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Abstract

Self-similar solutions to the problem of a special relativistic law of

motion for thin shells of matter are calculated. These solutions rep-

resent the special relativistic generalization of momentum conservation

for the thin layer approximation in classical physics. The analytical and

numerical results are applied to Supernova Remnant 1987 A.
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1 Introduction

The study of the relativistic dynamics of thin shells of matter is a current
subject of investigation when the framework of general relativity is adopted
[1, 2, 3, 4]. Here, we will explore how the framework of special relativity
can produce a law of motion which can be compared with expansion data
of a supernova remnant (SNR). From a classical point of view, the temporal
evolution of the SNR is modelled by adopting different physical approaches
that are not invariant under relativistic transformations. As an example, a
classical analytical solution of the Sedov type [5, 6, 7] is equation (10.27) in [8]

R(t) = (
25Et2

4πρ
)1/5 , (1)

where ρ is the density of the surrounding medium which is supposed to be
constant, E is the energy of the explosion and t is the age of the SNR. In
this paper, we show that it is possible to deduce the relativistic law of mo-
tion starting from the conservation of relativistic momentum. The relativistic
equation of a SNR is deduced as a non-linear relationship between radius and
time which can be solved numerically. The self-similar relativistic solutions
are accurate for sufficiently large time after the formation of the SNR. The
theory is applied to the SNR connected with Supernova (SN) 1987A.
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2 Classical and relativistic laws of motion

The thin layer approximation in classical physics assumes that all the swept-up
gas accumulates with infinite density in a thin shell just after the shock front.
The conservation of radial momentum requires that, after the initial radius
R0,

4

3
πR3ρV =

4

3
πR3

0
ρV0 , (2)

where R and V are the radius and velocity of the advancing shock wave, ρ is
the density of the ambient medium and V0 is the initial velocity, see [9, 10]. In
classical physics, the velocity as a function of radius is:

V = V0(
R0

R
)3 , (3)

the law of motion is:

R = R0

(

1 + 4
V0

R0

(t− t0)
)

1

4

, (4)

where t is time and t0 is the initial time. In classical physics, the velocity as a
function of time is:

V = V0

(

1 + 4
V0

R0

(t− t0)
)−

3

4

. (5)

Equation (3) can also be solved with a similar solution of type R = K(t− t0)
α,

k being a constant, and the classical result is:

R =
4
√
4

4

√

β0R0
3c(t− t0)

1

4 , (6)

where β0 = V0

c
has been introduced in order to make a comparison with the

relativistic case.
Newton’s law in special relativity is:

F =
dp

dt
=

d

dt
(mV ) , (7)

where F is the force, p the relativistic momentum, m the relativistic mass, m0

the mass at rest and V the velocity, see equation (7.16) in [11]. In the case of
the relativistic expansion of a shell in which all the swept material resides at
two different points, denoted by radius R and R0, we have:

ρ4

3
πR3β√
1− β2

=
ρ4

3
πR3

0
β0

√

1− β2
0

, (8)
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Figure 1: Velocity as a function of radius when R0 = 1, c = 1, v0/c = 0.99.
(relativistic case, equation (9)) (dashed-line ) and (classical case, equation (3))
(full-line )

where β0=V0/c, β=V/c and c is the velocity of light. The velocity of the
relativistic expanding shell is:

β =
R0

3β0
√

R0
6β0

2 +R6 −R6β0

2

. (9)

Figure 1 shows the classical and relativistic behaviors of the velocity as a
function of radius R.

The previous formula can be expressed in differential form as:

√

R0
6β0

2 +R6 − R6β0

2dR = R0
3β0cdt . (10)

The integral on the lhs of the previous equation can be evaluated with a first
transformation µ = 1

R0
6β0

2 − 1

R6

0

and x = R ,

∫

√

1 + µ x6dx . (11)

A second transformation y = x6 changes the integral into:

∫

1

6

√
1 + µ y

y5/6
dy . (12)

This integral is of the same type as formula 3.194.1 in [12]

∫ u

0

xµ−1

(1 + β x)ν
dx =

uµ
2F1(µ, ν; 1 + µ; −β u)

µ
, (13)
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Figure 2: Plot of the hypergeometric function 2F1(−1/2, 1/6; 7/6; x) as a
function of x (full line) for −10 ≤ x < +1 .

where 2F1(a, b; c; z) is a regularized hypergeometric function [13, 14, 15, 12].
In our case, ν = 1

2
and µ = 1

6
. The hypergeometric function is defined by the

following power series expansion:

2F1(a, b; c ; z) =
∞
∑

n=0

(a)n(b)n
(c)nn!

zn , (14)

where (w)n is the Pochhammer symbol

(w)n = w(w + 1) . . . (w + n− 1) , (15)

(a, b, c) is a triplet of real numbers with c not belonging to the set of negative
integers and z is a real number < 1.

We are now ready to integrate formula (10 ) and the result is a non-linear
equation, FNL, in R:

FNL =

R 2F1(−1/2, 1/6; 7/6;
R6

(

−1 + β0

2
)

R0
6β0

2
)

−R0 2F1(−1/2, 1/6; 7/6;
−1 + β0

2

β0

2
)

−c(t− t0)R0
3β0 = 0 (16)

From a numerical point of view, the hypergeometric function can be evalu-
ated with the FORTRAN subroutine HYGFX extracted from [16] and a typical
plot of 2F1(1/6, 1/2; 7/6; x) is reported in Figure 2.
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Figure 3: Radius as a function of time when R0 = 1, β0 = 0.99, c = 1, (asymp-
totic relativistic case, equation (17)) (dot-dash-dot-dash line), (relativistic
case, equation (16)) (dashed-line ) and (classical case, equation (4))(full-line)

Once the hypergeometric function is implemented, we can solve the non-
linear equation (16) with the FORTRAN subroutine ZRIDDR from [17] and
a typical example is shown in Figure (3). Once a numerical expression for the
relativistic radius is obtained, we can easily obtain a velocity-time relationship
from equation (9), see Figure 4.

An approximate solution of equation 9 can be found by imposing R(t) =
k(t− t0)

α. The self-similar solutions of the relativistic case under the assump-
tion R6(1− β2

0
) ≫ R6

0
β2

0
are:

R(t) =
√
2 4

√

√

√

√

√

β0R0
3c

√

1− β0

2

4

√

(t− t0) , (17)

and

β(t) = 1/4
√
2 4

√

√

√

√

√

β0R0
3c

√

1− β0

2

(t− t0)
−3/4c−1 . (18)

3 Application to SN 1987A

The SN 1987A exploded in the Large Magellanic Cloud in 1987. The distance
of this SN is ≈ 50 kpc (163050 ly) and a detailed analysis of the distance, D,
gives D = 51.4 kpc [18] and D = 50.18 kpc [19]. After 7987 days, the diameter
of the SNR was 0.77′′ and it’s velocity ≈ 1412 km/s [20][21]. In this Section
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Figure 4: Velocity as a function of time when R0 = 1, β0 = 0.99 and c = 1. The
dashed-line represents the relativistic case, the dot-dash-dot-dash represents
the asymptotic relativistic case and the full line the classical case.

we will adopt year (yr) as a time unit and light year (ly) as a length unit; with
these natural units c = 1. The radius of the SNR after 21.86 yr is

R = r77 ×D500.61 ly , (19)

where r77 is the radius in arcsec divided by 0.77 and D50 the distance in pc
divided by 50000. Next, we attempt to evaluate the initial conditions R0 and
β0 after t = 21.86 yr and R = 0.61 ly are given. The approximate self-similar
relativistic solution for the radius as represented by equation (17) allows a
relationship to be determined between these two unknown variables,

β0 =
R4

√

R8 + 16R0
6c2t2

, (20)

and Figure 5 reports such correlated initial conditions. Figure 6 shows the
behavior of the radius as a function of time after setting initial conditions
given by equation (20) and extracting the data of SNR 1987A from Figure 2
in [21].

A further test can be done by inserting in formula (18) for the self-similar
relativistic velocity the boundary conditions used to deduce the trajectory, i.e.
R0 = 0.079, β0 = 0.95 and t = 21.86 yr; the theoretical velocity turns out to
be 2672 km

s
against the observed 1412 km

s
[21]. The proper time of the world

line is

τ − τ0 =
∫ τ

τ0

√

1− β(t)2dt . (21)
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Figure 5: Initial velocity β0 as a function of initial radius when R = 0.61 ly,
t = 21.86 yr and c = 1.

Figure 6: Radius as a function of time when R0 = 0.079, β0 = 0.95, c = 1
(asymptotic relativistic case, equation (17)) (dotted line) with the addition of
the observed radius with relative error extracted from [21]
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Figure 7: The time contraction r of the clock on the expanding surface as
a function of the decimal logarithm in laboratory time when R0 = 0.079,
β0 = 0.95 and c = 1.

This means a relativistic time contraction, r, for the clock which follows the
expansion

r =
τ − τ0
t− t0

, (22)

and Figure 7 shows such a contraction of the framework which sees the expan-
sion when the velocity is evaluated as a function of time from equation (9).

4 Conclusions

The introduction of a relativistic framework into the equation of a SNR under
the hypothesis of the thin layer approximation avoids the paradox of an initial
velocity greater than the velocity of light. The self-similar solutions for radius
and velocity, respectively eqns. (17) and (18), are found under the approxima-
tion R6(1−β2

0
) ≫ R6

0
β2

0
. The application of these new formulae to SNR1987A

produces acceptable results. The conservation of classical and relativistic mo-
mentum adopted here does not take into account the momentum carried away
by photons.
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