ with 77, = ,,. and Jy,, (tn) = 35, Set §m = F,,,(0). Then
TYm = Ym. Moreover, 7, has the following form

Vym (8) = W's + Gy 5 € [0, 1],
where w’ € S"71. 1t is clear that 7y, (0) = §p, and G, = &9, — W'ty,.
If || G — Zm|| < $, then from ||z, — #5|| < & we have ||§i, — #5|| < 2. Hence,

tm —
Tt‘fnu(:to) = u(ym) + / Ltll(%mﬁym)d‘s
0

306 0
> (i) >0 — = =2
= U(ym) >4 1 1
From (B7), we may deduce that there can only be a finite number of §,,’s such that

|G — Zm|| < §. For, otherwise, there would be {t;, }1% and {fm, };=°7 such that

(3.7)

T

my

) i:1727"'7

= >

u(z®) >
which contradicts lim;, 4 7 u(2?) = u(z") = 0.

For gy, with ||[§im — Zmll > g, we have
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5 . N N
1 < G = Zmll = 170, — &'t — (&5, — W)l = |w — &' [[tm.
Thus,
tm B
72, u(a®) = ulym) + [ Lh i, s
3.8 0
39 | o 1BJw—wl? _ &
> —tpllw— W == > .
2 2 tm 32t

Therefore, from ([B.8) and Theorem [[.2] we have

1
75, u(2") = a(@®)| = |T7, u(@®)] = O(=), m — +oo,

m
4. THE NEW L-O SEMIGROUP: TIME-PERIODIC CASE

In this section we first discuss some basic properties of the new L-O semigroup
for the time-periodic case, i.e., {T, }nen associated with L, and then study the
convergence of T,u as n — +oo. As last, we discuss the relation between the limit
limy, 400 T, u and the backward weak KAM solution.

4.1. Basic properties of the new L-O semigroup. Recall the definition (Def-
inition [[4]) of the new L-O semigroup {T,}nen associated with L. For each
u € C(M x St,R!) and each n € N,

T

Tou(x,7) = inf inf {u(’y(T —k),7) +/
ngklfgzn v T—k

L(y(s).4(s), 5)ds}

for all (z,7) € M x S!, where the second infimum is taken among the continuous
and piecewise C! paths 7 : [1 — k, 7] — M with (1) = .

First of all, we show that for each n € N, T, is an operator from C(M x S',R!)
to itself. For this, it suffices to prove the following result.

Proposition 4.1. For each n € N and each u € C(M xS',R'), T,,u is a continuous
function on M x S*.

Proof. Following Mather ([18], also see [I]), it is convenient to introduce, for ¢’ > ¢
and x, y € M, the following quantity:

t/
Froteog) =inf [ LG(9).4(5) 5)ds,
¢
where the infimum is taken over the continuous and piecewise C! paths v : [t,t'] —
M such that y(t) = z and y(t') = y.
By the definition of T,,, for each u € C(M x S*,R!) and each (z,7) € M x S,

we have

T, ) = inf inf { ) Fr g (y, }
u(z, ) ) S%‘zn Jnf Yuly,7) + Frorr(y,7)

Since the function (y,x,7) — Fr_k (y, ) is continuous for each n < k < 2n, k € N
(see [1]), then from the compactness of M the function (x,7) — infyecar{u(y, 7) +
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Fr _k+(y,x)} is also continuous. Therefore, the function (x,7) — Thu(z,7) is
continuous on M x S*. O

By the periodicity of L and the above arguments, it is not difficult to check that
{T},}nen is a semigroup of operators from C(M x S',R!) to itself.

Proposition 4.2. For givenn € N, u € C(M x S, R!) and (z,7) € M x S!, there
exist n < ko < 2n, ko € N and an extremal curve v : [r — ko, 7] — M such that
~(1) =z and

Tou(z,7) = u(y(T = ko), 7) +/ L(y(s),9(s), s)ds.
T—k}o
Proof. Recall that

T, ) = inf inf { ) Fr g (y, }
u(z, 7) ) 2%12‘2" Jnf, u(y, 1) + Frop,r(y, @)

For given z, 7 and k, the function y — u(y,7) + Fr_j +(y, x) is continuous on M.
Thus, from the compactness of M there exists y* € M such that

inf {u(y, )+ Fr_ir(y, x)} = u(yk, T)+ FT,kﬂ.(yk, x).
yeM
Then it is clear that there is n < kg < 2n, kg € N such that

Tou(z, 7) = u(y*, 7) + Fr_py - (4™, ).
It follows from Tonelli’s theorem (see, for example, [I7]) that there exists a min-
imizing extremal curve v : [7 — ko, 7] — M such that y(7 — ko) = y*, v(7) = z
and

T

Frosor @2 = [ L), 3(9).5)ds.

T—k}o
Hence,

Tou(z, 7) = u(y(r — ko), 7) + /Tk L(v(s),5(s), s)ds.

Proposition 4.3.
(a’) For u, v € C(M x S, RY), if u < v, then Tou < T,v, ¥n € N.
(b”) If ¢ is a constant and u € C(M x S*,RY), then T}, (u+¢) = Tu+c, Vn € N.
(¢’) For each u, v € C(M x S',R') and each n € N, || Tpu — T)v|| oo < ||t — ]| so.

Proof. For each n € N and each (x,7) € M x S,

T, ) = inf inf { ) Fr k- (y, }
u(x, 7) ng}“,?g% ylélM u(y, ) + e (Y, )

g {0 oaoten)
n<k<2n

= Tnv(xv 7-)7

IN
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which proves (a’). (b’) results from the definition of 7T}, directly. To prove (c’), we
notice that for each (x,7) € M x S,

—llu = vl +v(z,7) <ulz,7) <lu— [l +v(z, 7).

From (a’) and (b’) we have

Too(z, 7)—|lu—voe < Tpu(x,7) < Tnv(z, 7)+||u—v||0o, ¥(z,7) € MxS',Vn € N.
Hence, || Thu — Thollso < [t — v]|oo- O
4.2. Convergence of the new L-O semigroup. Here we deal with the conver-
gence of the new L-O semigroup associated with L. We show that lim,—, oo Thu(z, 7)
exists for each u € C(M xS',R?) and each (x,7) € M xS'. But this is an immediate
consequence of Proposition below.

Following Mané [16] and Mather [I8], define the action potential and the ex-
tended Peierls barrier as follows.

Action Potential: for each (1,7') € S2, let

O, (z,2") = inf Fy p(z,2)
for all (z,2') € M x M, where the infimum is taken on the set of (¢,#') € R? such
that 7= [t], 7/ = [t'] and ¢’ >t + 1.
Extended Peierls Barrier: for each (7,7') € S?, let

(4.1) he o (z,2') = liminf Fpp(z,2)

t—t—+o0
for all (z,2') € M x M, where the liminf is restricted to the set of (¢,¢') € R? such
that 7 = [t], 77 = [t'].

From the above definitions, it is not hard to see that

(4.2) O, (2, 2") < hy o, 2, Y(z,7), (2, 7)€ M xS

and

(43) hT,t(Iay) < hT7S(I,Z> + (I)Sﬁt(zvy)a V(IaT)a (yvt)a (275) €M x Sl'

It can be shown that the extended Peierls barrier h, . is Lipschitz and that, the
liminf in (@I can not always be replaced with a limit, which leads to the non-
convergence of the L-O semigroup associated with L (see []). See [20] for more
details about the action potential and the extended Peierls barrier. Before stating
Proposition [£.5 we introduce the following lemma.

Lemma 4.4 (A Priori Compactness). Ift > 0 is fized, there exists a compact subset
Ci C TM x S such that for each minimizing extremal curve v : [a,b] — M with
b—a >t, we have

(’7(8)7’7(8)7 [S]) € Ct7 Vs € [av b]'

The lemma may be proved by small modifications of the proof found in [9
Corollary 4.3.2].
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Proposition 4.5.
lim }crelg Fr p-(y,x) =hrr(y,z), VYar,ye M, V7 e St.

n—-+oo
n<k<2n

Proof. Throughout this proof we use C' to denote a generic positive constant not
necessarily the same in any two places. For each x, y € M and each 7 € St, by
the definition of h, ., we have liminfy_ 4o Fr_j -(y,2) = hr,(y,z). Then there
exist {k;};-¥ such that k; — +oo and Fy_, -(y,7) — h.(y,z) as i — +o0.
Tonelli’s theorem guarantees the existence of the minimizing extremal curves v, :
[T — ki, 7] = M with v, (7 — ki) =y, Y, (1) =z and A(yk,;) = Fr_k, (y, ), where

A(’Ykz) :/ . L(’Yki’;yki’s)ds'

— T,T( ,x) as i — +o0o. Then for every € > 0, there exists
)—hr-(y,x)] <eifi> 1,4 e N. And it is clear that for each
[T — ki, 7] = TM x S! is a trajectory of the Euler-Lagrange

Thus, we have A(vy,)
I € N such that |A(vyg,
iy (s (), (), [5])
flow.

To prove our result, it suffices to show that for n € N large enough, we can find
a curve ¥ : [T — ko, 7] = M with 3(r — ko) = y, (1) = x, where n < kg < 2n,
ko € N, such that

|A(F) — A(yw, )| < Ce
for some constant C' > 0. In fact, if such a curve exists, then

}Crel]g Frg.(y,z) < }Crel]g Fr ok (y,2) < AF) < A(vg,) + Ce < her(y, @) + Ce.

n<k n<k<2n

By letting n — 400, from the arbitrariness of € > 0, we have

her(y,x) = liminf Fr_y -(y, x)

k— 400
= lim inf Fr_j . (y,2)

n—4oo keN
n<k

< lim inf Fr_jp,(y,2)
n—-+oo keN
n<k<2n

< hrr(y,2),
which implies that
lim ilelg Fr—k,T(ya$) = h‘r,‘r(yvx)'

n—-+o0o
n<k<2n

Our task is now to construct the curve mentioned above. Note that for the above
€ > 0, there exists I’ € N such that there exists

(kavzki?tzki) €0;:= {(’Yki(s)v;yki(‘s% [S]) | T—ki<s< T} CTM xS
such that

d((zk17vZk b Zk ) MO)
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if i > I', where M is the Mather set of cohomology class 0. As usual, distance is
measured with respect to smooth Riemannian metrics. Since My is compact and
by the a priori compactness given by Lemma [£4, O; is contained in the compact
subset Cy,, of TM x St for each 4 > I, then it doesn’t matter which Riemannian
metrics we choose to measure distance.

Let I = max{I,I'}. Then |A(yk,)—hr+(y,z)| < € and there exists (20, Vs, t2,) €
Or = {(vk,(8), 3k, (8),[8]) | 7 — kr < s <7} such that

(4.4) d((20, Vzgstzg)s ./\/lo) <e.

In view of (@4, there exists an ergodic minimal measure j. on TM x S! [17]
such that pe(supppe N Bac (20, Uz, t20)) = A > 0, where B, (20, v,,,t,) denotes the
open ball of radius 2 centered on (zq,v,,,tz,) in TM x St. Set As. = supppe N
Boc(20, V2, t2, ). Since fie is an ergodic measure, then

U ¢",(Aze)) =
Thus, for any 0 < A’ < A, there exists T > 0 such that

T’

e(U ¢£t(A2€)) >1- Alv

t=1
if 7" > T'. From this, we may deduce that for each n € N,

(45) ( U 084 (A20)) 1 6% (Aac) # 0.

For, otherwise, there would be ng € N such that

O_NG(U¢ AQE)+Me(¢£0(A2a))Zl—AI+A>17

which is a contradiction.
For a given n € N large enough with max{k;, T} < {%}, from (&3] there exist
(€0, Vegs tey ), (€0,Vey,ta,) € Age and 1 < ¢ < T such that

(46) ¢£t(607 'er ) teo) = (67 UE; te) = ¢£ (607 véo b tég)

for some (e, ve,t.) € Mg. Since (€9, Vey, te,) € Aae, then

(4.7) d((€0, Vegs teo )s (20, Vzgs tzg)) < 2€.

Thus, |te, —ts| < 2¢. Without loss of generality, we assume t., > t,, (As mentioned
in Section 2, we view the unit circle S! as a fundamental domain in R, [0,1]
with opposite faces identified). The case t., < t,, can be treated similarly. Then
0 <tey—ts < 2e. Set (21,0;,,t,,) = (bt (Zo,’UzD, ty). Then t,, = t., and from

7)) we have
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(48) d((eovveoateo)v (Zlvvzlatzl)) <Ce

for some constant C' > 0. Note that t.,, 7 € S' and thus |7 — t.,| < 1. Without
loss of generality, we assume t., < 7. Let (22,v,,,7) = ¢£_teo (21,02, te,) and
(e1,Ve,,T) = ¢£—teo (€0,Vey,tey). Then by the differentiability of the solutions of
the Euler-Lagrange equation with respect to initial values, we have

(4.9) d((e1,ve;,7), (22,05,,7)) < Ce

for some constant C' > 0.
Since (€g, Vey, tey), (€0, Vay,ta,) € Aae, then

(4.10) d((€0, Vegs teo )s (B0, Vags tay)) < 4e,

from which, without loss of generality, we assume 0 < t.,—tz, < 4e. Set (€1, Ve, , te,) =
(theo—téo (€0, Veys tey ). Then from ([@I0) we have

(411) d((eovveovté‘o)a (élvvéuteo)) <Ce

for some constant C' > 0. Set (€2,ve,,7) = qﬁf_teo (€1, Ve, tey). Recall that
(e1,Vey,T) = ¢7I:_teo (€0,Veg,tey)- Then from the differentiability of the solutions
of the Euler-Lagrange equation with respect to initial values, we have

(412) d((eluvelaT)v(é27Uész) <Ce

for some constant C' > 0.

Note that since (20, vz, t2) € Or = {(V&,(5), ¥, (5), [s]) | T—kr < s < 7}, where
Oy is an orbit of the Euler-Lagrange flow, then (z2,v,,,7) € Or. And thus, there
exists kr, € N with kr, + k7, = kr such that

(ZQ, Uzy)s 7-) = (’Ykl (T - k12)a Ve (T - kfz)a 7-)'

We are now in a position to construct the curve we needed. We treat the case
kr, # 0, k1, # 0 and the remaining cases can be treated similarly. Let ag :
[T — kr,, 7] = M with ag(7 — k1,) = e1 and a3(7) = = be a Tonelli minimizer such
that A(as) = f:*kh L(as, a3, s)ds = Fr_y,, +(e1, ). Since g, : [7 —kr, 7] — M is
a minimizing extremal curve, then vy, |[T, kr,,7] 18 also a minimizing extremal curve
and thus A(vg, |[T_k12)T]) = Fr_k,, 7 (22,7). Therefore, from the Lipschtiz property
of the function F,_x, - (see, for example, [1]) and (£9) we have

(4.13)
|A(O¢3) - A(7k1 |[T—k:12,7'])| = |F7'7k12,7'(€1; I) - F77k12,‘r(22; I)| < Dd(elv 22) < Ce

for some constant C' > 0, where D > 0 is a Lipschitz constant of F}, ;, which is
independent of t1, to with t; + 1 < t5.

Let B(s) = p¢§7(77kl2)(el,vel,7), Vs € R, where p : TM x S' — M denotes
the pr'ojection. Then (ﬁ(s),ﬂ(s), [s]) = SL—(T—kljz)(el’vel7T)7 Vs € R, and (B(7 —

kr,),B(t — kr,)) = (€1, ve, ). Hence , from (@.6]) we have
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(B(T_kfz _(T_teo)_t)vﬂ(T_kfz _(T_teo)_t)a [T_kb_(T_teo)_t]) = (eavevté‘)v

and

(€2, ey, 7) = (B(1), B(l)v () = (ﬁ(ll)v B(l/)v [l/])7
wherel = 71—k, —(T—te, ) —t—n+(tey—te, )+ (T—te,) and I/ = 71—k, —t—n+te, —tz, -
Then [I'] = [r —kp, —t —n+te, —te] = [T —t + tey — tg,] = 7, which means that
t — (te, — te,) € Z. Hence, we have 0 <t — (te, — tgy) < T — (te, — te,) < {5}
Furthermore,

(4.14) < kp+nt = (ty —te) < b0+ {3} < 2n.

Let m = n+t—(te,—ts,) € Zand a2 = Bz —ky, —m.r—ky,]- Then as(r—kp,—m) = é
and ao(7 — kr,) = e1. In view of (€g,Vey,te,) € A2 C M, and the definitions
of B and g, (aa(s),dz(s),[s]) is a trajectory of the Euler-Lagrange flow in M.
Moreover, according to [I7, Proposition 3] and the definition of A, ,, we have

A(042) = F“rfkl2 —m,T—kr, (62; 61) = hT,T(EQ; 61).

Hence, on account of the Lipschitz property of h,  and ({12,

|A(052) - h‘r,‘r(elvel)| == |h‘r,‘r(é2;el) - hT,T(617€1)| S Dd(é%el) S 05

for some constant C' > 0, where D is a Lipschitz constant of h, ,. Since (e1,7) €
My, where My C M x S! is the projected Mather set, then h, ,(e1,e1) = 0, and
thus

(4.15) |A(az)| < Ce.

Let oy : [ —kr —m,7 — ki, — m| = M with oy (7 — kf —m) =y and a1 (7 —
k1, —m) = & be a Tonelli minimizer such that

A(al) - FTfkjfm,‘rfkbfm(y; 62)-
Since g, : [T — k1, 7] — M is a minimizing extremal curve, then ~, |[‘r—k1,‘r—k12] is
also a minimizing extremal curve and thus

A(’ng |[7'7k1,7'7k12]) = FT—]C[,T—ktjz (ya 22) = FT—kI—m,T—kIQ—m(yu 22)-
Therefore, from the Lipschitz property of Fr_k;—m r—ks,—m, @9) and (@I2), we
have

(4.16)

|A(ar) — Ak, |[T—k1,r—k12])| = |F77k17m,7'7k127m(ya €2) — Ffszfm,ffkhfm(ya 22)]
< Dd(es, 22)
< (e

for some constant C' > 0.
Consider the curve 4 : [T — k; — m, 7] — M connecting y and x defined by
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aq(s), s€[r—kr—m,7— ki, —m],
:Y(S) = 042(8), ERS [T - k]z —m,T — k[g]a
as(s), s €[t — ki, 7]

By @), n < ko := kr + m < 2n. From (@I13), (@I5) and (£I4), we have

|A(Y) — Al )| < Ce
for some constant C' > 0. Hence, 7 is just the curve we needed. This completes the

proof of the proposition.
O

From the definition of T}, for each u € C'(M x S',R') and each (z,7) € M x St,
we have

T’ﬂ ) = i f 1 f I FT— T I .

Notice that y — Fr_j .(y, ) is a Lipschitz function on M for every k € N, and
the Lipschitz constant D is independent of k. Hence for each n € N, the function
y +— infp<p<on Fr—k - (y,2) is also Lipschitz with the Lipschitz constant D, and
thus {inf,<r<on FT,kﬁT(',x)}::i are equicontinuous. In view of Proposition E.5]
we have

lim }crelg Fr pr(y,x) =hrr(y,z), Yye M.

n—-4o0o
n<k<2n
Then {inf,<x<on Fr—k.-(-, )}, converges uniformly to h,,(-,x) as n — ~+oo.
Let
E™ = inf inf F,_ )
ylgM{u(yu T) + nj{é?zn T—k,7 (yax)}
Note that

E" = yléljf\;{u(yv )+ hr e (y, @) + }Crelg Fr k7 (y,2) = hrr(y, @)},

n<k<2n

;QIE{“(%T) +her(y, )} —sup | inf Froyr(y,2) = her(y,2)| < B,

ye n<k<2n

and

B < inf {u(y, 7) + her(y2)} + sup [ dnf - Frogr(y, @) = her (y, 7).

YEM | Jican

By letting n — +o00, we have

ylglil{u(y, )+ hrr(y,2)} = nllﬂloo E" = nllﬂloo ylglil{u(y, T)+ nj{elin Fr 7 (y, )}

Since



24 K. WANG AND J. YAN

yiélja[{u(yvﬂ + }}ég Frkr(y,2)} = inf ing {uly,7) + Fr—pr(y,2)}

n<k<2n : n<k<2n

= gég 1?}{4{“(%7')+F77k,7(ya$)}
n<k<2n

= Thu(zx,7),
then we have

lim Thu(z,7) = inf {u(y,7) + hr-(y,2)},
yeM

n—-+oo

thus proving the first assertion of Theorem

4.3. The limit lim, Tnu and backward weak KAM solutions. Here we
discuss the relation between the backward weak KAM solution and the limit lim,,_, 4 o Tnu.
Following Fathi [6], as done by Contreras et al. in [4], we give the definition of the
backward weak KAM solution as follows.

Definition 4.6. A backward weak KAM solution of the Hamilton-Jacobi equation
([C6) is a function u : M x S* — R! such that

(1) uis dominated by L, i.e.,
w(z,7) —uly,s) < s - (y,x), Y(x,7), (y,8) € M x st.

We use the notation u < L.
(2) For every (z,7) € M x S! there exists a curve v : (—o00,7] — M with
~(7) = = and [7] = 7 such that

u(z,7) —u(y(t), [t]) = /tT L(v(s);¥(s), 8)ds, vt € (=00,7].

We denote by S— the set of backward weak KAM solutions. Let us recall two known
results [4] on backward weak KAM solutions, which will be used later in the paper.

Lemma 4.7. Given a fized (y,s) € M x St, the function

(x,7) = hs - (y,2), (z,7) € M % St
18 a backward weak KAM solution.

Lemma 4.8. If U C S_, let u(z,7) := infyeyu(x,7) then either u = —oo or
ueS_.

We define the projected Aubry set Aj as follows:

Ao :={(z,7) € M xS* | hy o (2, 2) = 0}.
Note that Ag = LAy, where IT : TM x S* — M x S' denotes the projection and
Ay denotes the Aubry set in TM x S!, i.e., the union of global static orbits. See
for instance [I] for the definition of static orbits and more details on Ag.

From the definition of Ay, [@2) and @3], it is straightforward to show that if
(x,7) € Ao, then

(4.17) hrs(x,y) = @rs(x,y)
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for all (y,s) € M x S!. Define an equivalence relation on Ag by saying that (x,7)
and (y, s) are equivalent if and only if

(4.18) P s(2,y) + s 7 (y,2) = 0.
By ([@I7), it is simple to see that (4I8) is equivalent to

hrs(x,y) + hs +(y,x) = 0.
The equivalent classes of this relation are called static classes. Let A be the set of
static classes. For each static class I' € A choose a point (z,7) € I and let A be
the set of such points.
Contreras et al. [4] characterize backward weak KAM solutions of the Hamilton-
Jacobi equation (L)) in terms of their values at each static class and the extended
Peierls barrier. See [3] for similar results in the time-independent case.

Theorem 4.9 (Contreras et al. [4]). The map {f : A —-R' | f <L} - S_

frup(z,m) = (;ngA(f(pv 5) + hs 7 (p, 7))

is a bijection.
Now we state the last proposition of this paper.

Proposition 4.10.
{aeC(M xS",RY) | FueC(M xS',RY), u<L, a= lim T,ul=3S_.

n—-+oo

Remark 4.11. Proposition EE10 tells us two things: (i) For each u € C(M x S',Rt)
with v < L, u = limy, 4 oo T,u is a backward weak KAM solution of (CE), which
proves the second assertion of Theorem (ii) For each w € S_ there exists
W e C(M x S',RY) with @ < L such that w = lim,,_, 4 o T®. Moreover, we know
from the proof of Proposition that @ = w.

For the proof of Proposition .10, we need the following two lemmas.
Lemma 4.12. For each u € C(M x SY,RY) with u < L, if (p,s) and (q,7) are in
the same static class, then
U(p, S) + h’s,t(pa I) = u(Qa T) + h"r,t(q; I)a V(Ia t) € M X Sl'
Proof. By ([&3) and ([@I7), for each (z,t) € M x S! we have

h‘r,t(Qu :E) S T,S q,p + (I)s,t(pu :E)
= Nrs\q,P + hs,t(pa I)
q,p) + hs - (p, q) + Prlq, z)

Hencev hT,t(Qa I) = h/‘r,s(Qap) +

(4.19) u(p, s) —u(q,7) < ®;4(q,p) = hrs(q,p),

and
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(4.20) u(q,7) —u(p,s) < s -(p,q) = hs (D, q).
From (£19) and (£20) we have
u(p, s) < ulq,7) + hrs(q,p)
<u(p,s) + hs,r(p,q) + hrs(q,p)
=u(p, s).

Hence, u(p, s) = u(q,7) + hrs(q,p). Therefore, we have

u(q, T) + hT,t(qa JJ) = u(qa T) + hT,s(Qup) + hs,t(pa JI)
= U(p, S) + hs,t(pu :E)

Lemma 4.13. For each u € C(M x S',RY) with u < L, if (p,s) € Ay, then

u(p, s) = yigAfJ(U(y, 7) 4 hrs(y,p)), VreSh

Proof. Since u < L, then for each (y,7) € M x S! we have
u(p, s) —u(y,7) < ‘I%-,s(y,p) < hT,s(y,p)
and thus
u(p,s) < inf (u(y,7) + hrs(y,p)), V7€ st.
yeM

It suffices to prove that for each 7 € S, there exists y, € M such that

u(pa S) = u(yT; T) + hT,S(yTap)'

Let (p,vy,s) = I (p,s) € Ay and (y(t),%(t),[t]) = oL ,(p,vp,s), t € R be
a trajectory of the Euler-Lagrange flow. Set (y,,7) = (y(7),7), then (p,s) and
(yr,T) are in the same static class, i.e.,

(421) hs,r(pa y‘r) + hr,s(yr,p) =0.
Since u < L, then

(4.22) u(p, s) — u(yr,7) < @r 5(Yr,p) = hrs(Yr, p)
and
(423) u(yTu T) - U(Pa 3) < (I)s,‘r(pa yr) = hs,‘r(pu y‘r)

By (@21)) and ([23]), we have

(4.24) u(p,s) = w(yr,7) = ~hsr(p,yr) = hrs(yr. p).
Combining (£22)) and (@24) yields
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u(pa S) = u(yT; T) + hT,S(yTap)'
(]

Proof of Proposition [{.10} First we show that for each u € C(M x S, RY) with
u < L, & = lim,_ 10 Thu is a backward weak KAM solution of (LG). For each
(z,7) € M x S!, from Proposition L5 we have

a(z, ) = ylg{/[(u(y, T) + hrr(y,2))

= inf ’ + i hz.s ) + hsr ;
Jnf (u(y,7) + min, (hrs(8,p) + har (P, )

= 1 f i 3 + hT S 9 + hs T 9
yen (P»ISI%IEHAO (v 7) =) +(p:2)

= i (7}&5 (u(y,7) + hrs(y,p)) + hsr (P, :E))-

In view of Lemma (.13 we have

4.25 w(z,7) = min (u(p,s)+ hs(p,x)).
(4.25) (@7) = min (ulp,5) + her(p,2)

Combing Lemmas [4.7 and 4.8 we get that the function (x,7) — @(z, 7) is a back-
ward weak KAM solution.

Then we show that for each w € S_, there exists w € C(M x S*, R!) with @ < L
such that w = lim,— 400 Tp. From Theorem there exists f : A — R! with
f = L such that w(z,7) = ming, sea(f(p,s) + hsr(p,2)) for all (z,7) € M x S
and in fact, f = w|a (see [4] for details). Hence, for each (z,7) € M xS, w(z,7) =
ming, syea(w(p, s) + hs 7 (p, ). By Lemma AT2 we have

w(z,7) = min (w(p,s)+ hs (p,z)).
(p,s)€A0
Then according to Lemma [£13] we obtain

; = i inf s +hrs ) + her ;
wie,r) = min (inf (0, 7) +hes(y,0) + hor(p,)

— inf i ,T) + hrs(y,p) + hs +(p,
y1é1M (p}glenAU(w(y T) s, ) +(p,x))

= inf (w(y.m) + min, (hes(y.) + Do (p,2)))

(w(y, ) + hrr(y, 7))

inf

yeM

= lim T,w(z,1).
n—-+oo

The proof is now complete. ([

Remark 4.14. Let u € C(M xS',R') with u < L. Then we obtain a backward weak
KAM solution @ = lim,,_, o, T,u immediately from Proposition .10l Moreover,
from (£27) it is not hard to show that

(4.26) ﬁ|_,40 = u|_,40.
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Let v € C(M x SY,RY) with v < L. If u|4, # v|a,, then by @28) u # v. If
u| 4, = v|4,, then from (@25) @ = v. Based on the above arguments, we define
an equivalence relation on the set {u € C(M x S, R!) | u < L} by saying that u
and v are equivalent if and only if u|4, = v|4,. Let F be the set of the equivalent
classes. For each equivalent class A € F choose a function u € A and let F be the
set of such functions. Then in view of Proposition we have

{aeC(MxSLRY | JueF, a= lim Toul=S_.
n—-—+0o0
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