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1 Introduction

Our goal is to perform a two-scale analysis of waves in shallow flows, the fast
scale being locally generated by (unmodulated) periodic travelling waves de-
scribed by two parameters (for instance wavenumber and a discharge rate)
and the low scale obeying an averaged system for these parameters. In study-
ing such modulated waves our motivation is three-fold.

First, we are directly interested in a deeper understanding of such insta-
bilities and, in this sense, this work is a piece of a wider program [1, 2, 3, 10,
16, 15]. Here we describe the motion of a shallow flow down an inclined ramp
by the evolution of ph, qq, hpt, xq P R� being the fluid heigth and qpt, xq P R

the averaged horizontal momentum at time t ¡ 0 and in place x P R. The
evolution we consider is governed by the Saint-Venant equations$&% Bth� Bxq � 0Btq � Bx�q2

h
� h2

2F 2

	 � h� q2

h2
� δB2xq (1)

taking into account viscosity (δ ¡ 0, δ�1 being a Reynolds number), grav-
ity (F ¡ 0 is a Froude number) and a turbulent (quadratic) friction along
the bottom. The main (non obvious) physical flaw of this description lies
probably in the form of the viscosity term δB2xq, which should be replaced
with δBxphBxpq{hqq. But this restriction is purely motivated by writting
convenience. The full paper would translate to the more physical case and
actually even in this simplified case the only nonlinear system we solve is of
quasilinear type. Roll-waves are then depicted as periodic travelling waves
of system (1), going down with a velocity larger than sound speed. Our first
purpose is thus to investigate the behaviour of the solutions to these shallow
water equations that are low-frequency perturbations of roll-waves.

The other two motivations consider roll-waves as representative of a wider
class of periodic travelling waves. In the context of Lagrangian systems,
Whitham explained how to derive an averaged system for the slow motion
of the local parameters describing modulated periodic travelling waves [19]
(see in particular Chapter 14). In the following we will call such averaged
systems, Whitham’s systems. In the extension of the theory to a wider
class of systems, and in a more mathematical way, Serre brought to light a
direct relation between low-Floquet small eigenvalues of the original system
linearized about a given periodic travelling wave and hyperbolicity of the
Whitham’s system linearized about corresponding paremeters [18]. Since
Whitham’s systems are first order partial differential systems, this is precisely
a relation between some spectral stability of the wave one wants to modulate
and the well-posedness of the corresponding averaged system. Our goal is not
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only to extend this result to our situation (this is done in a straightforward
way, see Lemma 1) but also to go one step further by associating not only
eigenvalues but also eigenvectors (see Lemma 3). This is performed through
a comparison of a spectral Fourier analysis of the averaged Whitham’s system
and a spectral Bloch analysis of the original Saint-Venant system. Note that
this already provides us with at least a spectral validation of the Whitham’s
system.

Beyond the obvious interest of Lemma 3 by itself, it is also a key-step
for our third goal : to extend the work of Doelman, Sandstede, Scheel and
Schneider [5], performed in the reaction-diffusion context, to system (1).
Here we discuss only the inviscid part of [5] and postpone to further work
the viscous and shock (in parameters) parts. This extension will validate the
Whitham’s system at a nonlinear level, in the sense that to any solution to
the Whitham’s system, close to a given wave, one will associate a family of
(higher-order) approximate solutions, with a modulated profile coincinding
with the Whitham’s solution at the linear level (see Proposition 3), that
describes at high order a family of solutions to system (1) for asymptotically
large time (see Theorem 1). Such a kind of validation of averaged equations
has been performed in other contexts [5, 6]. We believe the main difference
between these cases and ours lies in the fact that we handle an averaged
system, our critical modes are not easily separated and we need a careful
spectral preparation before being able to follow the strategy in [5]. Lemma 3
is precisely intended to fill this gap.

Together with the usual first-order Whitham’s system (see system (44))
we have discussed up to now, we also introduce an averaged second-order
system (see system (48)), both in the derivation and in the spectral parts
of our paper. In doing so we intend both to illustrate the strength of the
spectral study through Bloch-Fourier comparison (see Lemma 4), and to
prepare further work extending the viscous part of [5] to our context.

Our paper is organized as follows. In the first section, we set notations
for the rest of this work. In the second one, we derive formally modulation
systems and explain how to compute in the low-frequency regime modulated
approximate solutions up to any order with respect to ε where ε�1 is the char-
acteristic wavelength of perturbations. Although these formal approximate
solutions are not directly related to the ones we justify in Proposition 3, their
construction shed some light on the proof of Proposition 3. Then we perform
our spectral analysis. Afterwards, assuming the needed hyperbolicity of the
Whitham’s system, we will then provide a mathematical justification of this
system in the spirit of what was done in [5] in the reaction-diffusion frame-
work. Finally we explain what are the main flaws of this justification and
what may be expected from a detailed study of the second-order modulation
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system, postponed to further work.

Acknowledgement: The authors warmly thank Arjen Doelman and Guido
Schneider for kind enlightment about [5].

2 Set-up

2.1 Existence of roll-waves

We start recalling some properties of the set of periodic travelling-wave so-
lutions to (1).

We search for a periodic travelling wave in the formph, qqpx, tq � pH,Qqpωt� kxq,
with H,Q 1-periodic functions and ω, k real numbers. Then ω is the time fre-
quency, k the wavenumber and pH,Qq should satisfy the ordinary differential
system pωH � kQq1 � 0, ωQ1 � k

�Q2

H
� H2

2F 2

�1 � H � Q2

H2
� δk2Q2. (2)

Setting c � �ω{k, the wave velocity, and integrating the first equation of (2)
as cH �Q � q yields the second order differential equation

δk2cH2 � k

�
q2

H
� H2

2F 2


1 �H � �
c� q

H


2 � 0. (3)

A first result, due to Dressler, yields the existence of inviscid roll-waves,
which are necessarily discontinuous with Lax shocks as discontinuities.

Proposition 1 (Dressler, δ � 0) Let F ¡ 2 and pk, qq P RÆ� � RÆ� fixed.
Then there exists a unique wavespeed c � c�pqq, given by

c�pqq � q
1
3

�
F

1
3 � F� 2

3

�
,

such that there is a 1-periodic solution H to (3)δ�0; and this solution is
unique (up to a translation). Moreover, the roll-wave can be alternatively
parametrized by ph�, qq with h� the non dimensional minimum fluid height
satisfying

h� ¡ 1

F
� 1

2F 2

�
1�?

1� 4F
� �: hm
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in such a way that

1

k
� Hc

F 2

» h�
h� h2 � h� 1

h2 � pF�2 � 2F�1qh� F�2
dh �: Hc

F 2
Pph�q,» 1

0

H � Hc

Fph�q » h�
h� h2 � h � 1

h2 � pF�2 � 2F�1qh� F�2
h dh �: Hc

Qph�q
Pph�q .

with Hc � pqF q 2
3 and h� uniquely determined by the Rankine Hugoniot jump

condition: h� � h� � 2

h�h� .
When δ ¡ 0 is fixed, one can prove the existence of small amplitude

continuous periodic travelling waves through a Hopf bifurcation argument.
The existence result is even better as δ Ñ 0 where the existence of large
amplitude roll-waves, close to Dressler’s roll-waves, is proved [7, 14].

Proposition 2 Let F ¡ 2 and q ¡ 0. Then for any wavespeed c such that
c�pqq   c   ch � c�pqq�Op?δq, there is a unique kpc, qq such that there is a
1-periodic solution H to (3)δ; and this solution is unique up to translation.
Moreover, for any fixed δ sufficiently small, limcÑch kδpc, qq � 0 (the contin-
uous roll-wave converges to a solitary wave).
Alternatively, for any fixed δ sufficiently small, roll-waves can be parametrized
by pk, qq; and limδÑ0 cδpk, qq � c�pqq (the continuous roll-wave converges to
a Dressler roll-wave as δ Ñ 0).

In order to get a full idea of the bifurcation scenario, the reader is referred
to [13, 12, 8] where it is described. Yet note that there the viscosity term
is really non physical and does not even provides us with the right jump
condition in the small viscosity limit. However, we believe the scenario is the
right one anyway and we check it numerically in [1, 2, 3] (with a Lagrangian
formulation).

We could work under the regime describe by Proposition 2 but we rather
choose to take as an assumption that we will work in domains where the so-
lutions to profile equation (3), identified when coinciding up to translation,
are uniquely and smoothly parametrized by pk, qq. Of course this assumption
is stronger than the mere full-rank assumption in [18]. We develop conse-
quences of this assumption at the linear level in the next subsection.

2.2 Abstract set-up

In this subsection, we set some abstract notations for the rest of the paper.
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For the sake of simplicity, let us first rewrite (1) as" Bth � Bxq � 0,Btq � BxGph, qq � Sph, qq � δB2xq (4)

where we have denoted

Gph, qq � q2

h
� h2

2F 2
, Sph, qq � h� q2

h2
. (5)

When looking for periodic travelling-wave solutions ph, qq to (4) with wavenum-
ber k P RÆ�, and frequency ω P R, one must find 1-periodic solutions pH,Qq
to pωH � kQq1 � 0, ωQ1 � k

�
GpH,Qq�1 � SpH,Qq � δk2Q2 (6)

and set ph, qqpt, xq � pH,Qqpω t � k xq. For writting convenience, from now
on we denote

GpH,Q; kq � δk2Q2 � k
�
GpH,Qq�1 � SpH,Qq (7)

and for later useBhGpH,Q; kqrf s � �k�BhGpH,Qqf�1 � BhSpH,Qqf (8)BqGpH,Q; kqrf s � δk2f 2 � k
�BqGpH,Qqf�1 � BqSpH,Qqf (9)

and BkGpH,Q; kq � δ2 kQ2 � �
GpH,Qq�1 . (10)

Denote also wave speed c as c � �ω{k. Then system (6) may be reduced
to : there exists q P R such that cH � q � q and H is a 1-periodic solution
to

kc2H 1 � GpH, cH � q; kq � 0 . (11)

We will work in a context where, once pk, qq P RÆ � R fixed, profile equa-
tion (11) possesses a 1-periodic solution for one and only one speed cpk, qq
(therefore one frequency ωpk, qq � �kcpk, qq) and, for c � cpk, qq, equa-
tion (11) possesses a unique 1-periodic solution, up to translation. Func-
tions c and ω are smooth and we also make a smooth choice of corre-
sponding solution Hpk, qq � Hp � ; k, qq. Accordingly let us also denote
Qpk, qq � Qp � ; k, qq � cpk, qqHp � ; k, qq � q. All these assumptions are of
course generic and justified at least in the small-amplitude regime.

Now differentiating equation (11) in pk, qq-variables leads to
LpkÆ, qÆq rdHpkÆ, qÆq � pk, qqs � rdωpkÆ, qÆq � pk, qqs AωpkÆ, qÆq� k AkpkÆ, qÆq � q AqpkÆ, qÆq (12)
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or alternatively to

LpkÆ, qÆq rdHpkÆ, qÆq � pk, qqs � �kÆrdcpkÆ, qÆq � pk, qqs AωpkÆ, qÆq� k rAkpkÆ, qÆq � q AqpkÆ, qÆq (13)

where LpkÆ, qÆq is the linear operator associated to the linearization of equa-
tion (11) around H � HpkÆ, qÆq, namely

LpkÆ, qÆqf � �ωpkÆ, qÆqcpkÆ, qÆqf 1 � BhGpHpkÆ, qÆq, QpkÆ, qÆq; kÆqrf s� cpkÆ, qÆqBqGpHpkÆ, qÆq, QpkÆ, qÆq; kÆqrf s
(14)

and

AωpkÆ, qÆq � �2 ωpkÆ, qÆq
kÆ HpkÆ, qÆq1 (15)� 1

kÆBqGpHpkÆ, qÆq, QpkÆ, qÆq; kÆqrHpkÆ, qÆqs
AqpkÆ, qÆq � BqGpHpkÆ, qÆq, QpkÆ, qÆq; kÆqr1s (16)

AkpkÆ, qÆq � cpkÆ, qÆq2HpkÆ, qÆq1 � BkGpHpkÆ, qÆq, QpkÆ, qÆq; kÆq (17)� ωpkÆ, qÆq
k2Æ BqGpHpkÆ, qÆq, QpkÆ, qÆq; kÆqrHpkÆ, qÆqsrAkpkÆ, qÆq � AkpkÆ, qÆq � cpkÆ, qÆqAωpkÆ, qÆq (18)� �cpkÆ, qÆq2HpkÆ, qÆq1 � BkGpHpkÆ, qÆq, QpkÆ, qÆq; kÆq .

Note that, associated to uniqueness of c once pkÆ, qÆq fixed comes the fact
that AωpkÆ, qÆq does not belong to the range of LpkÆ, qÆq acting on L2

perpRq,
the space of 1-periodic functions square-integrable on s0, 1r.

Before going on with properties of LpkÆ, qÆq, let us choose to denote, for
any function f , fÆ � fpkÆ, qÆq. Likewise, in the modulational context, once
fixed functions pk0, q0q of variables pX, T q, for any function f , we will denote
by f0 corresponding values ; for instancerL0f spy;X, T q � rLpk0pX, T q, q0pX, T qqfp � ;X, T qspyq . (19)

Coming back to LÆ, note that, due to translation invariance of equation
(11), H 1Æ belongs to the kernel of LÆ. Moreover LÆ is a Fredholm operator
with index 0. Let us denote LadpkÆ, qÆq the formal adjoint operator of LÆ and
choose HadpkÆ, qÆq in its kernel such that  HadpkÆ, qÆq;H 1Æ ¡ � 1 (20)

where   � ; � ¡ is the scalar product on L2
perpRq, namely, for f, g P L2

perpRq,  f ; g ¡ � » 1

0

f g .
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Then, for any function f belonging to L2
perpRq, f belongs to the range of LÆ

on L2
perpRq if and only if   HadÆ ; f ¡ � 0 . (21)

And we may define in a unique way an inverse

L�1pkÆ, qÆq : tHadÆ uK ÝÑ tHadÆ uK .

In the following, L�1Æ will always be meant to be defined in this way.
We will also need a projection on the range of LÆ. This may be done in

a natural way by defining

ppkÆ, qÆqf �   HadÆ ; f ¡  HadÆ ;AωÆ ¡ and ΠpkÆ, qÆqf � f � pÆpfqAωÆ . (22)

Then, for any f in L2
perpRq, equation

LÆh � wAωÆ � f

has a solution h P L2
perpRq if and only if w � �pÆpfq, and in this case a

solution may be defined in a unique way by h � L�1Æ ΠÆf , and any solution
may be written in a unique way

h � L�1Æ ΠÆf � αH 1Æ
with α P R.

More generally note that, for any f in L2
perpRq, equation

LÆh � kAkÆ � qAqÆ � wAωÆ � f

has a solution h P L2
perpRq if and only if

w � dωÆpk, sq � pÆpfq
and in this case a solution may be defined in a unique way by

h � dHÆpk, qq � L�1Æ ΠÆf ,

and any solution may be written in a unique way

h � dHÆpk, qq � L�1Æ ΠÆf � αH 1Æ
with α P R.
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Likewise, for any f in L2
perpRq, equation

LÆh � k rAkÆ � qAqÆ � wAωÆ � f

has a solution h P L2
perpRq if and only if

w � �kÆdcÆpk, sq � pÆpfq
and in this case a solution may be defined in a unique way by

h � dHÆpk, qq � L�1Æ ΠÆf ,

and any solution may be written in a unique way

h � dHÆpk, qq � L�1Æ ΠÆf � αH 1Æ
with α P R.

For later use, we will denote

KpkÆ, qÆq � L�1Æ ΠÆ . (23)

As we will also have to solve equations like h1 � f for some f in L2
perpRq,

it is worthwhile to note that this can be done in L2
perpRq if and only if  f ¡ :� » 1

0

f � 0

and a solution may be defined in a unique way by

hpyq � » y

0

f �: Ipfqpyq . (24)

Correspondingly, two more functions of pk, qq will play a major role in the
modulation analysis:

Mpk, qq � » 1

0

Hpy; k, qqdy , Npk, qq � cpk, qqMpk, qq � q . (25)

Note that, whereas we made some choice in the parametrization of solutions
Hpk, qq, functions M and N do not depend on this choice.

Besides the assumption of smooth parametrization by pk, qq, we will al-
most always work with pk, qq such thatBqMpk, qq � 0 (26)
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which may be seen to hold both in small-amplitude and small-viscosity
regimes. At last, let us say that we will also assumeBkcpk, qq � 0 and Bqcpk, qq � 0 . (27)

The first part is motivated by the fact that sometimes we will switch to apc, qq-parametrization and for this purpose we will need such an assump-
tion but of course this assumption can be removed when we work with the
usual pk, qq-parametrization. The second part is intended to simplify some
discussions when solving linearized equations, and is not crucial.

3 Formal derivation of modulation systems

3.1 First order Whitham’s equations

We follow the method proposed by Serre [18] to derive Whitham’s equations
and first introduce rescaled variables pX, T q � pεx, εtq. This yields# BTh � BXq � 0 ,BTq � BXGph, qq � Sph, qq

ε
� ε δB2Xq .

(28)

We then search for an expansion of ph, qq in the formph, qq � 8̧
i�0

εiphi, qiq�φpX, T q
ε

;X, T



,

with phi, qiq 1-periodic in their first argument y P R. Identifying Op1
ε
q terms,

one finds" BTφ Byh0 � BXφ Byq0 � 0,BTφ Byq0 � BXφ By�Gph0, q0q� � Sph0, q0q � δpBXφq2B2yq0.
Let us denote kpX, T q � BXφpX, T q, ωpX, T q � BTφpX, T q and c � �ω

k
so

that k is the local wavenumber, ω the local frequency and c the local wave
speed. The previous system is solved by

cpX, T q � cpkpX, T q, qpX, T qq, ωpX, T q � ωpkpX, T q, qpX, T qq
and ph0, q0qpy;X, T q � pH,Qqpy; kpX, T q, qpX, T qq, where qpX, T q is a local
discharge rate. Note that φ may be recovered from k and q if and only ifBTk � BX pk cpk, qqq � 0. (29)
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We further identify Op1q terms in (28). On the one hand, the mass
conservation law yieldsBypωpk, qqh1 � kq1q � ��BTh0 � BXq0�.
This equation has a solution if and only ifBT   h0 ¡ �BX   q0 ¡ � 0 . (30)

Using the fact that c h0�q0 � q, equation (30) can be equivalently written
as BT pMpk, qqq � BXpNpk, qqq � 0 , (31)

where M and N are defined in (25). The system (29,31) forms the system
of Whitham’s equations. Assumption (26) is equivalent to this system being
of evolution-type for pk, qq. This is a first order differential system of partial
differential equations: in what follows , we will study the hyperbolicity of
such a system and relate the hyperbolicity to the stability of roll-waves in
the small wavenumber regime. We will use this set of equations to construct
approximate solutions to the full shallow water system in the neighbourhood
of roll-waves on asymptotically large time intervals.

3.2 Higher order approximations

In the following, we show how to construct a higher-order approximation of
solutions to (28): for that purpose, we need also to expand the phase φ with
respect to ε just as in a classical WKB-type calculation. Solutions ph, qq to
(28) are then expanded in the formph, qq � 8̧

i�0

εiphi, qiq�φpX, T q
ε

,X, T



, φpX, T q � 8̧

j�0

εjφjpX, T q.
with phi, qiq 1-periodic in their first argument y P R. Identifying Opε�1q still
yields a differential system in the form" BTφ0 Byh0 � BXφ0 Byq0 � 0,BTφ0 Byq0 � BXφ0 By�Gph0, q0q� � Sph0, q0q � δpBXφ0q2B2yq0.
As previously, we set

k0 � BXφ0, ω0 � BTφ0, c0 � �ω0

k0
.
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There must be some q0 such that c0h0pyq � q0pyq � q0. This yields

ω0 � ωpk0, q0q, c0 � cpk0, q0q
and the profile equation in the y-variable

k0c
2
0Byh0 � Gph0, c0h

0 � q0; k0q � 0

solved by h0py;X, T q � Hpy; k0, q0q. As already mentioned, the compatibil-
ity condition BTBXφ0 � BXBTφ0 yields an evolution equation for the local
wavenumber k0: BTk0 � BX�k0c0� � 0 . (32)

Next, we identify Op1q terms. First, we consider the mass conservation law:Bypc0 h1 � q1q � 1

k0
pBTh0 � BXq0q � 1

k0
pBTφ1 � c0BXφ1qByh0.

Note that the expansion of φ with respect to ε yields a new term that does
not change the other compatibility conditionBTM0 � BXN0 � 0.

However the presence of this extra term will be necessary in order to com-
pute an approximation to the next order of the solution to the Saint-Venant
equations. Integrating this equation with respect to y yields

c0h
1 � q1 � 1

k0

�BT IpH0q � BXIpQ0q�� pω1 � c0k1qH0

k0
� q1, (33)

where q1 is a constant of integration depending on pX, T q which plays the
role of a correction to the relative discharge rate q0, I was defined in (24)
and

ω1 � BTφ1, k1 � BXφ1. (34)

There remains to determine h1, φ1. For that purpose, we consider the mo-
mentum equation to order Op1q. This yields

L0h
1 � k1A

k
0 � q1A

q
0 � ω1A

ω
0 � R0 (35)

with R0 a function that depends only on H0, k0, q0 and is defined as

R0�BTQ0 � BXrGpH0, Q0qs � δ BXrk0ByQ0s � δ k0BypBXQ0q (36)

c0ByrBT IpH0q � BXIpQ0qs � 1

k0
BqGpH0, Q0; k0qrBT IpH0q � BXIpQ0qs .
12



Then equation (35) has a solution if and only if

ω1 � dω0pk1, q1q � � p0pR0q (37)

where p is the function defined in (22). Once again, in order to recover φ1

from k1 and ω1, one must imposeBTk1 � BXrdω0pk1, q1qs � �BXrp0pR0qs . (38)

With our choice for ω1, equation (35) may be solved by

h1 � dH0pk1, q1q � K0R0, (39)

K being the operator defined in (23). We still need an equation to couple
with (38) in order to determine pk1, q1q: this is done by considering the mass
conservation law to order Opεq. One findsBypc0h2 � q2q � 1

k0

�pBTh1 � BXq1q � Byp. . .q�. (40)

This equation has a solution provided thatBT   h1 ¡ �BX   q1 ¡� 0. (41)

Combining (82), (37) and (39) yieldsBT pdM0pk1, q1qq � BX pdN0pk1, q1qq� �BT   K0R0 ¡ �BX   c0K0R0 ¡ �BX �
M0

k0
p0pR0q
� BX �

1

k0
pBT   IpH0q ¡ �BX   IpQ0q ¡q
 .

(42)

The system (38, 42) on pk1, q1q is linear hyperbolic provided that the nonlin-
ear system (29, 31) is hyperbolic and this former hyperbolicity is discussed
in the next section. Under the assumption of hyperbolicity, we can com-
pute pk1, q1q. Then, h1, q1, φ1 are fully determined by ph0, q0, φ0q. The next
steps are done similarly: assume that we have determined phi, qi, φiqi¤n and
let us compute phn�1, qn�1, φn�1q. First, we determine qn�1 as a function
of hn�1, φn�1, phi, qi, φiqi¤n and a y-independent qn�1 with the help of an
equation similar to (40). Indeed, this equation has a solution due to the
compatibility condition similar to (41) with phn, qnq replacing ph1, q1q. Then,
one inserts the expansion of qn�1 into the momentum equation written at
order Opεnq. This yields an equation in the form

L0h
n�1 � kn�1A

k
0 � qn�1A

q
0 � ωn�1A

ω
0 �Rn,

13



with Rn a function of phi, qi, φiqi¤n and kn�1 � BXφn�1, ωn�1 � BTφn�1. This
equation has a solution provided that

ωn�1 � dω0pkn�1, qn�1q � � p0pRnq .
This yields an evolution equation for kn�1. Then one can solve the equation
on hn�1 by setting

hn�1 � dH0pkn�1, qn�1q � K0Rn .

One finishes the construction at the pn�1q-step by writing the compatibility
condition BT   hn�1 ¡ �BX   qn�1 ¡� 0

which provides pkn�1, qn�1q with an equation similar to (42) for pk1, q1q. As
a consequence, we build pkn�1, qn�1q by solving a linear hyperbolic system.
This gives a full description of an approximate solution of order Opεn�1q and
completes the construction of approximate solution to (28) up to any order
with respect to ε.

In another section, we will rigorously validate this formal construction
and use its principle to justify modulation system (29, 31).

3.3 Two modulation systems

In this subsection we extract from the analysis of previous subsections two
nonlinear systems for local wavenumber and local discharge rate pk, qq that
we think of great importance for the understanding of low-frequency pertur-
bations of periodic travelling-wave solutions.

First, equations (29, 31) form the Whitham’s averaged system for the
system (1) : " BTk � BXrωpk, qqs � 0BT rMpk, qqs � BXrNpk, qqs � 0

(43)

which stays unchanged when coming back to physical variables px, tq by set-
ting pk, qqpx, tq � pk, qqpεX, εT q:" Btk � Bxrωpk, qqs � 0BtrMpk, qqs � BxrNpk, qqs � 0 .

(44)

From (26) may be seen that this system is of evolution type. Note that,
though this system does not contain second order terms, the presence of
a viscosity in system (1) was proeminent in order to obtain it. Moreover,
whereas working with a realistic viscosity term would not have changed the
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form of the system (and the definition of M , N and ω), it may indeed have
changed the actual values of M ,N and ω.

Concerning the well-posedness of system (43), the best one can expect
is that the system is hyperbolic and thus possesses local-in-time smooth
solutions. In the next section, we will connect this hyperbolicity to the
spectral stability of periodic travelling-wave solutions to system (1) under
low-frequency perturbations. Then, under this spectral stability assumption,
we will validate system (43) by proving that any smooth solution to (43)
describes at first order an ε-family of modulated true solutions to (1) on
asymptotically large time.

To be able to go beyond the shock formation in finite time for solutions
to (43), we derive now a second-order modulation system. This will be done
by combining (38, 42) and (29, 31). In order to do so, let us rewrite (36) as

R0 � BT,kpk0, q0q BTk0 � BX,kpk0, q0q BXk0� BT,qpk0, q0q BTq0 � BX,qpk0, q0q BXq0
where BT and BX are defined by

BT pkÆ, qÆqpk, qq � r2cÆdHÆ � dcÆHÆs pk, qq� 1
kÆ BqGpHÆ, QÆ; kÆqrIpdHÆpk, qqqs � q

(45)

and

BXpkÆ, qÆqpk, qq � 1
kÆBqGpHÆ, QÆ; kÆqrIpHÆqsdcÆpk, qq� rcÆHÆ � BqGpHÆ, QÆqHÆ � 2δkÆH 1ÆsdcÆpk, qq� rc2ÆdHÆ � dGpHÆ, QÆqpdHÆ, cÆdHÆq � 2δkÆcÆdH 1Æs pk, qq� cÆ
kÆBqGpHÆ, QÆ; kÆqrIpdHÆpk, qqqs � δ cÆH 1Æ k� �
cÆ � 1

kÆBqGpHÆ, QÆ; kÆqrIp1qs � BqGpHÆ, QÆq� q .

(46)
Then, at order Opε2q, the pair pk, qq � pk0, q0q � εpk1, q1q satisfies$''''''''''''''''&''''''''''''''''%

BTk � BXrωpk, qqs � �δ BX pppk, qqrBT pk, qqBT pk, qqsq� δ BX pppk, qqrBXpk, qqBXpk, qqsqBT rMpk, qqs � rBXNpk, qqs � �δ BX �
Mpk,qq

k
ppk, qqrBT pk, qqBT pk, qqs	� δ BX �

Mpk,qq
k

ppk, qqrBXpk, qqBXpk, qqs	� δ BX �
1
k
  IpdHpk, qqBT pk, qqq ¡�� δ BX �

1
k
  IpdQpk, qqBXpk, qqq ¡�� δ BT p  Kpk, qqrBT pk, qqBT pk, qqs ¡q� δ BT p  Kpk, qqrBXpk, qqBXpk, qqs ¡q� δ BX pcpk, qq   Kpk, qqrBT pk, qqBT pk, qqs ¡q� δ BX pcpk, qq   Kpk, qqrBXpk, qqBXpk, qqs ¡q

(47)
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which in physical variables turns into$''''''''''''''''&''''''''''''''''%
Btk � Bxrωpk, qqs � �Bx pppk, qqrBT pk, qqBtpk, qqsq� Bx pppk, qqrBXpk, qqBxpk, qqsqBtrMpk, qqs � rBxNpk, qqs � �Bx �Mpk,qq

k
ppk, qqrBT pk, qqBtpk, qqs	� Bx �Mpk,qq

k
ppk, qqrBXpk, qqBxpk, qqs	� Bx � 1

k
  IpdHpk, qqBtpk, qqq ¡�� Bx � 1

k
  IpdQpk, qqBxpk, qqq ¡�� Bt p  Kpk, qqrBT pk, qqBtpk, qqs ¡q� Bt p  Kpk, qqrBXpk, qqBxpk, qqs ¡q� Bx pcpk, qq   Kpk, qqrBT pk, qqBtpk, qqs ¡q� Bx pcpk, qq   Kpk, qqrBXpk, qqBxpk, qqs ¡q .

(48)
In the next section, we will connect the issue of the well-posedness of sys-
tem (48) with some second-order properties of spectral stabilty of periodic
travelling-wave solutions to system (1) under low-frequency perturbations.
However we postpone nonlinear validation of this second-order modulation
system to further work. Nevertheless in the last section we do explain what
gain may be expected from its sudy.

4 Spectral validation of modulation systems

In this section, we carry out a spectral validation of systems (44) and (48)
by connecting their spectral properties to spectral properties of system (1)
in the low-frequency regime.

Let us fix pkÆ, qÆq P RÆ�R. Linearization will be performed for modulation
systems around pkÆ, qÆq, and correspondingly for the Saint-Venant equations
around pHÆ, QÆq. Moreover, as it is classical when studying the stability of
a travelling wave, we will work in a co-moving frame, either px � cÆt, tq orpkÆx� ωÆt, tq.
4.1 The Whitham’s system and Evans function

In this subsection, we show that the dispersion relation that determines the
hyperbolicty of the Whitham’s equations provides the principal part of the
expansion of the Evans function, associated to the spectral stability of roll-
waves. Namely we prove the following lemma.

Lemma 1 There is a Γ � 0 such that

Epλ, eνq p0,0q� ΓDpλ, νq � O
�p|λ| � |ν|q3�
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where E is the Evans function associated to the Saint-Venant equations (see
(56) below) and D is the dispersion of the Whitham’s system (see (52) below).

For that purpose, we follow the computation carried in [16] and consider a
parametrization of viscous roll-waves by pc, qq rather than pk, qq. The equiv-
alence between the two parametrizations relies on assumption (27). This
assumption is fulfilled on the small-amplitude regime but degenerates in the
small-viscosity limit. We will work right here in regimes where the assump-
tion holds ; however note that some information may be obtained directly inpk, qq-variables as we will show with the Bloch analysis of the last subsection
of this section.

In this subsection let us then denote Lpc, qq P RÆ a period and Hp � ; c, qq
a Lpk, qq-periodic function such that HpL � ; c, qqq is a 1-periodic solution to

(3) with k � rLpc, qqs�1. Accordingly Mpc, qq � 1
Lpc,qq ³Lpc,qq0

Hpy; c, qqdy and
more generally   f ¡L � 1

L

» L

0

f . (49)

Since we are working with continuous roll-waves, we may choose a para-
metrization of H such that Hp0; c, qq � Mpc, qq. Recall that this does not
change the Whitham’s system. This sligthly simplifies computations since
then

dM � ��M

L
� HpLq

L

�
dL�   dH ¡L �   dH ¡L .

Writting (44) in frame px� cÆt, tq and linearizing yields

dLÆ Btpc, qq � LÆBxc � 0,  dHÆ ¡LÆ Btpc, qq � MÆBxc� Bxq � 0.
(50)

or equivalently

dLÆ Btpc, qq � LÆBxc � 0,�  dHÆ ¡LÆ �MÆ
LÆ dLÆ� Btpc, qq � Bxq � 0.

(51)

Searching for solutions in the form eλt�kÆνxpc1, q1q, with pc1, q1q constant and
non-zero and pλ, νq P C � iR, yields dispersion relation 0 � Dpλ, νq where

Dpλ, νq :� λ2 pBcLÆ   BqHÆ ¡LÆ �BqLÆ   BcHÆ ¡LÆq�λν �BcLÆ
LÆ �   BqHÆ ¡LÆ �MÆBqLÆ

LÆ 	 � ν2 .
(52)

Now we recall the construction of the Evans function given in [16]. Writ-
ting the Saint-Venant equations in the frame px� cÆt, tq and linearizing gives
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a linear equation Btu � AÆu � 0 for u � ph, qq, whose operator AÆ has a
spectrum on L8pRq composed of λ P C such that there exist functions ph, qq
and σ P S

1 such that" Bxpq � cÆhq � λh � 0,Bx rdGpHÆ, QÆqph, qq � cÆqs � λq � dSpHÆ, QÆqph, qq � δB2xq, (53)

and pq, h, h1qpLÆq � σ pq, h, h1qp0q . (54)

Setting Y � pq, h, h1q, system (53) can be written as a first order differential
system with periodic coefficients:

Y 1 � ApλqY. (55)

Let Ψp � ;λq denote the fundamental resolvent matrix of (55). Then the Evans
function is

Epλ, σq � detpΨpLÆ;λq � σI3q. (56)

To compute an expansion of E in the neighbourhood of pλ, σq � p0, 1q, we
first choose a basis of solution to (55) for λ � 0 and then continue this basis
of solutions for small λ. We choose Y1p � ; 0q � pcÆH 1Æ, H 1Æ, H2Æ q and Y3p � ; 0q �pcÆBqHÆ � 1, BqHÆ, BqH 1Æq. Note that Y1 and Y2 are indeed independent. For
Y2p � ; 0q, any choice completing the basis would do. But in order to compare
with [16] let us choose Y2p � ; 0q � pcÆh2, h2, h

1
2q where h2p � ; 0q is a function

such that h2pLÆ � ; 0q belongs to the kernel of LÆ on L8pRq, provided by
the Floquet analysis of profile equation (3), being associated to the Floquet
multiplyier ρ   1 given by

ρ � exp

�
1

δcÆ » LÆ
0

dGpHÆ, QÆqp1, cÆq � c2Æ
 .

These eigenvectors can be continued analytically with respect to λ.
Let us denote, for any function f, rf sσ � fpLÆq � σfp0q and rf s � rf s1,

and perform the expansionpqjpλq, hjpλqq �
ļPN λlpqlj , hl

jq .
Integrating (53)1 and performing the line substitution L1� cÆL2 Ñ L1 gives

∆0pλqEpλ, σq� ���������λ » LÆ
0

hjpλq � pσ � 1qqjpλqrhjpλqsσrhjpλq1sσ ��������
1¤j¤3
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with ∆0pλq � detpY1p0;λq, Y2p0;λq, Y3p0;λqq and qjpλq some constants such
that

cÆhj � qj � λIphjq � qj .

Note that q1p0q � q2p0q � 0 and q3p0q � 1. Now, expanding qjpλq �°
lPN λlqlj and looking at (53)2, one finds

LÆrh1
1pLÆ � ; 0qs � �LÆrBcHÆpLÆ � qs � pq11 �HÆp0qqLÆrBqHÆpLÆ � qs.

Therefore there are α, β such that

h1
1 � �BcHÆ � pq11 �HÆp0qqBqHÆ � αh0

1 � βh0
2 .

As a consequence, after column substitution C1�λβC2�λpq11�HÆp0qqC3 Ñ
C1, comes

∆0p0qEpλ, σq � ��������λ2

» LÆ
0

BcHÆ � λpσ � 1qHÆp0q �λ ³LÆ0
h0
2 �λ ³LÆ0

BqHÆ � σ � 1�λ rBcHÆs � pσ � 1qh0
1p0q rh0

2s rBqHÆs�λ rBcH 1Æs � pσ � 1qh0
1
1p0q rh0

2
1s rBqH 1Æs ��������� O

�p|λ| � |σ � 1|q3	.
Differentiating HpLpc, qq, c, qq � Hp0, c, qq and H 1pLpc, qq, c, qq � H 1p0, c, qq
with respect to pc, qq leads torBcHÆs � �BcLÆH 1Æp0q, rBcH 1Æs � �BcLÆH2Æ p0q,rBqHÆs � �BqLÆH 1Æp0q, rBqH 1Æs � �BqLÆH2Æ p0q,
(whereas rh0

2s � pρ � 1qh2p0; 0q and rh0
2
1s � pρ � 1qh2

1p0; 0q). This is now a
straightforward computation to show that for some Γ � 0

Epλ, eνq � ΓDpλ, νq � O
�p|λ| � |ν|q3� .

Remark: the expansion of the Evans function found here is slightly different
from the one derived in [16]: this latter one is not correct because of an
uncorrect expansion of rq1pλq�cÆh1pλqs�p1�σqpq1�cÆh1qp0;λq with respect
to λ.

For the sake of completeness, in an appendix, we provide a more geometric
description of this subsection that makes it more comparable with [18].
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4.2 Formal asymptotics in the Whitham’s system

To make some direct formal use of Lemma 1, in this subsection we study
formally the hyperbolicity of (44) in the regime of small viscosity, δ Ñ 0, that
is when viscous roll-waves are close to Dressler roll-waves. For that purpose,
we use ph�, qq-parametrization (as in Proposition 1) and will suppose that
all concerned quantities are regular with respect to pδ, h�, qq. Moreover, we
write equations in the reference co-moving frame px � cÆt, tq. One obtains
asymptotically

HcpqÆq
F 2

P 1Æ Bth� � H 1
cpqÆq
F 2

PÆ Btq � LÆc�1pqÆq Bxq � 0,

HcpqÆq�Q

F


1Æ Bth� � H 1
cpqÆq�Q

F


Æ Btq � pMÆc�1pqÆq � 1q Bxq � 0.

so that ph�, qqpxq � eνxp1, 0q defines a solution for any ν. Therefore 0 is
always a trivial eigenvalue and the 2 � 2-system is always hyperbolic. The
Whitham’s system being always hyperbolic in the vanishing viscosity limit
δ Ñ 0, one can expect, using a pertubation argument, that the Whitham’s
equations are hyperbolic for δ ¡ 0 sufficiently small. This is in contrast
with the results of Boudlal and Liapidevskii [4] that suggested that inviscid
roll-waves are stable under long wavelength perturbation (in the sense that
the Whitham’s system is hyperbolic) only for roll-waves of limited periods.
This discrepancy may come from the fact that the modulation procedure was
not carried out properly in [4]. Besides, the formal asymptotics carried out
here confirms formally the spectral analysis of inviscid roll-waves performed
rigorously in [15].

Let us emphasize that trivial hyperbolicity in the formal asymptotic sys-
tem comes from the fact that wave speed c does not depend on k (nor on
h�) but only on q.

In contrast, a discussion in the neighbourhood of Hopf’s bifurcation points
using a perturbation argument from the constant case would show instabil-
ity (see [3]). Yet, some numerical evidence shows that somewhere between
bifurcation points and limiting homiclinics there are some stable roll-waves
and that, in the weak stable sense of hyperbolicity of the Whitham’s system,
roll-waves are even stable up to the homoclinic travelling-waves. A detailed
discussion of these former points (instablity close to bifurcation, numerical
check of stability for roll-waves) may be found in [1, 2, 3].

4.3 Second-order modulation and Bloch-wave analysis

In this subsection, we validate spectral properties of (48) by a spectral Bloch-
wave analysis of (1). Also we obtain relations between eigenvectors of the
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Saint-Venant system and those of the modulation systems (both (44) and
(48)).

We are thus lead to perform a Bloch study of the operator AÆ, defined as

AÆph, qq � �
kÆBypcÆh � qqBhGÆrhs � BqGÆrqs � ωÆByq 


. (57)

Yet, the reader is referred to next section for a definition of the Bloch trans-
form. Let us only introduce, for l P r�π, πs, the operator qAÆplq acting on
L2
perpRq and defined byr qAÆplqpfqspyq � e�ilyrAÆpeil�fp�qqspyq .
The following lemma is a version of Lemma 2.1 in [10], stated for the

Saint-Venant equations in Lagrangian coordinates and used to prove that,
for viscous roll-waves, linear stability implies nonlinear stability.

Lemma 2 The critical eigenvalues λj, j � 1, 2 of qAÆ are analytic functions
of the Floquet number l.

The Jordan structure of the zero eigenspace of qAÆp0q � AÆ consists of a
1-dimensional kernel and a single Jordan chain of height 2. The left kernel
of AÆ is spanned by the constant function p1, 0q and pH 1Æ, Q1Æq spans the right
eigendirection lying at the base of the Jordan chain.

Moreover, for |l| sufficiently small, there exist dual right and left eigen-

functions wjp�, lq and w̃jp�, lq of qAÆplq associated with λjplq, for j � 1, 2, of
form

wj � 2̧

k�1

βj,kvk , w̃j � 2̧

k�1

β̃j,kṽk

where

• pvkqk�1,2 and pṽkqk�1,2 are dual bases of the total eigenspace of qAÆplq
associated with small eigenvalues, analytic in l, and such that

ṽ2p�, 0q � p1, 0q , v1p�, 0q � pH 1Æ, Q1Æq ;
• pl�1β̃j,1plq, β̃j,2plqq, j � 1, 2, and plβj,1plq, βj,2plqq, j � 1, 2 are analytic
in l.

The role of p1, 0q is a direct consequence of the fact that the first equation
of the Saint-Venant system is a conservation law. As already pointed out,
the role of pH 1Æ, Q1Æq stems form translational invariance of system (1). The
rest of the lemma, the analyticity issue, may be obtained in a standard way
(see [10]) and is directly related to the existence of an averaged modulation
system.

We come to the main part of this subsection.
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Lemma 3 For j � 1, 2,

wjp�, lq � 1

il

�
k0
j � ilk1

j

���� 1

kÆH 1Æ � ilBkHÆ
1

kÆQ1Æ � ilBkQÆ �Æ� q0j

� BqHÆBqQÆ 
 �Oplq
with pk0

j , q
0
j q the first term in a low-frequency expansion of a corresponding

eigenvector of the linearized Whitham’s system. Thereby v1 and v2 may be
choosed so that

v1p�, lq � ��� 1

kÆH 1Æ � ilBkHÆ
1

kÆQ1Æ � ilBkQÆ �Æ�Opl2q, v2p�, lq � 1BqMÆ � BqHÆBqQÆ 
�Oplq.
Lemma 4 For j � 1, 2,

λjplq � µjplq � Opl3q
where µjplq is a Fourier eigenvalue of system (48) corresponding to fre-
quency l.

Lemma 3 is a consequence of the proof of Lemma 4, so we focus on the
proof of the latter. Moreover, we choose to write this proof in a wave analysis
spirit. Lemma 4 also comes with a better description of critical eigenvectors
but we do not write it here.

Writting (48) in frame pkÆx � ωÆt, tq and linearizing yields, after some
simplification in the second equation with help of the first one,$''''''''''&''''''''''%

Btk � k2ÆdcÆBxpk, qq � � kÆBx ppÆrBT,ÆBtpk, qqsq� kÆBx �pÆrkÆ rBX,ÆBxpk, qqs	
dMÆBtpk, qq � MÆ

kÆ Btk� kÆBx � 1
kÆ   IpdHÆBtpk, qqq ¡	 � kÆBx � 1

kÆ   IpkÆHÆq ¡ dcÆBxpk, qq	� kÆBx � 1
kÆ   kÆIp1q ¡ Bxq	� Bt p  KÆrBT,ÆBtpk, qqs ¡q � Bt �  KÆrkÆ rBX,ÆBxpk, qqs ¡	

(58)
with rBX,Æ � BX,Æ � cÆBT,Æ . (59)

Looking for solutions of type eλt�νxpkpνq, qpνqq with constant pkpνq, qpνqq
expanded into

°
lPN νlpkl, qlq, one finds at order Opp|λ| � |ν|q2q

λ

�
1 0BkMÆ � MÆ

kÆ BqMÆ ��
k0

q0


� kÆν � kÆBkcÆ kÆBqcÆ
0 �1 ��

k0

q0


 � �
0
0



.
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From (26) stems that λ � 0 is the unique eigenvalue corresponding to ν � 0.
We now write

λ � kÆνλpνq, λpνq �
ļPN νlλl

to get further information.
With this notations, we obtain

λ0

�
1 0BkMÆ � MÆ

kÆ BqMÆ ��
k0

q0


 � �
kÆBkcÆ kÆBqcÆ

0 �1 ��
k0

q0


 � �
0
0



.

Naturally we recover the same dipersion relation as for (44), thus spectral
Bloch-wave validation of (48) contains some spectral validation of (44).

At next order, holds$'''''''&'''''''%
λ1k0 � λ0k1 � kÆdcÆpk1, q1q� �kÆpÆr�λ0BT,Æ � rBX,Æ	 pk0, q0qs
λ1dMÆpk0, q0q � λ0dMÆpk1, q1q � λ1MÆ

kÆ k0 � λ0MÆ
kÆ k1� kÆ �λ0

kÆ   IpdHÆpk0, q0qq ¡	� kÆ �λ0

kÆ   IpHÆq ¡ k0

kÆ	�kÆ � 1
kÆ   Ip1q ¡ q0

	 � kÆλ0

�  KÆr�λ0BT,Æ � rBX,Æ	 pk0, q0qs ¡	
since

λ0k0 � kÆdcÆpk0, q0q � 0 . (60)

Moreover, using again (60), one may obtain�
λ0BT,Æ � rBX,Æ	 pk0, q0q� r�c2ÆdHÆ � dGpdHÆ, cÆdHÆq � 2δkÆdH 1Æs pk0, q0q� δcÆH 1Æk0 � �

1
kÆ BqGpHÆ, QÆ; kÆqrIp1qs � BqGpHÆ, QÆq� q0� λ0 k0

kÆ � 1
kÆBqGpHÆ, QÆ; kÆqrIpHÆqs � BqGpHÆ, QÆqHÆ � 2δkÆH 1Æ�� λ0

�
2cÆdHÆ � 1

kÆBqGpHÆ, QÆ; kÆqrIpdHÆqs� pk0, q0q� λ0q0 � pλ0q2 k0
kÆHÆ� B0Æpk0, q0q � λ0B1Æpk0, q0q � pλ0q2B2Æpk0, q0q � BÆrλ0spk0, q0q .

We now carry out a spectral Bloch-wave analysis of system (1). Writting
the system in frame pkÆx� ωÆt, tq and linearizing gives" Bth � kÆBxpcÆh� qq,Btq � �ωÆBxq � BhGpHÆ, QÆ; kÆqrhs � BqGpHÆ, QÆ; kÆqrqs (61)

that is Btph, qq � AÆph, qq .
23



We look for solutions to (61) in the form eλt�νxphνpxq, qνpxqq with phν , qνq
1-periodic functions. We are only interested in spectrum near pλ, νq � p0, 0q.
Therefore we set

λ � kÆνλpνq, λpνq �
ļPN νlλl

and phν , qνq �
ļPN νlphl, qlq .

First, there must be q P R such that cÆh0 � q0 � q0 and then

LÆh0 � qAqÆ � LÆBqHÆ � qBqωÆAωÆ
which in turn imposes q � 0 (since BqωÆ � 0). Hence there is k0 P RÆ such
that

h0 � k0

kÆH 1Æ, q0 � cÆh0 � k0

kÆH 1Æ .
Now there is q0 P R such that

cÆh1 � q1 � q0 � λ0 k
0

kÆHÆ
and then

LÆh1 � k0 rAkÆ � q0AqÆ � λ0 k0AωÆ .

This forces
λ0 k0 � kÆdcÆpk0, q0q � 0 (62)

and the existence of k1 P R such that

h1 � dHÆpk0, q0q � k1

kÆH 1Æ .
Then equationBxpcÆh2 � q2q � �pcÆh1 � q1q � λ1h0 � λ0h1

implies
cÆ   h1 ¡ �   q1 ¡ � λ0   h1 ¡

thus

λ0

�
dMÆpk0, q0q � MÆ

kÆ k0


 � q0 � 0 . (63)

Note that equations (62,63) already provides a first-order spectral justifica-
tion. Moreover there exists q1 P R such that

cÆh2 � q2 � q1 � q0Ip1q � λ0 k0

kÆ IpHÆq� λ1 k0

kÆHÆ � λ0 k1

kÆHÆ � λ0 IpdHÆpk0, q0qq .
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Now
LÆh2 � k1 rAkÆ � q1AqÆ � pλ1 k0 � λ0 k1qAωÆ � R1

with
R1 � kÆBÆrλ0spk0, q0q .

This sets

λ1 k0 � λ0 k1 � kÆdcÆpk0, q0q � �kÆpÆrBÆrλ0spk0, q0qs . (64)

Moreover there exists k2 such that

h2 � dHÆpk1, q1q � KÆR1 � k2

kÆH 1Æ .
Now equation

cÆ   h2 ¡ �   q2 ¡ � λ0   h2 ¡ � λ1   h1 ¡
leads to

λ1dMÆpk0, q0q � λ0dMÆpk1, q1q � λ0   KÆBÆrλ0spk0, q0q ¡� λ1MÆ
kÆ k0 � λ0MÆ

kÆ k1 � q1 � λ0   IpdHÆpk0, q0qq ¡� λ0   IpHÆq ¡ k0

kÆ � q0   Ip1q ¡ (65)

which completes our spectral justification.
Indeed writting a linear system for pk0, q0q � νpk1, q1q, which is non-zero,

leads to the same dispersion relation for λ0 � νλ1 in both cases.
Let us comment somewhat on the spectrum we just described. For ν � 0

in the Bloch-wave analysis, λ � 0 is an eigenvalue corresponding to a 2� 2-
Jordan block, with pH 1Æ, Q1Æq as an eigenvector (and 1

kÆ pBcHÆ, BcQÆq as its
antecedent in the pc, qq-parametrization). For ν P iRÆ small, two eigenvalues
emerge from 0, tangent to the imaginary axis when hyperbolicity of (44)
is met, with first order kÆνλ0, λ0 being well-described by both modulation
systems. Curvatures of the eigenvalue curves may then be extracted from
system (48).

5 Nonlinear validation

of the Whitham’s system

In this section, we prove the existence of a family of solutions to the shal-
low water equations, close to a given roll-wave, converging towards a mod-
ulated roll-wave profile described at first order by a solution to the inviscid
Whitham’s system.
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Firstly we enumerate here all our assumptions. Not all of them will be re-
called in Theorem 1. Beyond the assumptions of smooth pk, qq-parametrization
and that the Whitham’s system is of evolution-type (see (26)) and hyperbolic,
we will also ask for :

• the spectrum of AÆ is of upper bounded real part ;

• for any l P r�π, πs and any cut-off parameter l1, the non critical partqAÆplqPs
fs of

qAÆplq is invertible (see (71), (72) and (73) for definitions).

We write the latter points as assumptions to emphasize what we really use
in our proof. But these former assumptions may be removed. For instance,
the upper-boundedness is a consequence of high-frequency estimates in [16].
Alternatively, invertibility assumption, as hyperbolicity, can be rigourously
reduced to numerical investigation in an explicit finite box of eigenvalue phase
space and then numerically checked with techniques in [1, 2, 3].

5.1 Spaces

Following the strategy introduced in [11] for the Ginzburg-Landau equations
and developped in [5] for reaction-diffusion systems, we will prove the con-
vergence to a roll-wave profile in a set of analytic functions. Indeed, in
the hyperbolic scaling considered here, there is no smoothing effect arising
from equations whereas, in the modulation context, some terms are neglected
precisely because they contain more derivatives. We will correspondingly re-
strict the class of admissible solutions to the Whitham’s system and to the
Saint-Venant equations.

Let a ¡ 0 and m P R�. We first introduce a space for solutions to the
Saint-Venant system. Let us define

LJ pa,mq � "
v P L1pr�π, πs, Hm

perq���� » π�π

}vp�, lq}Hm
per
ea|l|dl   8*

where Hm
per denotes the classical Sobolev space of 1-periodic functions. Also,

for any Schwartz-class function u, ǔ is the Bloch transform of u defined by,
for any py, lq P R � r�π, πs

ǔpy, lq � J upy, lq �
j̧PZ ei2πjyFupl � 2πjq,

û � Fu being the Fourier transform of u, explicitely for l P R

ûplq � Fuplq � 1?
2π

»
R

e�ilxupxqdx .
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Note that a justification for restricting attention to R � r�π, πs is that ex-
tending definition to R �R would lead to : for any py, lq P R� R,

ǔpy, l � 2πq � e�i2πyǔpy, lq .
Moreover, the Bloch transform comes with an inverse formula

upxq � 1?
2π

» π�π

eilxǔpx, lqdl
and a Plancherel formula}u}L2pRq � }ǔ}L2pr�π,πs,L2

perq.
Admissible solutions will be considered in the Banach space

X a
m �  

u : RÑ C
2
�� ǔ P LJ pa,mq(

endowed with norm } � }Xa
m
defined as, for any Schwartz u,}u}Xa

m
� }ǔ}LJ pa,mq � » π�π

}ǔp�, lq}Hm
per
ea|l|dl .

Due to Sobolev embedding theorems, X a
m is an algebra when equipped with

usual multiplication provided m ¥ 1. Namely, if m ¥ 1, there is a Cpmq ¡ 0
(independent of a) such that for any u, v P X a

m}uv}Xa
m
¤ Cpmq}u}Xa

m
}v}Xa

m
.

Correspondingly we introduce a space for solutions to the Whitham’s
system. First

LF pa,mq � "
v P L1pR,Cq ���� »

R

|vplq|p1� |l|qmea|l|dl   8*
and

Ya
m � tu : RÑ C | û P LFpa,mqu

endowed with } � }Ya
m
:}u}Ya

m
� }û}LF pa,mq � »

R

|ûplq|p1� |l|qmea|l|dl .
Note that such u are analytic on strip tz P C||ℑz|   au. Moreover, when
m ¥ 1, Ya

m is also an algebra.
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An important link between two kinds of settings is provided by the fact
that if u is 1-periodic and the Fourier transform of v is supported in r�π, πs
then

J puvqpy, lq � upyq Fpvqplq
and in particular, for such a low-frequency v, J pvqpy, lq � Fpvqplq. Con-
versely, averaging in y yields, for a general u,

〈J puqp�, lq〉 � Fpuqplq
for any l P R (with an extended Bloch transform).

To make our theorem more readible we also introduce more common
spaces : uniformly local Sobolev spaces. Let us first introduce an intermedi-
ate space

H̃m � "
u P L2

loc

���� sup
xPR }u|rx,x�1s}Hmprx,x�1sq   8*

endowed with norm }u}Hm
ul

� sup
xPR }u|rx,x�1s}Hmprx,x�1sq .

Then we define the subspace

Hm
ul � "

u P H̃m

���� RÑ H̃m,

τ ÞÑ up� � τq is continuous

*
.

5.2 Main statement

Before stating the main result of this section, which we will prove in the
following, we still need to introduce some change of variables. Let pkÆ, qÆq P
RÆ��R and then write equations in usual frame pkÆx�ωÆt, tq. Then, for any
phase ϕ, we introduce a time-dependent change of variable Xϕ defined by

Xϕpy, tq � y � ϕpy, tq .
If Byϕ is small enough, it can be inverted into Y ϕ satisfying

XϕpY ϕpx, tq, tq � x .

Note that BxY ϕpx, tq � 1

1� ByϕpY ϕpx, tq, tq (66)BtY ϕpx, tq � BtϕpY ϕpx, tq, tq
1� ByϕpY ϕpx, tq, tq . (67)
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In particular, whenever Byϕ is small, BxY ϕpx, tq is close to 1�ByϕpY ϕpx, tq, tq,
corresponding local wavenumber is close to kÆp1�ByϕpY ϕpx, tq, tqq, and cor-
responding local frequency close toBtϕpY ϕpx, tq, tq � ωÆp1� ByϕpY ϕpx, tq, tqq .
Moreover all derivatives are written as functions of Y ϕpx, tq and t.

Now the following theorem provides us with a nonlinear justification of
the Whitham’s equations" BTk � kÆBXpkcpk, qq � cÆkq � 0BTMpk, qq � kÆBX�Npk, qq � cÆMpk, qq� � 0

(68)

here written in frame pkÆX � ωÆT, T q.
Theorem 1 Let pkÆ, qÆq P R

Æ� � R. Assume that in a neighbourhood ofpkÆ, qÆq system (68) is of evolution type and strictly hyperbolic.
For any a ¡ 0, m ¥ 3 and M ¥ 1, there exist positive ε1, η1, C1 and T1 such
that, for any T0 Ps0, T1s, for any solution pk, qq to (68) on r0, T0s satisfying

sup
TPr0,T0s }pk, qqp�, T q � pkÆ, qÆq}Ya

0
¤ η1

and for all ε Ps0, ε1r, there exist
�pkε, qεq, rsε� and ϕ0,ε such that

sup
tPr0,T0{εs }pkε, qεqp�, tq � pk, qqpε�, εtq}Hm

ul
¤ C1

�
ε� η2

�
,

sup
tPr0,T0{εs }rsεp�, tq}Hm

ul
¤ C1η

2,

sup
tPr0,T0{εs |ϕ0,εptq| ¤ C1

η2

ε

where
η � sup

TPr0,T0s }pk, qqp�, T q � pkÆ, qÆq}Hm
ul

and a solution ph, qq to the Saint-Venant system (1) such that

sup
tPr0,T0{εs supxPR |ph, qqpx, tq � pHapp, QappqpY ϕεpx, tq, tq| ¤ C1ε

M ,

where pHapp, Qappqpy, tq � pH,Qqpy, kεpy, tq, qεpy, tqq � rsεpy, tq,
and ϕεpy, tq � ϕ0,εptq � ³y

0
pkεpz,tq

kÆ � 1qdz.
Our result is partially stated in } � }Hm

ul
norm, whereas we will work

with Fourier, Bloch, or mixed types, multipliers. To fill this gap we need
a multiplier theorem and thus refer to Lemma 5 in [17] (also stated in [5] as
Lemma 3.6).
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5.3 Separation of critical modes

Our proof of the above theorem starts simultaneously rewriting the shallow
water equations in an appropriate form so as to separate critical modes from
others and plugging into the equations a roll-wave ansatz that we will mod-
ulate afterwards when looking for long wavelength approximate solutions.

Recall that, in frame pkÆx�ωÆt, tq, the Saint Venant system is written as" Bth� kÆBxpq � cÆhq � 0Btq � kÆBx�Gph, qq � cÆq� � Sph, qq � δk2ÆB2xq (69)

or equivalently " Bth � kÆBxpq � cÆhq � 0Btq � ωÆBxq � Gph, q; kÆq � 0
.

Following [5], we introduce a roll-wave ansatz for ph, qqpx, tq,pH,Qq�Y ϕpx, tq; kÆ
1� ByϕpY ϕpx, tq, tq , qÆ � qpY ϕpx, tq, tq
�prh, rqqpY ϕpx, tq, tq.

Since Byϕ should remain small, ph, qqpXϕpy, tq, tq is then well-approximated
by pHÆ, QÆqpyq � pdHÆ, dQÆqpkÆByϕpy, tq, qpy, tqqpyq � prh, rqqpy, tq.

Using (66,67) in a chain rule differentiation turns (69) into a set of equa-

tions for prh, rqq and pϕ, qq. We added two more unknowns and therefore should
later add two more constraints. These constraints will perform a separation
of low-Floquet critical modes.

As an example, note that

G

�pH,Qq�Y ϕp�, tq; kÆ
1� ByϕpY ϕp�, tq, tq , qÆ � qpY ϕp�, tq, tq
 ; kÆ
 pXϕpy, tq, tq

would turn into

GÆ�BhGÆrdHÆpkÆByϕ, qqs�BqGÆrdQÆpkÆByϕ, qqs�BkGÆkÆByϕ�δk2ÆQ1ÆB2yϕ�GR

(taken in (y,t)), with GR at least quadratic in pkÆByϕ, qq.
Setting u � prh, rqq, the shallow water system (69) leads torBT

0 � BT
1 pu, kÆByφ, qqspkÆBtϕ, Btqq � Btu�BXpkÆByϕ, qq � AÆu � Rpu, kÆByφ, qq, (70)
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with AÆ the linear differential operator studied in previous sections, defined in
(57) and that corresponds to the linearisation of the Saint Venant equations
about the steady roll-wave pHÆ, QÆq. Recall that

AÆprh, rqq � �
kÆBypcÆrh� rqqBhGÆrrhs � BqGÆrrqs � ωÆByrq �

.

Operator BT
0 is given by

BT
0 pϕ, qq � ��� ϕ

kÆH 1Æ � dHÆpByϕ, qq
ϕ

kÆQ1Æ � dQÆpByϕ, qq �Æ,

and BX by the fact that BXpk, qq is�
kÆBy ppcÆdHÆ � dQÆqpk, qqqBhGÆrdHÆpk, qqs � BqGÆrdQÆpk, qqs � BkGÆk � δkÆQ1ÆByk � ωÆBypdQÆpk, qqq


and thus may also be written as���� 1

kÆH 1Æ k2ÆdcÆpk, qq �HÆ kÆdcÆpByk, Byqq � kÆByq� 1

kÆQ1Æ k2ÆdcÆpk, qq � rBXpByk, Byqq �Æ
where rBX is some differential operator with 1-periodic coefficients. At last,
BT
1 pu, k, qq is a linear differential operator whose coefficients depend at least

linearly on pu, k, qq andR is a nonlinear operator acting at least quadratically,
informally

BT
1 pu, k, qq � Op|k| � |q| � |u|q, Rpu, k, qq � Op|k|2 � |q|2 � |u|2q.

We will split equation (70) by projecting it on low Floquet-number critical
modes of AÆ. Therefore we first introduce a projection on critical modes of
AÆ for small enough Floquet numbers.

First recall that, for l P r�π, πs, qAÆplq is the operator defined byr qAÆplqpfqspyq � e�ilyrAÆpeil�fp�qqspyq
so that }AÆfp�, lq � qAÆplqf̌p�, lq .
A positive l1 Ps0, πs can be chosen small enough so that for any l such that|l| ¤ l1 the spectrum of qAÆplq in a small 0-centered ball is given by two
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spectral curves λjplq, j � 1, 2, studied in previous section, and may be defined

the associated qAÆplq-invariant spectral projectionqQcplq � 1

2πi

»
Γ

pλ� qAÆplqq�1dλ , (71)

Γ being the boundary of our neighbourhood of 0.
We further choose a non-increasing C8 cut-off function, χ : R Ñ r0, 1s,

so that, for l P R,

χplq � "
1 if |l| ¤ 1
0 if |l| ¥ 2,

(72)

and define (with a slight abuse of notation), for l P r�π, πs, truncated pro-
jections qPcplq � qQcplq χ�2l

l1



, qPsplq � 1 � qQcplq χ�16l

l1



,qPc

fsplq � qQcplq χ�4l

l1



, qPs

fsplq � 1� qPc
fsplqqPc

mfplq � qQcplq χ�8l

l1



, qPs

mfplq � 1� qPc
mfplq. (73)

To these operator-valued Bloch-symbols, we associate operators (and use an
obvious notation for them). These operators commute andp1 � PsqPs

mf � 0, p1� PsqPs
fs � 0. (74)

We now replace system (70) with$'''''&'''''%
�
Pc

fsB
T
0 �Pc

mfB
T
1 pu, kÆByϕ, qq�pkÆBtϕ, Btqq�Pc

fsB
XpkÆByϕ, qq � Pc

mfRpu, kÆByϕ, qqBtu�AÆu�Ps
fsB

XpkÆByϕ, qq � Ps
mfRpu, kÆByϕ, qq� �

Ps
fsB

T
0 � Ps

mfB
T
1 pu, kÆByϕ, qq� pkÆBtϕ, Btqq (75)

supplemented with constraintsp1� Psq u � 0 (76)

and

supp
�
Fpϕq,Fpqq� � "

l

���� χ�4l

l1


 � 1

*
. (77)

Obviously any solution to our new formulation of the problem does provide
us with a solution to (70).
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A straightforward consequence of (74) is that we only need to check that
constraint (76) is satisfied at t � 0. In order to check whether it is so also
for assumption (77), we need to describe precisely Pc

fsB
T
0 . Of course we also

need this detailed description to compare first equation of system (75) with
the Whitham’s system.

But our spectral study of previous section (see Lemmas 2 and 3) does

give us the needed expansion of qQc. Correspondingly, we can write eigenpro-
jection Pc

fs asqPc
fsǔpy, lq � χ

�
4l

l1


 p  ṽ1p�, lq, ǔp�, lq ¡ v1py, lq�   ṽ2p�, lq, ǔp�, lq ¡ v2py, lqq
where again   �, � ¡ is the scalar product of L2

per.
Besides, one readily obtains that, for any pair pϕ, qq such that (77) is

satisfied,

J rBT
0 pkÆϕ, qqsplq � kÆϕ̂plqpv1plq �Opl2qq � q̂plqpBqMÆv2plq �Oplqq (78)

therefore (using also 0 �  Blṽ2p0q, v1p0q ¡ �   ṽ2p0q, Blv1p0q ¡)  ṽ1plq,J rBT
0 pkÆϕ, qqsplq ¡� �

1� prBT
k,2plq
 kÆφ̂plq � prBT

k,1plq q̂plq,  ṽ2plq,J rBT
0 pkÆϕ, qqsplq ¡� �

dMÆ � prBT
q,1plq
 r{kÆByϕplq, q̂plqs�i   Blṽ2p0q, v1p0q ¡ {kÆByϕplq, (79)

with formally } prBT
k,1plq}, } prBT

q,1plq} � Oplq and } prBT
k,2plq} � Opl2q.

Likewise, (77) implies  ṽ1plq,J rBXpk, qqsplq ¡� �k2ÆdcÆpk̂plq, q̂plqq � prBX
k,1plqrk̂plq, q̂plqs,  ṽ2plq,J rBXpk, qqsplq ¡� �MÆkÆdcÆpxBykplq, xByqplqq � kÆxByqplq�i   Blṽ2p0q, v1p0q ¡ k2ÆdcÆpxBykplq, xByqplqq� prBX

q,2plqrk̂plq, q̂plqs,
with } prBX

k,1plq} � Oplq and } prBX
q,2plq} � Opl2q.

Now, from definition of Pc
mf is derived for any function f

supplJ rPc
mff sp�, lq � "

l

����χ�4l

l1


 � 1

*
.

Since

�
1 0BkMÆ BqMÆ �

is invertible, as a result, assumption (77) is seen to be

satisfied whenever it is at t � 0. From now on we do not repeat but always
assume (77) is satisfied.
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We still need to relate the first equation of system (75) with theWhitham’s
system but it is now a straightforward task. Let us split BT

1 pu, k, qq into
BT
1 pu, k, qqpϕ, q̃q � BT

1,ϕpu, k, qqϕ� BT
1,qpu, k, qqq̃

and define πj by yπjfplq �  ṽjp�, lq, f̌p�, lq ¡. Setting k � kÆByϕ and applying
π1 to the first line of (75) leads to�

1� rBT
k,2 � π1P

c
mfB

T
1,ϕpu, k, qq	Bt pkÆϕq� �k2ÆdcÆpk, qq � rBX

k,1pk, qq � π1Pc
mfRpu, k, qq�π1Pc

mfB
T
1,qpu, k, qqBtq � rBT

k,1Btq .

If l1 is small enough, then, as long as pk, q, uq is kept small enough, this can
be turned intoBt pkÆϕq � k2ÆdcÆpk, qq� � ��

1� rBT
k,2 � π1Pc

mfB
T
1,ϕpu, k, qq	�1 � 1

� pk2ÆdcÆpk, qqq� �
1� rBT

k,2 � π1Pc
mfB

T
1,ϕpu, k, qq	�1 � rBX

k,1pk, qq � π1Pc
mfRpu, k, qq	� �

1� rBT
k,2 � π1Pc

mfB
T
1,ϕpu, k, qq	�1 ��

π1Pc
mfB

T
1,qpu, k, qq � rBT

k,1

	 Btq	
and, denoting the right-hand side of the former equation by

Fkpu, k, qq � rBT
k,qpu, k, qqBtq � rBX

k pk, qq,
with formally } prBT

k,qpu, k, qqplq} � Op|l| � |u| � |k| � |q|q, } prBX
k } � Oplq and}Fkpu, k, qq} � Op|u|2 � |k|2 � |q|2q, givesBt pkÆϕq � rBT

k,qpu, k, qqBtq� k2ÆdcÆpk, qq � rBX
k pk, qq � Fkpu, k, qq (80)

thereforeBtk � By � rBT
k,qpu, k, qqBtq	� k2ÆdcÆpByk, Byqq � By � rBX

k pk, qq	 � By pFkpu, k, qqq . (81)

Applying π2 rather than π1 leads to�
dMÆ � rBT

q,1

	 pBtk, Btqq � π2Pc
mfB

T
1,ϕpu, k, qqBt pkÆϕq� �kÆMÆdcÆpByk, Byqq � kÆByq � rBX

q,2pk, qq� π2P
c
mfRpu, k, qq � π2P

c
mfB

T
1,qpu, k, qqBtq� i   Blṽ2p0q, v1p0q ¡ rBtk � k2ÆdcÆpByk, Byqqs .
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Using (80), the equation may be written as�
dMÆ � rBT

q pu, k, qq	 pBtk, Btqq� kÆMÆdcÆpByk, Byqq � kÆByq � rBX
q pk, qq � Fqpu, k, qq (82)

with formally } prBT
q pu, k, qqplq} � Op|l| � |u| � |k| � |q|q, } prBX

q } � Opl2q and}Fqpu, k, qq} � Op|u|2 � |k|2 � |q|2q.
Again, under smallness assumptions, one can invert�

1 il
prBT
k,qpu, k, qqplqBkMÆ � prBT

q,kpu, k, qqplq BqMÆ � prBT
q,qpu, k, qqplq � .

Thus equations (81,82) yield an evolution system for pk, qq. As a result,
setting V � ppk, qq, uq, system (75) may be written in short asBtV � ΛV � N pVq, (83)

where Λ is a lower triangular linear operator written in Fourier-Bloch vari-
ables (Fourier in pk, qq, Bloch in u) as;qΛplq � � pAcplq 0qbpplq qAÆplq � ,

with qbpplq � Oplq a bounded operator (from C2 to 1-periodic functions) andpAcplq P M2pCq such that pAcplq � Oplq, andN a nonlinear operator such that
N pVq � Op|V|2q. From the derivation of the critical system, the spectrum ofpAcplq is easily seen to be given by the values λjpilq, j � 1, 2, of the previously
introduced spectral curves λj , j � 1, 2.

In order to emphasize the mode separation, we write V � pvc, vsq with

vc � pk, qq and vs � u � prh, rqq. Then system (83) may be written" Btvc � Ac vc � N cpvc, vsqBtvs � AÆ vs � bvc � N spvc, vsq (84)

where N cpvc, vsq, N spvc, vsq � Op|vc|2�|vs|2q and N c is of the following form

N cpvc, vsq � fpvc, vsq ByF pvc, vsq � ρ rN cpvc, vsq
with fpvc, vsq, F pvc, vsq � Op|vc| � |vs|q, rN cpvc, vsq � Op|vc|2 � |vs|2q and ρ

is such that pρplq � Oplq. This former fact is trivial for the part coming from;With a slight abuse of notations in the use of q.
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π1 through equation (81). As for the contribution of π2, it follows from the
following fact:{π2ph, qqplq �   qhp�, lq ¡ � Oplqrph, qqs � phplq � Oplqrph, qqs .

This is the end of our preparation of the system and we can now build
a family of approximate solutions according to the desired ansatz and then
achieve the proof with the construction of a family of solutions close to our
family of approximate solutions. For this purpose we are now in such a
position that we can follow the strategy explained in [5] and therefore we
will mostly sketch the end of the proof.

5.4 Approximate solutions

We now fix a ¡ 0, m ¥ 3, and T0 ¡ 0 small enough and consider a smooth
solution pk, qq to system (68) in L8 pr0, T0s;Ya

0 q. For further implicit uses,
note that for some Cpa,mq stands} � }Xa

m
¤ Cpa,mq } � }Ya

0

and that, for any ε ¡ 0, } � }Ya
0
is turned into } � }Yεa

0
by the transformation

f ÞÑ fpε �q so that in particular } � }Ya
0
is invariant under this transformation

whenever ε ¤ 1.
In order to build approximate solutions in the long-wavelength regime

we associate to long-wavelength profiles pV c, V sq and any ε ¡ 0 ε-residuals
ResεcpV c, V sq and ResεspV c, V sq through

ResεcpV c, V sqpX, T q � rBtvc �Acvc �N cpvc, vsqs �X
ε
, T
ε

�
ResεspV c, V sqpX, T q � rBtvs �AÆvs � bvc �N spvc, vsqs �X

ε
, T
ε

�
where pvc, vsq is defined by

vcpy, tq � V cpεy, εtq , vspy, tq � V spεy, εtq .
Obviously, for a given ε ¡ 0, the above pvc, vsq is a solution to (84) if and
only if ResεcpV c, V sq and ResεspV c, V sq vanish.

The next proposition provides us with the needed approximate solutions.
Yet, to be able to prove it we need to understand the behaviour of operators,
defined in Bloch variables, with respect to dilatation. For this purpose, let
us denote Dα the dilatation operator, Dαpfq � fpα �q.

First recall the diagonalisation formularTf spxq � 1?
2π

» π�π

eilxrqT plqf̌p�, lqspxqdl
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where rqT plqgspxq � e�ilxrT peil�gp�qqspxq .
From this one deducesrDε�1TDεspfqpxq � 1?

2π

» π�π

eilxrDε�1
qT pεlqDεspf̌p�, lqqpxqdl .

Note that one can not infer form this formula a Bloch transform since the
periodicity may be lost in the process. For instance, in the case whereqT plq � P pl, y, Byq with P a symbol 1-periodic in y, in the formula appears
P
�
εl, y

ε
, εBy�. However note that even in this case thanks to the original

periodicity the y{ε-dependency is almost harmless.
As for Bloch-Fourier operators, let us look at an operator defined throughxTfplq � » 1

0

rpτ_plq qfp�, lqspyqdy
(with an extended definition of the Bloch transform). Then formally

F prDε�1TDεspfqq plq �
j̧PZ pf �l � 2πj

ε


» 1

0

rpτ_pεlqre2iπj�sspyqdy
which, when pτ_plq � P pl, y, Byq, turns into

j̧PZ pf �l � 2πj

ε


» ε

0

�
P
�
εl,

y

ε
, εBy	 �e2iπ j

ε
��� pyqdy

ε
.

Note that, when f is low-frequency, it only involves bounded j{ε so that,
when moreover P is 1-periodic in y, again oscillations are harmless.

At last, let us consider an operator defined throughrTf spxq � 1?
2π

» π�π

eilxrqτppxqf̂p�qsplqdl
with qτpp�q 1-periodic. ThenrDε�1TDεs pfqpxq � 1?

2π

» π
ε�π
ε

eilx
��
Dεqτp�x

ε

	
Dε�1

� p pf q� plqdl
which, when qτppyq � P pl, yq, turns into

1?
2π

» π
ε�π
ε

eilx P
�
εl,

x

ε

	 pfplqdl .
Again, when f is low-frequency, oscillations (here in π{ε and x{ε) are harm-
less.

We are now in position to state the following proposition.
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Proposition 3 Let m ¥ 3, M ¥ 1 and a0 ¡ 0. There exists η1 ¡ 0, ε1 ¡ 0
and a constant K1 such that, for any 0   a ¤ a0, if pk, qq is a solution to
the Whitham system such that supTPr0,T0s }pk, qqp�, T q}Ya

m
¤ η1, then, for any

0   ε   ε1, there exists pV c

ε , V
s

ε q such that

sup
TPr0,T0s }V c

ε pε�, T q � pk, qqpε�, T q}
X

a{ε
m
¤K1

�
ε� sup

TPr0,T0s }pk, qqp�, T q � pkÆ, qÆq}2Hm
ul

�
,

sup
TPr0,T0s }V c

ε pε�, T q}Xa{ε
m
¤K1,

sup
TPr0,T0s }V s

ε pε�, T q}Xa{ε
m
¤K1 sup

TPr0,T0s }pk, qqp�, T q � pkÆ, qÆq}2Hm
ul

,

sup
TPr0,T0s }ResεcpV c

ε , V
s

ε qpε�, T q}Xa{ε
m
¤K1ε

M ,

sup
TPr0,T0s }ResεcpV c

ε , V
s

ε qpε�, T q}Xa{ε
m
¤K1ε

M .

To prove Proposition 3, one search for pV c
ε , V

s
ε q in the form

V c
ε � V c

0 � ε V c
1 � � � � εM V c

M

V s
ε � V s

0 � ε V s
1 � � � � εM V s

M

and obtain a hierarchy of equations for pV c
j , V

s
j q0¤j¤M .

At step j, V s
j is obtained as a function of pV c

i , V
s
i q0¤i j and V c

j by solving
an equation (not of evolution type) through the implicit function theorem
thanks to the inversibility of AÆPs

fs. For j � 0 this function is linear in V c
j .

Using this expression for V s
j one obtains an evolution-type equation for V c

j in
terms of pV c

i , V
s
i q0¤i j. For j � 0, the equation for V c

0 shares its linearization
around pkÆ, qÆq with the equation for pk, qq. For j � 0, the equation is linear
hyperbolic.

Note that the intricated form of the proposition is a consequence of the
fact that the norm } � }Xa

m
badly scales. Note also that, although, up to

the expression of V s
j , the proof of the proposition follows the lines of the

formal derivation of the Whitham system, the two expansions may differ
even though they share the same starting point pk, qq at the linear level.

5.5 From residuals to reminders

We now look for a family ppvcε, vsεqq0 ε ε1 of solutions to system (84) in the
form pvcε, vsεqpx, tq � pV c

ε , V
s
ε qpεx, εtq � εMprcε, rsεqpx, tq

with prcε, rsεq uniformly bounded on r0, T1{εs (where T1 is some fixed time
0   T1   T0).
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Substituting this ansatz into (84) yields an equation we write as" Btrcε � Acrcε � N c
ε prcε, rsεqBtrsε � AÆrsε � N s
ε prcε, rsεq . (85)

Note that a linear term b rcε has been put in the right-hand side of the second
equation of system (85) so as to deal with a diagonal form in the left-hand
part. As usual this family of systems are solved by a fix point argument.

For this purpose, we report the following estimates}N c
ε prcε, rsεq}Xa

m
¤ K1 � Kη1,l1

�}rcε}Xa
m
� }rsε}Xa

m

� � εMKpRc, Rsq}N s
ε prcε, rsεq}Xa

m�2
¤ K1 � Kη1,l1

�}rcε}Xa
m
� }rsε}Xa

m

� � εMKpRc, Rsq,
valid for all 0   a   a0

ε
whenever }rcε}Xa

m
¤ Rc and }rsε}Xa

m
¤ Rs, where Kη1,l1

goes to zero when pη1, l1q goes to zero. Recall that l1 is a cut-off parameter
and η1 is a size parameter for pk, qq. Actually K1 also (badly) depends on l1
but this latter point is not prejudicial.

It is crucial to note that through these estimates one undergoes a loss
of derivatives. This is a consequence of the fact that our initial nonlinear
change of variables has turned the semilinear Saint-Venant equations into
quasilinear ones. This former point also explains why it would not be harder
to deal with a more physical viscosity. Unfortunately, at this stage, one can
not exploit any smoothing coming from the linear operator AÆPs

fs. But this
is a common fact that in the process of justifying an ansatz one usually loses
something. Here instead of losing regularity we will choose to lose analyticity.
We will establish estimates with a width of analyticity descreasing at a linear
pace, so that we will work on a finite time, even shorter than T0.

For this we introduce a smoothing operator as follows. Let us fix K0 ¡ 0.
We use the fact that the spectrum of AÆ is of upper bounded real part to
choose K 1

0 sufficiently large so that, for any l P r�π, πs, the real part of

the spectrum of qAÆplq � K 1
0|l| is upper bounded by �K0|l|. We further

define operators k10 and Sεptq through their Bloch symbols qk10plq � K 1
0|l|

and ~Sεptqplq � epa0
ε
�K 1

0tq|l|.
Then we set

�rrcε, rrsε� ptq � pSεptqrcεptq,Sεptqrcεptqq for times t satisfying

0 ¤ t   a0

K 1
0 ε

.

Estimates are thus established now in } � }X 0
m

norms. The system for the
evolution of

�rrcε, rrsε� is similar to the previous one, with the same kind of
estimates for nonlinear terms, but with linear operator pAc,AÆq replaced
with pAc� k10,AÆ� k10q. The reason for this change of unknowns is that now
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one can prove for pAc�k10,AÆ�k10q a maximal regularity result in X 0
m-valued

Hölder spaces, readily similar to Lemma 6.3 in [5]. This was the missing part
to close in a classical way a fix-point iteration scheme.

The last thing we should say is that ϕ0,ε is then recovered by integrating
over time T1{ε equation (80).

6 Conclusion

In this paper, we derived formally first-order and second-order averaged equa-
tions for shallow water flows that describes the dynamics of modulated roll-
waves and provided two set of justification results.

On the one hand, we carried out a spectral stability analysis of roll-waves
using Bloch transform in the regime of small wavenumber perturbations. We
first related the index of stability of viscous roll-waves with the hyperbolicity
of the first-order Whitham’s equations just as it was done by Serre for general
viscous conservation laws [18] or Johnson, Zumbrun and Bronski for gener-
alized Korteweg-de Vries equations [9]. However, in both latter papers, only
the Evans function framework was used. Here we proved the Bloch trans-
form framework is a more natural tool, by extending such stability analysises
into two directions : we relate not only eigenvalues but also eigenvectors and
we relate the stability of steady solutions to the second-order Whitham’s
equations with the parabolicity of spectral curves at the origin.

On the other hand, in the spirit of what has been done for reaction-
diffusion equations by Doelman, Sandstede, Scheel and Schneider [5], we
justified rigorously the inviscid Whitham’s equations in the natural hyper-
bolic scaling. More precisely, we proved that, given a solution to the inviscid
Whitham’s system, there exist solutions to the viscous shallow water equa-
tions on asymptotically large time that are close to modulated roll-waves
whose first-order expansion is described by our solution to the Whitham’s
system at the linear level. This justification is performed under weak stabil-
ity assumptions : at the origin, tangency to the imaginary axis of spectral
curves. From numerical investigations, it seems that it will enable us to ap-
ply this nonlinear justification up to the limiting homoclinic travelling waves
(whose spectrum yields unstablility but is tangent to to the imaginary axis
[3]). This weak stability assumption has a counterpart in the required ana-
lyticity of solutions.

But probably the main flaw of this justification is that our solution to the
Whitham’s system describes the first order of the roll-wave profile only at the
linear level. This is a consequence of both the Y ϕ change of variables and the
hyperbolic scaling. Such an issue would not occur with a diffusive scaling.
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Yet the counterpart would be that the size of the allowed perturbations ofpk, qq would not be anymore Op1q but Opεq (recall ε ¡ 0 is the characteristic
wavenumber of the modulation).

Moreover the nonlinear justifications need some regularity so that, with
the hyperbolic scaling, there is little hope to construct modulated roll-waves
converging at �8 to roll-waves with different wavenumbers and local dis-
charge rate since they would correspond to shocks in parameters pk, qq. How-
ever with a parabolic scaling on may expect to justify viscous shocks of the
second-order modulation system as modulated roll-wave profile for solutions
to the Saint-Venant system.

At last a second-order justification would probably also enlarge the time
validity of the approximation from r0, T0{εs with T0 some time imposed by
the equations to r0, T {ε2s for any fixed time T .

For all these reasons, a natural direction would be now to justify a second-
order modulation in a parabolic scaling as it was also done in [5] for reaction-
diffusion equations.

A Whitham’s dispersion in a geometric way

In this appendix, we explain how to fill the small gap between analysis
in subsection 4.1 and the one in [18] (for different equations). We just
need to replace our straigthforward computations with more geometric ones.
Yet we keep the framework of subsection 4.1 : frame px � cÆt, tq, pc, qq-
parametrization...

We turn 2 � 2-determinant giving Whitham’s dispersion into a 3 � 3-
determinant. This is done interpreting the set of periodic travelling-wave
solutions as a submanifold.

The tangent space of the set of periodic travelling-wave solutions (inden-
tified when being equals up to translation) at HÆ is 

β1BcHÆ � β2h
0
2 � β3BqHÆ �� pβ, γq P kerZ

(
where the existence of such a h0

2 is provided by the analysis of (3) and Z is
a linear operator from R3 � R to R2 defined by

Z1pβ, γq � β1rBcHÆs � β2rh0
2s � β3rBqHÆs � γH 1Æp0q ,

Z2pβ, γq � β1rBcH 1Æs � β2rh0
2
1s � β3rBqH 1Æs � γH2Æ p0q .

Note that on kerZ

dLÆpβ, γq � γ , dcÆpβ, γq � β1 ,

dqÆpβ, γq � β3 , dHÆpβ, γq � β1BcHÆ � β2h
0
2 � β3BqHÆ ,
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and
dMÆpβ, γq � γkÆrHÆp0q �MÆs�   dHÆpβ, γq ¡LÆ .

Fix pλ, νq P C2 and define T pλ, νq a linear operator from R3 � R to R2 by

T1pβ, γq � �λk2Æγ � νk2Æβ1 ,

T2pβ, γq � λ rβ1   BcHÆ ¡LÆ �β2   h0
2 ¡LÆ �β3   BqHÆ ¡LÆs � νkÆ rMÆβ1 � β3s .

Operator T pλ, νq cöıncide with pλdkÆ� νkÆdcÆ, λdMÆ� νkÆpkÆdcÆ� dqÆqq on
kerZ, since as in subsection 4.1 we have imposed MÆ � HÆp0q.

Now, up to some non-zero Γ, Γ1,
Dpλ, νq � ΓdetpT pλ, νq| kerZq � Γ1 detppT pλ, νq, Zqq

and detppT pλ, νq, Zqq equals�������� νk2Æ 0 0 �λk2Æ
λ   BcHÆ ¡LÆ �νkÆMÆ λ   h0

2 ¡LÆ λ   BqHÆ ¡LÆ �kÆν 0rBcHÆs rh0
2s rBqHÆs H 1Æp0qrBcH 1Æs rh0
2
1s rBqH 1Æs H2Æ p0q ��������

and may be reduced to

k2Æ ������ λ2   BcHÆ ¡LÆ �λνkÆMÆ λ   h0
2 ¡LÆ   BqHÆ ¡LÆ �ν

λ rBcHÆs � νH 1Æp0q rh0
2s rBqHÆs

λ rBcH 1Æs � νH2Æ p0q rh0
2
1s rBqH 1Æs ������

which easily compares with the main part of the Evans function Epλ, eνq.
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