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Abstract

We propose a finite volume scheme for convection-diffusion equations with nonlinear diffu-
sion. Such equations arise in numerous physical contexts. We will particularly focus on the
drift-diffusion system for semiconductors and the porous media equation. In these two cases, it
is shown that the transient solution converges to a steady-state solution as ¢ tends to infinity.
The introduced scheme is an extension of the Scharfetter-Gummel scheme for nonlinear dif-
fusion. It remains valid in the degenerate case and preserves steady-states. We prove the
convergence of the scheme in the nondegenerate case. Finally, we present some numerical sim-
ulations applied to the two physical models introduced and we underline the efficiency of the
scheme to preserve long-time behavior of the solutions.

Mathematics Subject Classification (2000) 65M12, 82D37.

1 Introduction

In this article, our aim is to elaborate a finite volume scheme for convection-diffusion equations
with nonlinear diffusion. The main objective of building such a scheme is to preserve steady-states
in order to be able to apply it to physical models in which it has been proved that the solution
converges to equilibrium in long time. In particular, this convergence can be observed in the drift-
diffusion system for semiconductors as well as in the porous media equation.

In this context, we will first present these two physical models — drift-diffusion system for semicon-
ductors and porous media equation. Then, we will precise the general framework of our study in
this article.

1.1 The drift-diffusion model for semiconductors

The drift-diffusion system consists of two continuity equations for the electron density N(z,t) and
the hole density P(x,t), as well as a Poisson equation for the electrostatic potential V(z,t), for
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t € RY and 2 € R%.
Let Q C R? (d > 1) be an open and bounded domain. The drift-diffusion system reads

)
)
)

9N — div(Vr(N) = NVV)=0 on € x (0,
P — div(Vr(P)+ PYV)=0 on Qx (0,
0

T
T
AV=N-P-C on Qx(0,T

: (1)
where C' € L>°(Q) is the prescribed doping profile.
The pressure has the form of a power law,

r(s)=¢s", y>1.

Equations on N and P are supplemented with initial data No(z) and Py(x). The physically moti-
vated boundary conditions are either Dirichlet boundary conditions on N, P, V' on ohmic contacts
or homogeneous Neumann boundary conditions on 7(N), r(P) and V on insulating boundary seg-
ments.This means that the boundary I' = 9 is split into two parts I' = '’ UT'™V and, if we denote
by n the outward normal to I', the boundary conditions are Dirichlet boundary conditions on I'P:

N(z,t) = N(z,t), (z,t) € TP x (0,7),
P(z,t) = P(x,t), (z,t) € TP x (0,7), (2)
V(x,t) = V(x,t), (z,t) € TP x (0,7),

and homogeneous Neumann boundary conditions on I'V:
Vr(N) - n=Vr(P) - n=VV-n=0onT" x(0,7T). (3)

The large time behavior of the solutions to the nonlinear drift-diffusion model (I)-([2)-(B]) has been
studied by A. Jingel in [I8]. It is proved that the solution to the transient system converges to a
solution of the thermal equilibrium state as t — oo if the boundary conditions (2)) are in thermal
equilibrium. The stationary drift-diffusion system reads

—div(Vr(N) = NVV) =0 x € Q,
—div(Vr(P)+ PVV) =0 x €,
AV=N-P-C x €,

with the boundary conditions ([2)-(B]). The thermal equilibrium is a particular steady-state for which
electron and hole currents, namely Vr(N) — NVV and Vr(P) + PVV, vanish. The existence of a
thermal equilibrium has been studied in the case of a linear pressure by P. Markowich, C. Ringhofer
and C. Schmeiser in [21], [20], and in the nonlinear case by P. Markowich and A. Unterreiter in [22].
We introduce the enthalpy function & defined by

h(s) = /1 ") g (4)

T

and the generalized inverse g of h defined by

h=(s) if h(0T)<s < oo,
9(s) = { 0 if s<h(0%).



If the boundary conditions satisfy N, P > 0 and
h(N) -V =ay and h(P)+V = ap on T'P,
the thermal equilibrium is defined by
N(z) = g(an +V(z)), P9 x)=g(ap—-Vi(z)), zel, (5)

while V¢ satisfies the following elliptic problem

AV =g (any + V) —g(ap — V) - C in Q, (©)
Ve (r) =V(z) on TP, VV®.n=0onTI".

The proof of the convergence to thermal equilibrium is based on an energy estimate with the control
of the energy dissipation. More precisely, if we define

H(s) = /jh(T)dT, s3>0, (7

then we can introduce the deviation of the total energy (sum of the internal energies for the electron
and hole densities and the energy due to the electrostatic potential) from the thermal equilibrium
(see [18])

e(t) = /Q <H (N(t)) — H (N“) = h(N) (N(t) = N) + H (P(t)) — H (P*)
(P (P() = P 4 IV V(0 - V) d ®
and the energy dissipation

I(t) = — /Q (N IVBON(@) = V) + P [VO(P(D) + V(1)) d. (9)

Then the keypoint of the proof is the following estimate:
t
0< ) +/ I(r)dr < £(0). (10)
0

1.2 The porous media equation

The flow of a gas in a d-dimensional porous medium is classically described by the Leibenzon-Muskat
model,
— Ay? d
{ O = Av on R x (0,7), (11)

v(x,0) = vo(x) on R,

where the function v represents the density of the gas in the porous medium.
With a time-dependent scaling (see [6]), we transform (I1]) into the nonlinear Fokker-Planck equa-
tion

(12)

Opu = div(zu + Vu?) on R? x (0,7),
u(z,0) = uo(z) on RY.



J. Carrillo has proved in [6] that the unique stationary solution of (I2]) is given by the Barenblatt-

Pattle type formula
v — 1 1/(v-1)
wie) = (o= T ap) (13)

where C is a constant such that u€? has the same mass as the initial data uy.
Moreover, J. Carrillo and G. Toscani have proved in [7] that the solution wu(z,t) of (1)) behaves
asymptotically, as t — oo, such as the Barenblatt-Pattle solution u®?(z). As in the case of the
drift-diffusion model, the proof of the convergence to the Barenblatt-Pattle solution is based on
an entropy estimate with the control of the entropy dissipation given by (I0l), where the relative
entropy is defined by

|z

Et) = /R (H(u(t)) — H () + () - ueQ)> de, (14)

where H is defined by (@) and the entropy dissipation is given by

2

() = —%S(t) _ /R u(t) }v (h(u(t)) + @) da. (15)

1.3 Motivation

Many numerical schemes have been proposed to approximate the solutions of nonlinear convection-
diffusion equations. In particular, finite volume methods have been proved to be efficient in the
case of degenerate parabolic equations (see [14] [15]).

On the other hand, there exists a wide literature on numerical schemes for the drift-diffusion
equations. It started with 1-D finite difference methods and the Scharfetter-Gummel scheme ([23]).
In the linear pressure case (r(s) = s), a mixed exponential fitting finite element scheme has been
successfully developed by F. Brezzi, L. Marini and P. Pietra in [3| [4]. The adaptation of the mixed
exponential fitting method to the nonlinear case has been developed by F. Arimburgo, C. Baiocchi,
L. Marini in [2] and by A. Jingel in [I7] for the one-dimensional problem, and by A. Jiingel and
P. Pietra in [I9] for the two-dimensional problem. Moreover, C. Chainais-Hillairet and Y.J. Peng
proposed a finite volume scheme for the drift-diffusion equations in 1-D in [10], which was extended
in [9, I1] in the multidimensional case. C. Chainais-Hillairet and F. Filbet also introduced in [§]
a finite-volume scheme preserving the large time behavior of the solutions of the nonlinear drift-
diffusion model.

Now to explain our approach, let us first recall some previous numerical results concerning the
drift-diffusion system for semiconductors. The precise definitions of schemes considered will be
presented in Section 2. We compare results obtained with three existing finite volume schemes.

e The classical upwind scheme: the diffusion terms in the two parabolic equations on N and
P are discretized classically and the convection terms are discretized with upwind fluxes. The
convergence of this scheme has been proved in [10] and [9, 1] in 1-D and in 2-D respectively.

e The Scharfetter-Gummel scheme: in the case of a linear diffusion, namely r(s) = s,
the Scharfetter-Gummel fluxes are widely used. These fluxes have been proposed by D.L.
Scharfetter and H.K. Gummel [23] for the numerical approximation of the one-dimensional
drift-diffusion model. We also refer to the work of A.M. I'in [I6], where the same kind of
fluxes were introduced for one-dimensional finite-difference schemes.
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Figure 1: Linear case: relative energy £™ and dissipation Z" for different schemes in log scale, with
time step At = 1072 and space step Az = 1072,

e The nonlinear upwind scheme: C. Chainais-Hillairet and F. Filbet proposed in [8] a new
finite volume scheme with a standard upwinding for the convective fluxes and a new nonlinear
approximation for the diffusive fluxes. Their flux preserves the thermal equilibrium and it is
proved that the numerical solution converges to this equilibrium when time goes to infinity.

In Figure [Il we present some results obtained in the case of a linear diffusion (r(s) = s). We
represent the relative energy £ and the dissipation of energy Z obtained with the upwind flux and
the Scharfetter-Gummel flux for a test case in one space dimension. The x-axis corresponds to time
and £ and 7 are represented in log scale. We can observe a phenomenon of saturation of £ and Z for
the upwind flux. In addition, we clearly observe that the energy and its dissipation obtained with
the Scharfetter-Gummel flux converge to zero when time goes to infinity, which means that densities
N(t) and P(t) converge to the thermal equilibrium. It appears that the Scharfetter-Gummel flux
is very efficient, but is only valid for linear diffusion. Moreover, we can emphasize that contrary to
the upwind flux, the Scharfetter-Gummel flux preserves the thermal equilibrium.

In Figure Bl we present numerical results obtained in the case of a nonlinear diffusion r(s) = s2.
We represent the relative energy £ and the dissipation Z obtained with the classical upwind flux
and with the nonlinear upwind flux for a test case in one dimension of space. We still observe
a phenomenon of saturation of £ and Z for the classical upwind flux. For the nonlinear flux, we
clearly notice that the energy and its dissipation converge to zero when time goes to infinity.
Looking at these results, it seems crucial that the numerical flux preserves the thermal equilibrium
to obtain the consistency of the approximate solution in the long time asymptotic limit.

Our aim is to propose a finite volume scheme for convection-diffusion equations with nonlinear
diffusion. We will focus on preserving steady-states in order to obtain a satisfying long-time behavior
of the approximate solution. The scheme proposed in [§] satisfies this property and it provides an
approximate solution whose long time behavior is very satisfactory. Nevertheless, because of the
nonlinear discretization of the diffusive terms, it leads to solve a nonlinear system at each time step,
even in the case of a linear diffusion. It is then quite difficult to implement, as we will see in Section
2. The idea is to extend the Scharfetter-Gummel scheme, which is only valid in the case of a linear
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Figure 2: Nonlinear case: relative energy £ and dissipation Z™ for different schemes in log scale,
with time step At = 5.10* and space step Az = 1072,

diffusion, for convection-diffusion equations with nonlinear diffusion, even in the degenerate case.
Some extensions of this scheme have already been proposed. Indeed, R. Eymard, J. Fuhrmann
and K. Géartner studied a scheme valid in the case where the convection and diffusion terms are
nonlinear (see [12]), but their method leads to solve a nonlinear elliptic problem at each interface.
A. Jiingel and P. Pietra proposed a scheme for the drift-diffusion model (see [I7, [19]), but there
were no questions concerning long-time behavior in all these works.

1.4 General framework
We will now consider the following problem:
Opu — div(Vr(u) — qu) = 0 for (x,t) € Q x (0,7, (16)

with an initial condition

u(z,0) = ug(x) for x € Q. (17)

Moreover, we will consider Dirichlet-Neumann boundary conditions. The boundary 99 = T is
split into two parts I' = '’ UTY and, if we denote by n the outward normal to I', the boundary
conditions are Dirichlet boundary conditions on I'P

u(z,t) = a(z,t) for (v,t) € TP x (0,7), (18)
and homogeneous Neumann boundary conditions on T'V:
Vr(u)-n=0onT% x (0,T). (19)

Remark 1. We will construct the scheme and perform some numerical experiments in the case
of Dirichlet-Neumann boundary conditions. However, for the analysis of the scheme, we will only
consider the case of Dirichlet boundary conditions (02 =TP =T).

We suppose that the following hypotheses are fulfilled:



(H1) € is an open bounded connected subset of R, with d = 1,2 or 3,

(H2) 09 =TP =T, uis the trace on I x (0, T) of a function, also denoted %, which is assumed to
satisfy w € H*(Q x (0,7)) N L (2 x (0,T)) and © > 0 a.e.,

(H3) up € L>(N) and up > 0 a.e.,
(H4) r € C?*(R) is strictly increasing on |0, +oo[, r(0) = 7/(0) = 0, with '(s) > cos? ™!,
(H5) q € CY(Q,RY).

H. Alt, S. Luckhaus and A. Visintin, as well as J. Carrillo, studied the existence and uniqueness of
a weak solution to the problem ([I@)-(I9) in [I] and [6] respectively.

Definition 1. We say that u is a solution to the problem (I8))-(I7)-(I8)-(I9) if it verifies:
ue L®(Q % (0,T)), u—ue L*0,T; HY(Q))

and for all ¥ € D(Q x [0,T]),

T
/ / (uwopp — V(r(u)) - Voo +uq - Vo) da dt + / u(z,0)p(x,0)dz = 0. (20)
0 Jo

Q

The outline of the paper is the following. In Section 2, we construct the finite volume scheme.
In Section 3, we prove the existence and uniqueness of the solution of the scheme and give some
estimates on this solution. Then, thanks to these estimates, we prove in Section 4 the compactness
of a family of approximate solutions. It yields the convergence (up to a subsequence) of the solution
ug of the scheme to a solution of (I6)-(I9) when § goes to 0. In the last section, we present some
numerical results that show the efficiency of the scheme.

2 Presentation of the numerical scheme

In this section, we present our new finite volume scheme for equation (@) and other existing
schemes. We will then compare these schemes to our new one.

2.1 Definition of the finite volume scheme

We first define the space discretization of Q. A regular and admissible mesh of  is given by a
family 7 of control volumes (open and convex polygons in 2-D, polyhedra in 3-D), a family £ of
edges in 2-D (faces in 3-D) and a family of points (xx)ke7 which satisfy Definition 5.1 in [14]. It
implies that the straight line between two neighboring centers of cells (x,zr) is orthogonal to the
edge o = K|L.

In the set of edges £, we distinguish the interior edges o € &;,,; and the boundary edges o € E..¢-
Because of the Dirichlet-Neumann boundary conditions, we split E.,¢ into Eepp = 8£t U Ee]\gfat where
ED, is the set of Dirichlet boundary edges and Y, is the set of Neumann boundary edges. For a

control volume K € T, we denote by £k the set of its edges, Eine, k the set of its interior edges,



EL, i the set of edges of K included in T'” and £, j the set of edges of K included in T'V.
The size of the mesh is defined by

Ax = Ii?ggg(dlam(K)).

In the sequel, we denote by d the distance in R? and m the measure in R or R%~1.
We note for all o € €

A — d(zk,xr), foro € &, o= KI|L,
77\ d(zk,o), for o € Eept k-

m(o)
dy

For o € £k, nk  is the unit vector normal to o outward to K.

We may now define the finite volume approximation of the equation (L6])-(T9).

Let (T,&, (xx)ker) be an admissible discretization of © and let us define the time step At, Ny =

E(T/At) and the increasing sequence (t")o<n<ng, Where t" = nAt, in order to get a space-time

discretization D of Q x (0,T). The size of the space-time discretization D is defined by:

For all o € &, we define the transmissibility coefficient 7, =

0 = max(Ax, At).
First of all, the initial condition is discretized by:

Uy = ﬁl{)/l(uo(x)d:r, KeT. (21)

In order to introduce the finite volume scheme, we also need to define the numerical boundary
conditions:

1 o
nl T u(s, t)ds dt D n>0. 22
UU At m(O') /tn /a.u(s’ ) sat, 0 ¢ gemw n= 0 ( )
We set .
9K,0 = —— / a(z) ‘ngeds(z), VKeT, Voe€lk. (23)
m(o) J,

The finite volume scheme is obtained by integrating the equation (I6]) on each control volume and
by using the divergence theorem. We choose a backward Euler discretization in time (in order to
avoid a restriction on the time step of the form At = O(Ax?)). Then the scheme on u is given by
the following set of equations:

K U Uk Frtl— o 24
m(K) A7 + Y Frtl=o, (24)

cEEK

where the numerical flux Fp'! is an approximation of — / (Vr(u) — qu) - ng,, which remains to

be defined.

o



2.2 Definition of the numerical flux
2.2.1 Existing schemes
We presented in introduction some numerical results obtained with different choices of numerical

fluxes for the drift-diffusion system. We are now going to define precisely these fluxes.

The classical upwind flux. The classical upwind flux is valid both in the case of a linear diffusion
and in the case of a nonlinear diffusion. It was introduced and studied for the drift-diffusion system
for semiconductors in [9], [I0] and [II]. The definition of this flux is

7o (P (UE) =r (UEF) +do (0 U™ —a UL ™)) Yo = K|L € &,
n+1 _ _
Fro =9 7 (r (Uﬁfl) —r (U2Y) +d, q}7UUﬂ+l - qKJU;“rl , Vo e&l, k.
07 Vo € ge]\w]t,K’
(25)
where sT = max(s,0) and s~ = max(—s,0) are the positive and negative parts of a real number s.

The upwind flux with nonlinear discretization of the diffusion term. This flux was
introduced in [§] in the context of the drift-diffusion system for semiconductors. The idea is to write

the flux — /(Vr(u) —qu)-Ng, as — /(th(u) —qu) - ng,s, where h is the enthalpy function

(o4 o
defined by (@). The flux is then defined with a standard upwinding for the convective term and a
nonlinear approximation for the diffusive term:

Fpb =
—75 (min (U, U DR (U)o +do (0 ,URT —ax ,UL ™)), Vo=KL,
—Tp (min (UL, UZ1) Dh (U)o + o 4 U —ag U ), Vo e &R, k.
0, Vo € 5£t7K,

where for a given function f, Df(U)k, is defined by

fUL) = f(Uk), if o = K|L € Ek int,
Df(U)K,U = f(UO') - f(UK)u ifoe g£7emtu
0, ifoe Eﬁwgt.

The Scharfetter-Gummel flux. This flux has been proposed and studied in [I6] and [23] in the
semiconductor framework. It is only valid in the case of a linear diffusion (r(s) = s). It is defined
by:
To (B(=doxc.o)Uic" = B(doar o )UL ), Vo = K|L € Exint,
Frtt =S 10 (B(—doqr o ) Ut — B(doq o) URTY) . Vo € ER uys
0, Vo €& %emt,

where B is the Bernoulli function defined by

B(z) = ezx—l forx #0, B(0)=1.




2.2.2 Extension of the Scharfetter-Gummel flux

Now we will extend the Scharfetter-Gummel flux to the case of a nonlinear diffusion. Firstly, if we
consider the linear case with a viscosity coefficient ¢ > 0, namely

Opu — div(eVu — qu) = 0 for (z,t) € Q x (0,7),

then the Scharfetter-Gummel flux is defined by:
—doqK,o do(K,o
Frtl=re (B (75}“ ) Uit - B (—qf ) Ug+1> Vo = K|L € Emtx.  (26)

Using the following properties of the Bernoulli function:

B(s) — 0and B(s) ~ —s,

s——+oo —0o0

it is clear that if € tends to zero, this flux degenerates into the classical upwind flux for the transport
equation dyu — div(qu) = 0:

Fith = m(o) (e, Ui = ax ,UE™) Vo = KIL € Einx. (27)
Now considering a nonlinear diffusion, we can write Vr(u) as r'(u)Vu. We note drg , an approx-

imation of 7/(u) at the interface o € £k, which will be defined later. We consider this term as a
viscosity coefficient and then, using (28], we extend the Scharfetter-Gummel flux by defining:

—dsqK,s doqK o
Todri.o (B (&) Uugtt — B (&) Ungl) , Vo = K|L € Eint k.,

» d’r’K7g TK,o
n = _dcr o dg a
FKo TodTK & (B <i> Uptt - B (L) Ug“) ; Vo € ED, ks (28)
dT‘KJ TK,o )
0, Vo € 55\9[”1}(.

In the degenerate case, drg , can vanish and then this flux degenerates into the upwind flux 27)).
Now it remains to define drg ..

Definition of drx,. A first possibility is to take the value of ' at the average of Uk and
U,:

- @ . Vo=KL € &k,
dri,e = (29)
r w> ; Voe&l, k-

This choice is quite close to the one of A. Jiingel and P. Pietra (see [I7, [19]). However, considering
the numerical results presented in the introduction, it seems important that the numerical flux
preserves the equilibrium. Therefore, we define the function dr as follows: for a, b € Ry,

M if ab > 0 and a # b,
dr(a,b) = { 108(0) ~log(a) (30)
’ ,(a+Dd Isowh
r 5 elsewhere,

10



and we set for all K € T

. dT(UK,UL), fOl”O'ZKlLEgK)mt,
dr.e = { dr(Ug,Uy,), for o € Elgezt. (31)
Remark 2. Let K € T and 0 € Ex. We assume that drg » is defined by (31) in (28) and that
Uk >0 and U, > 0. If dpqx.o = Dh(U) ko, then Fi , = 0.

Indeed,
Dh(U) k.o Dh(U)k,«
Fro = modriy (B(-20Wxe) g DMk
' ' dTK)g d/T‘KJ
exp (7D};iU)K’U) Uk — U,
K,o
exp (Tﬂ) -1

But using the definition [30) of dr, we obtain

e (PMW)ks\ _ Uy
P\ k., ) Uk’

and then Fk , = 0. Thus the scheme preserves this type of steady-state.
Time discretization. We choose an explicit expression of drg ,:

drt = { dr(Ug,Up), for 0 = K|L € Ex int, (32)

dr(Ug,U2), for o € Elgezt.

Thus we obtain a scheme which leads only to solve a linear system of equations at each time step.
To sum up, our extension of the Scharfetter-Gummel flux is defined by

—doqK 1 doqK 1
TUd?JII(,a' B d:n 2 U}%Jr -B C;’I”n_ﬁ UELJF s Yo = K|L S gK,inta
K,o K,o
Fico = —d d
5 a’qK,cr 1 crqK,cr
Todrg o | B o Ugt' — B T Urtl), Vo € ER purs
K,o K,o

N
Vo € 5K7ewt,

(33)
where dri , is defined by (B2)). This flux preserves the equilibrium.

2.3 Consistency of the numerical flux

Lemma 1. Let a, b€ R, a,b > 0. Then there exists n € [min(a,b), max(a,b)] such that

dr(a,b) = r'(n).

11



Proof. The result is clear if ab = 0 or @ = b. Let us suppose that ab > 0 and a < b (the proof is the
same if a > b). If we consider the change of variables x = log(a) and y = log(b), we obtain

h(exp(y)) — h(exp(z))
y—x

dr(a,b) =
and using Taylor’s formula, there exists 6 € [z, y] such that
dr(a,b) = exp(0)h/(exp(#)) = r’(exp(#)) (using the definition of h).
Finally, there exists 7 = exp(f) € [a, b] such that

dr(a,b) = r'(n).

O
Remark 3. The flux {33) can also be written as
UnJrl Un+1 o o o
Fiet = mlo)gi, U MOt oo ((dolite ) it ety (3
: * 2 2 2dry

The first term is a centred discretization of the convective part. The second term is consistent with

1
the diffusive part of equation (1), since coth(x) v
T

3 Properties of the scheme

3.1 Well-posedness of the scheme

The following proposition gives the existence and uniqueness result of the solution to the scheme
defined by (2I)-(22)-24)-(33) and an L>-estimate on this solution.

Proposition 1. Let us assume hypotheses (H1)-(H5). Let D be an admissible discretization of
Q% (0,T). Then there exists a unique solution {Up, K € T,0 <n < Nr} to the scheme (Z21)-(23)-
(24)-(33), with U >0 for all K € T and 0 <n < Np.

Moreover, if we suppose that the two following assumptions are fulfilled:

(H6) div(q) =0,
(HT7) there exist two constants m > 0 and M > 0 such that m < T,ug < M,

then we have

0<m<Ug<M, VKeT, VYn>0. (35)

Proof. At each time step, the scheme (21)-(22)-24)-([B3) leads to a system of card(7) linear equa-
tions on U™t = (Upt) k7 which can be written:

AnUn—i-l — Sn7

where :

12



e A™ is the matrix defined by

dr}?)a
K
o S" = (MU}§> + T, with
At KeT
0 if K € T such that m(0K NT) =0,
o= d(T g .
Thy = > redri,B (ﬁ) UM if K € T such that m(0K NT) # 0.
! T
oeegb Ko

ext, K

The diagonal terms of A™ are positive and the offdiagonal terms are nonnegative (since B(z) > 0
for all z € R and dri , > 0 for all K € T, for all 0 € k). Moreover, A" is strictly diagonally
dominant with respect to the columns. A" is then an M-matrix so A" is invertible, which gives
existence and uniqueness of the solution of the scheme. Moreover, (A")~! > 0 and since Up > 0
for all K € T (using (H3)) and U?*! > 0 for all n > 0, for all o € £L, (using (H2)), it is easy to
prove by induction that Uz > 0 for all K € T, for all n > 0.

Now, we suppose that (H6) and (H7) are fulfilled. We prove that Uy < M for all K € T, for all
n > 0 by induction. Thanks to hypothesis (H7), we have clearly U < M for all K € T.

Let us suppose that Up < M VK € 7. We want to prove UI@H <M VKeT.

Let us define M = (M, ..., M)T € R47)_ Since A" is an M-matrix, we have (4”)~' > 0 and then
it suffices to prove that A™ (U"+1 — M) <0.

We first compute A”M. Using the following property of the Bernoulli function:

B(z) — B(—x) = —x VzeR, (36)

we obtain that for all K € T,

K dg [ed
(anye =M [ B S g+ Y i, B (— ”‘*)

0€Eint, K ocEl, k
Then we compute A" (U™ —M): for all K € T

e -an) = Mg 3 i, (252 ) o
t Uegé)th dTK’a

d(T g
—M Z m(U)qK@r - M Z ngr%gB <_d/]"q%> .
K,o

o€Eint, K oeEl,

13



By induction hypothesis, the first term is nonpositive. Moreover, using hypothesis (H7) and the

property (B8], we obtain
K < -M :E: quU M j{: quU

0€Eint, K oc&P

S '_Al j{: qK'a

cEEK

(4" (U~ M)

ext, K

However, using hypothesis (H6) and the definition of gk , 23], we get
Z QKU—Z/q nKUds—/dw()
0€EK 0€EK

and then (A" (U™T! — M))K <0Oforall K eT.
So we have A™ (U"+1 — M) < 0, therefore we deduce that U?t! — M < 0, hence U}zfl <M VK
and we can show by the same way that U;é“ >m VK. O

Remark 4. In the case of the drift-diffusion system for semiconductors, the hypothesis (H6) is not
fulfilled (AV #0). Nevertheless, if we assume that

e the doping profile C' is equal to 0,
e there exist two constants m > 0 and M > 0 such that m < N, Ny, P, Py < M,
o MAL <1,
then we have, using the same kind of proof as in [9],
0<m< Ng <M, VK eT, Vn>0,
0<m< Py <M, VK eT, Vn>0.

Definition 2. Approzimate solutions us and s to the problem (I6))-(I7)-(I3)-(13) associated to
the discretization D are defined as piecewise constant functions by:

us(z,t) = Uptt, Y(x,t) € K x [t "], (37)
is(x,t) =UR,  V(z,t) € K x [t", "],
where {Ug, K € T,0<n < Nr} is the unique solution to the scheme (21))-(22)-(24)-(53).

3.2 Discrete L? (0, T; H') estimate on us

In this section, we prove a discrete L2 (O, T:H 1) estimate on us in the nondegenerate case, which
leads to compactness and convergence results.

For a piecewise constant function vs defined by vs(z,t) = vt for (2,t) € K x [t",t"+1[ and
vs(7y,t) = vt for (v,t) € o x [t",t"T![, we define

Nr
”1)5”%,D = Z At Z To ‘v"“ "H Z Z 7, ‘v"*l B 2
n=0

og€€int KeT gegPl

U:K‘L ext, K

14



Proposition 2. Let assume (H1)-(H7) are satisfied. Let us be defined by the scheme (21)-(22)-
ED-E and .

There exists D1 > 0 only depending on r, q, ug, @, 2 and T such that
us||?p < D1 (38)

Proof. We follow the proof of Lemma 4.2 in [I2]. Throughout this proof, D; denotes constants
which depend only on r, q, ug, @, 2 and T. We set

gl
n+1

U Atm / /xtda:dtVKeT Vn €N,

and .
witl = Uptt — Ty VK € T, VneN.

We multiply the scheme ([24)) by Atw%“ and we sum over n and K. We obtain A+ B = 0, where:

A = Z Z Un+l U}é) U]}?_l,

n=0 KeT
B = ZAtZ > Frttwitt
KeT o€k

Estimate of A. This term is treated in [12]. We get:
1 _ —
A2 —lluo — (-, 0|72y — 211068 1 @x (0,0 M = m| = =D (39)

Estimate of B. A discrete integration by parts yields (using that w?*! = 0 for all o € &L,
and for all n > 0):

B = ZAt Z ]:17?:71 n+1 n+1 + ZAt Z Z ]_-1724;1 n+1 ;LJrl)7

o€E;int n=0 KeT geeP

o— K‘L ext, K

which delivers B = B’ — B, with:

Nt
B = Y At Y Fpl(upt -upth) +ZAtZ oo Fpe (gt —uptt),
n=0 GE%TE n=0 KETU€5SM K
7€
1 1 o 1 1
B - ZAt S RSO -T) A Ay Y A (T =T,
Ue%ﬁ/ n=0 KGTUGSit 1%
g

15



Estimate of B. Using the expression (34) of .7-'}:;1, we have B = B; + Bs with

§1 = Z At Z % (UnJrl U£+1) (U?(-H _Uvz-i-l)
SEKTE
+ Z At Z Z QK o Un+1 U:Turl) (U?{Jrl B UZJrl) 7
- KeT oel, x
B, = Z At Z ;‘U(o oth (;%;5«:) (U}?'l _ Ug.g-l) (Urlz:-l _ UZ.H)
Ue‘gznt K,a'
o=K|L
+ Z At Z Z qKU coth (g;ﬁf") (U;Jrl _ U;L+1) (Uflz:l B UZH) '
- KGTUGS K,o

The term B is treated like in [12], which leads to
B1| < M||lloo[Ts]|1,pdm(€) = Ds.

We apply Young’s inequality for Bsy: for any o > 0, we have

2
|B,| < ZAt S o drKU)2(;lZlfg” coth(;l:lfg"» (Uptt —upthy?

o€€int
o=K|L
2
ddQK,a dUQK,U nt+l _ rrn41)\2
+— ZAtKZ Z 70 <2dr7f<UCOth<2dr7;{U>> (UK U’ )
GTUGSD ’ ’

1,
ol o

By the hypothesis (H4), we have inf r’(s) > 0. Then, using the Lemma[I] the L*> estimate on

s€[m,M]

us (B5) and the hypothesis (H5), we have

dotics _ lallcdiam(©)

2dr™ = inf 1’
Tk o sefﬁ,M]T(S)

,Vne N VK € T, Vo € k.

Moreover, since x — x coth(x) is continuous on R, we obtain

2

dO' o dO' o

QoK ooy | L2859 )\ ) < p, VneN,VK € T, Vo € Ex.
2dr%70 2dr%70

Thus we can bound B:

se€[m,M

2
— o 1
|B| < D3+ 5D ( up ]r'(s>> luslto + o [[7sll1.0- (40)
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Estimate of B’. First, using the expression ([B84]) of the flux and the Lemma [Il we have for all
n>0,forall K €T and for all 0 = K|L € &k

T n n m q ea n n
F oty = MO (g ()

da'qK o dcrqK o 1 1\2
TG’T/ nn " 5 th [771—1- lﬂH_ .
( K, )27,1(77711 ) <2 (,,7 U) ( K L )

Then, since x coth(z) > 1 for all z € R, we get:

n n n mi{o q Nea mn 2 n 2 : n n 2
]:Ktvl (UKH - UL+1) 2 ()TK ((UKH) - (ULH) ) + 7 se[lﬁfM] 7"/(5) (UKH - UL+1) :

We obtain the same type of inequality for ]-"};‘Ll (UI"(+1 -U g“) .Thus we get

et e+ YA Y MO (e )

s€[m,M n=0 c€Ent
oc=K|L
+ZNZ S RO ()t w)?).

n=0 KETUGSemP K

Through integrating by parts and using the hypothesis (H6), we get

ZAt S mie () - wp)?)

o€Eint
o=K|L
q o n 2 n 2
+ ZN > Y R (E - )
= KeT oeel, «
_ _Zm DY / ) o ds(x) (U = —Ds,
KETUGSeDmrK
and then
B'> inf r'(s)|usllp — Ds. (41)

s€[m,M]
Conclusion. Using A + B = 0 and estimates (39), {@0) and {Il), we finally get for any o > 0:

2
« 1
inf /(s)— =Dy sup 7'(s usl|? » < Do + Ds + Dy + —||s||? »,
TR (Se[m)M] ®) | luslko L sl

2 infM ' (s)
thus for a < o€lm, M]

5, we obtain ||us|[} p < Di. O

Dy sup 7'(s)
s€[m,M]
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4 Convergence

In this section, we prove the convergence of the approximate solution us to a weak solution u of
the problem (I6)-(I7)-([I8)-(T3). Our first goal is to prove the strong compactness of (us)s>o in
L? (2x]0,T]). It comes from the criterion of strong compactness of a sequence by using estimates
B5) and [@BY). Then, we will prove the weak compactness in L?(Q2x]0,T[) of an approximate
gradient. Finally, we will show the convergence of the scheme.

4.1 Compactness of the approximate solution

The following Lemma is a classical consequence of Proposition 2] and estimates of time translation
for us obtained from the scheme (2I)-([22)-(24)-([B3]). The proof is similar to those of Lemma 4.3
and Lemma 4.7 in [I4].

Lemma 2 (Space and time translate estimates). We suppose (H1)-(H7). Let D be an admissible

discretization of @ x (0,T). Let us be defined by the scheme (21)-(22)- (24)-(33) and by (57).
Let @ be defined by 15 = us a.e. on Qx (0,T) and iis = 0 a.e. on R\ Q x (0,7).
Then we get the existence of My > 0, only depending on 2, T, r, q, up, @ and not on D such that

T
/ / (a5(z + 1,t) — 5(z,£))? dedt < Maln|(1n] + 46), Vi € RY, (42)
0 Q
and
T
/ / (5 (z,t + 7) — Gs(z, 1)) dadt < My|7|, V7 €R. (43)
0 Q

Now, we define an approximation V%us of the gradient of u. Therefore, we will define a dual
mesh. For K € T and o € €k, we define Tk , as follows:

o if o = K|L € Eint i, then Tk, is the cell whose vertices are zx, 2 and those of o = K|L,
o if 0 € E.ut i, then T, is the cell whose vertices are xx and those of o.

See [II] for an example of construction of Tk ,. Then ((TK7U)U€5K) define a partition of .
KeT

The approximation Vous is a piecewise function defined in Q x (0,T) by:

rn(%a)) (Uzl""l - U}l{-ﬁ-l) ng o if (I,t) e TK,U X [tn,t’nﬁFl[’ o= K|L,
V6U§($,t) = m(§>a

m(Tk, ;) (U;H_l B UI%JFI) Ko if (I’ t) € TKvU X [tna tn+1[7 (S gemt,K.

m(TK,a')

Proposition 3. We suppose (H1)-(H7).
There exist subsequences of (us)sso and (Vous)sso, still denoted (us)s>o and (Vous)s=o, and a
function uw € L>=(0,T; H'(Q)) such that

Us = u in L*(Qx]0,T[) strongly, as 6 — 0,
Vous — Vu in (L2(2x]0,T)))? weakly, asé — 0.
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Proof. Using estimates ([@2)-([@3) and applying the Riesz-Fréchet-Kolmogorov criterion of strong
compactness [5], we obtain the first part of this Proposition. The result concerning Vous is proved
in [9]. O

Since Us(x, t+At) = us(z, t) for all (z,t) € 2x]0, T, it is clear using the time translate estimate
@3) that (us)s>o and (iis)s>0 have the same limit u in L?(22x]0,T[). Then we have the following
Corollary:

Corollary 1. We suppose (H1)-(H7). Let u be the function defined in Proposition (3).
There exists a subsequence of (lis)sso, still denoted by (is)s>o, such that

s — u in L*(Qx]0,T]) strongly, as § — 0.

4.2 Convergence of the scheme

Now it remains to prove that the function u defined in Proposition [3] satisfies Definition [I] of a weak
solution. The main difficulty in proving this comes from the fact that the diffusive and convective
terms are put together in the Scharfetter-Gummel flux.

Theorem 1. Assume (H1)-(H7) hold. Then the function u defined in Proposition [3 satisfies the
equation (I0)-(T7)-(I8)-(I) in the sense of [20) and the boundary condition u—u € L*>(0,T; Hj ().

Proof. Let ¢ € D(Q x [0,T]) be a test function and ¢} = ¢(zk,t") for all K € T and n > 0. We
suppose that § > 0 is small enough such that Supp(y) C {x € Q; d(z,T') > §} x [0, (Np — 1)At].
Let us define an approximate gradient of ¢ by

s m(T(;) )‘ (VL —Yk) Ko if (x,t) € Tk % [t", "], 0 = K|L,
VoY (z,t) = ¢
TT(? j (Yo — VK ) DKo if (x,t) € Tk.o X [t 1", 0 € Eentrc

We get from [13] that (V°4)s=0 weakly converges to Vi) in (L2(Q x (0,T)))% as & goes to zero.
Let us introduce the following notations:

T
Bip(d) = - </0 /Q us(x, t)Op)(x, t) da dt + /Q us(z,0)(z,0) dx) ,

Bso ()

T
/ / ' (s (x, 1) Vous(x,t) - Vap(x,t) dx dt,
o Ja

T
By() = - / | wste.tata) - V(o) do

and

e(0) = —B10(6) — B20(6) — Bso(9).
Multiplying the scheme (24) by Aty} and summing through K and n, we obtain

B1(6) + B2(6) + Bs(6) =0,
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where

Nt
Bi(6) = > > m(K) (Ut - Uk) ¥k,

n=0KeT

[eg d(T [eg n n n
By(d) = - Z Aty Y= qK coth (ﬁ) (U = UR) vk,

KeT ok

Un+1 U:TlJrl N
Bs3(0) = ZAtZ Z QKUf"/}K'

KeT ok

From the strong convergence of the sequences (us)s>o and (is)s>o to u in L*(Qx]0,7T) and the
weak convergence of the sequences (VOus)s=o to Vu and (V°1))s=0 to Vb in (L2(2x]0,T[))?, it is
easy to see that

T
e(d) — / / (w(z, )opp — 7' (u(z, t))Vu(z, t) - Vi + ulz, t)q(z) - V) dzdt
o Jo
+/ u(z,0)t(x,0)dx, as § — 0.
Q

Therefore, it suffices to prove that €(§) — 0 as § — 0 and to this end we are going to prove that
e(8) + B1(8) + B2(d) + B3(6) — 0 as 6 — 0.

Estimate of B;(J) — B1o(d). This term is discussed for example in [9] (Theorem 5.2) and it is
proved that:

|B1(8) — Bio(9)| < [(T + 1)m(Q) M ||9]lc2(x(0,1))] § — 0 as § — 0.
Estimate of B2(0) — Bag(d). Using a discrete integration by parts, we write

)QK I deK,a n n n n
Z At Z 2 coth 2d7°7;<_’0 (UL+1 - UKH) (VL —VK)-

0€Eint
oc=K]|L

Then we rewrite BQ (5) = B21 (5) + B22 (5) + ng (5), with

Ba(8) = ZAt > ' (UR) (U = URH) (07 — vk),

0€Eint
o=K|L
N
By (0) = ZT:At > o dodito oo [ dodio ) g drte (U — UL (1 — )
2dr?, 2dr?, o AL K ’
n=0 UESiTi 0 ,o
o=K

By3(8) = § :At § T (drfe o — ' (UR)) (U = UE) (0 — vi) -
g€Eint
o=K|L
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Using the definition of iis and Vous, we rewrite Bag(8) as Ba1g(d) + Bago(8) with:

tntt
Boio(0) = Z > %(Ug“—U;;“)/ Vi (x,t) - g dz dt
n=0 c€E;nt K’U t Tk.o
o=K|L
m(U) n+1 n+1 o
Baoo(0) = Z > o'y -+ UK))W(UL - Upth Vi (x,t) - ng gdz dt.
n=0oc€&;nt T tm Tr,oNL
o=K|L

Now we prove that Ba;(§) — B210(6) — 0 as 6 — 0 and Baa(d), Bas(d), Ba2o(d) — 0 as § — 0.

Estimate of B2;(0) — Ba1p(d). We have

Yy wn _ 1/}71 1
B21(5 Bglo Z Zm /tn < LdU K _ m(TK7U) A}Y:ﬂ(z,t) ‘NK o dz | dt]|.

n=00€E;nt
Since the straight line Txzr is orthogonal to the edge K|L, we have zp — xx = dong,, and
then from the regularity of 1,
YL — ¥k
dy

= V1/)(xK, tn) ‘Ng s+ O(AI)
= Vi(z,t) nge+0(5), Y(z,t) € Tro x (¢, "),

Then by taking the mean value over Tk o, there exists Dg > 0 depending only on 9 such that

tn+1

UL — Vi 1 /
- Vi ng, de | dt
/tn < d, m(Txo) Jre., vonx,

T
| B21(8) — Ba10(0)] < 6Dg S[upM] () At Y m(o) [UPT - UR.
selm, 0€Eint

< DgdAt,

and then

Since the straight line Tz is orthogonal to the edge o = K|L for all 0 € £, x and the mesh
is regular, there is a constant D7 > 0 depending only on the dimension of the domain and the
geometry of T such that m(o)d, < Drm(Tk ) for all K € T , all 0 € Eepy, ik and then using the
Cauchy-Schwarz inequality and the L?(0,T; H') estimate (38), we obtain

|B21(5) — B210(5)| < 5D6 sup ’I”I(S) DlTD7IIl(Q) —s0asd —0.
s€[m,M]

Estimate of Byy(d). Since z — x coth(x) is a 1-Lipschitz continuous function and is equal to
1 in 0, we have

ZAt S O e U - U g —

| Baz(6)] 9
Uegmt

IN

IN

25HQHOOZA1€ S Ut - U [ — W], since d, < 26.

n=0 c€Eint
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Then using the Cauchy-Schwarz inequality, the regularity of ¢ and the L2(0,7T; H') estimate (B3],
there exists Dg > 0 only depending on T" and €2 such that:

|B22(6)| < 6lallec Dsl|tllcrv/ D1 — 0 as 6 — 0.
Estimate of B23(d). Using Lemma [Tl and hypothesis (H4), we have
|drie . — 7' (UR)| < sup |r"(s)| U} = Ug|, Vo € Emnt, 0 =K|L.
s€[m,M]

Using the regularity of ¥ and the Cauchy-Schwarz inequality, we obtain

|Bas(0)| < 0 sup [ ()Y llex ZN Y 7w lUE = URIUEH = Ut
se

0€Eint
and then using the L2(0,T; H') estimate (B8], we get

|Ba3(8)] <8 sup  |[r"(s)|||¢|lcr D1 — 0 as § — 0.
s€[m,M]

Estimate of Ba22o(d). We obtain the same type of estimate as for Bas(d):
|Ba2o(8)] <26 sup |7 (s)|||v]|c: D1 — 0 as § — 0.
]

se|m,

Estimate of B3(d) — Bsp(d). Using a discrete integration by parts, we obtain

Un+1 + U’Il"rl
ZAt d>om )QKU%(U@—U)}?),

0€Eint

and then we rewrite B3(d) as Bs1(d) + Bs2(0), with

U’n,+1 UnJrl

B31(5) = - Z At Z )qKULf (wL 1/’?() )

o€€int
B32(5) = - Z At Z )qK a’ljnJrl (1/12 - 1/}nK) .
o€€int

Using the definition of V%, we get

tn+1

Baol® ZZEE [, wte s (01 = k) ) g da .

which gives, using the definition of ugs, Bso(d) = Bs10(6) + Bs20(d), where

/
T q(I) -1 K,o dI)
( K O) IK,U L

1

Banll) = =30 5 W (0 gy [ o) e

n=00€E;nt

Bsio(6) = —ZAt > m(o) (U = U™ (0 — ) ——

0€Eint
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Now we prove that Bsa(d) — B3ag(d) — 0 as 6 — 0 and Bs1(d), Bs10(6) — 0 as 6 — 0.
Using the regularity of q, there exists Dg > 0 which does not depend on  such that

.
m(c)

Then we can estimate Bsa(d) — Bsag(9):

1
/ q(.’I]) . nK,a’ dS({I,') — m‘/,r q(x) . nK,o’ d.’II S D95
o ;0 K

,o

Nt

|Bs2(8) — Bazo(8)] < 0DoM Y At Y m(o) [} — vi]

n=0 c€Eint

5D8D9M||1/)Hcl D7H1(Q) —0asd — 0.

IN

Moreover, we have

Nt
Ba(@)] < dllall > At D 7o [UET = UR 0 — 0]
n=0 o€€int
< dldlleoll®]lcr Dsy/ D1 — 0 as § — 0.

We obtain in the same way that Bs1o(d) — 0 as d — 0.

Hence u satisfies
/OT/Q (u(z, )0up(x, t) + 7' (u(z, 1)) Vu(z, t) - Vo (z, t) + u(z, t)q(z) - Vib(z, 1)) do dt
+/Qu(w,0)w(:v,0) da = 0,
and then
/OT /Q (u(z, )0 (2, 1) + V(r(u(z,1))) - Vip(x,t) + u(z, t)q(z) - Vip(z, 1)) drdt
+/QU(:C,0)w(x,o) da = 0.

It remains to show that u —u € L*>(0,7; H}(Q)). This proof is based on the L?(0,7; H'(Q))
estimate ([B8) and is similar to the one of Theorem 5.1 in [9].
o

5 Numerical simulations

5.1 Order of convergence

We consider the following one dimensional test case, picked in the paper of R. Eymard, J. Fuhrmann
and K. Gértner [12]. We look at the case where, in (6] we take Q = (0,1), T = 0.004, 7 : s — 52,
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q = 100, in ([IT) we take ug = 0 and in (8] we take, for v = 200,

u(0,t) = (v—q)vt/2

B B 0 for t < 1/v,
u(l,t) = { (v—q)(vt—1)/2 otherwise.

The unique weak solution of this problem is then given by

] w=q)(vt—x)/2 it x < wt,
u(@,t) = { 0 if z > ot.

The time step is taken equal to At = 1078 to study the order of convergence with respect to the
spatial step size Az. In Tables[Mand 2 we compare the order of convergence in L> and L? norms of
the scheme (ZI)-(22)-(24) defined on one hand with the classical upwind flux (25]) and on the other
hand with the Scharfetter-Gummel extended flux ([B3]). We obtain the same order of convergence
as in [I2]. Moreover, it appears that even if we are in a degenerate case, the Scharfetter-Gummel
extended scheme is more accurate than the classical upwind scheme.

Jj | Az(y) lu — us||L | Order | |lu—wus||p= | Order
Upwind SG extended
0251072 1.110 2.137.1071
1] 1.25.1072 | 7.237.107! 0.62 1.107.10~1 0.95
2 |6.3.1073 4.485.1071 0.69 5.631.1072 0.98
3311073 2.685.10~1 0.74 2.84.1072 0.99
41.6.1073 1.568.10~1 0.78 1.426.10~2 1
5| 81074 9.1072 0.80 7.15.1073 1
. . . . , 0.1
Table 1: Experimental order of convergence in L> norm for spatial step sizes Axz(j) = oY= of the

classical upwind scheme and of the Scharfetter-Gummel extended scheme.

Jj | Ax(y) llu —us||r2 | Order | |lu—wus||rz | Order
Upwind SG extended

0251072 3.336.101 4.806.10~2

1] 1.25.1072 | 1.852.10~* 0.85 1.642.1072 1.55
2| 6.3.1073 9.911.1072 0.9 5.695.1073 1.53
3311073 5.182.1072 0.94 2.1073 1.51
41.6.1073 2.669.102 0.96 7.142.1074 1.49
5| 81074 1.361.10~2 0.97 2.695.10~4 1.41

0.1
Table 2: Experimental order of convergence in L? norm for spatial step sizes Az(j) = Py of the

classical upwind scheme and of the Scharfetter-Gummel extended scheme.
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5.2 Large time behavior
5.2.1 The drift-diffusion system for semiconductors

We may define the finite volume approximation of the drift-diffusion system (I)-(2)-(3]). Initial and
boundary conditions are approximated by (2I)) and ([22). The doping profile is approximated by
(Ck) ket by taking the mean value of C on each volume K. The scheme for the system () is given
by:

N;l(+1 — NI% n+1 _
m(K) e Y FRlt =0, VK € T,n >0,
1 oelk
PI? - PI% n+1
m(K )~ ; gl =0, VK € T,Yn >0,
o0l

ZUEEK TUDV%,(T = IH(K) (g(aN +V£) —g(OéP _Vg) _OK)a VK € 'T,Vn Z 07

where

—-DV}2 DV}
n+1 _ n n K,o n+l K,o n+1
]—‘Kﬂ = 1odr (N, NT) (B (7617’ (N}é,NQ)) Ny B (7&(]\7}%7]\@)) N, ) , Yo € &k,

and

DV —DV32
n+l _ ad P pn B K,o Pn+1 _B K,o Pn+1 .
Grly = Todr(Pg, PY) < 7dr(P}é,Pg) e 7dr(P}},Pgl) " , Vo ek

We compute an approximation (N, P4, Vi) ket of the thermal equilibrium (N, P4, Ve?) de-

fined by ([@)-(@) with the finite volume scheme proposed by C. Chainais-Hillairet and F. Filbet in
[8].

Then we introduce the discrete version of the deviation of the total energy from the thermal equi-
librium (8): for n >0,

£ = Y m(K)(H(Ng) - HN) = h(Ng) (Ng = Ni&))
KeT

+ Y m(K) (H(PR) — H(PE) = h(P) (P = Pi!))
KeT
1 . e 21

t5 D T DVE.—DVEL| +5 0 D

0€Eint KGTUElgD,
U:K‘L ext, K

2
DVg , — DVIE(?U ,
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and the discrete version of the energy dissipation (@): for n > 0,

" = Y rpmin (NpH, NpH [D (h (N"H)‘Vn)mr
)

30> momin (NEFLNETY) [D (R (N7 V")KO_}2
KeT o€€ert, Kk )

+ Z T, min (Pt PP [D (h (P™) + Vn)K,d} 2
o€€int
o=K|L

£ womin (L) [D (0 (P v, ]
KeT 0€€cat, Kk 1

We present a test case for a geometry corresponding to a PN-junction in 2D picked in the paper of
C. Chainais-Hillairet and F. Filbet [§]. The doping profile is piecewise constant, equal to +1 in the
N-region and —1 in the P-region.

The Dirichlet boundary conditions are

h(N) — h(P)

<l
[

N=01, P=009, on{y=1, 0<z<0.25},

)

[\

h(N) — h(P)

=
<l
I

=09, P

0.1, on {y =0}.

[\

Elsewhere, we put homogeneous Neumann boundary conditions.

The pressure is nonlinear: r(s) = s7 with v = 5/3, which corresponds to the isentropic model.

We compute the numerical approximation of the thermal equilibrium and of the transient drift-
diffusion system on a mesh made of 896 triangles, with time step At = 0.01.

We then compare the large time behavior of approximate solutions obtained with the three following
fluxes:

e the upwind flux defined by 25) (Upwind),

e the Scharfetter-Gummel extended flux [B3]) with the first choice 29)) of drk ,, close to that
of Jiingel and Pietra (SG-JP),

o the Scharfetter-Gummel extended flux (B3]) with the new definition BI)) of drg » (SG-ext).

In Figure [B] we compare the discrete relative energy £™ and its dissipation Z™ obtained with the
Upwind flux, the SG-JP flux and the SG-ext flux. With the third scheme, we observe that £
and Z™ converge to zero when time goes to infinity, without a saturation phenomenon. This scheme
is the only one of the three which preserves thermal equilibrium, so it appears that this property is
crucial to have a good asymptotic behavior.

5.2.2 The porous media equation

We recall that the unique stationary solution u®? of the porous media equation (I2) is given by the
Barenblatt-Pattle type formula ([I3]), where C; is such that u? as the same mass as the initial data
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Relative energy Energy dissipation
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Figure 3: Evolution of the relative energy £" and its dissipation Z" in log-scale for different schemes.

ug. We define an approximation (Ug!) .., of u®d by

| N\ VO
Ueq—<01——|$K|> , KeT,
2y n

where C) is such that the discrete mass of (U?)KGT is equal to that of (U?()KET’ namely

Z m(K)U = Z m(K)UY%. We use a fixed point algorithm to compute this constant Ci.

KeT KeT
We introduce the discrete version of the relative entropy (4]

o= 3 ) (o) - e+ 5L 0y )
KeT

and the discrete version of the entropy dissipation (L&)

n 3 n mn n |$|2

" = > rmin (U, UM D<h(U )+ 5
o€Eint K,o
oc=K]|L

—|—Z Z Tgmin(U}?l,U;‘“)

2
b (s0my+ )
KETO’ESSILK K,o

We consider the following one dimensional test case: 7(s) = s2, with initial condition

o) = (e (52 o (22,

Then we compute the approximate solution on (—6, 6) x (0, 10). The space step is fixed to Az = 0.01

and the time step to At = 0.001.
In Figure [l we plot the evolution of the numerical solution u computed with the SG-ext flux
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at three different times ¢t = 0, t = 0.7 and ¢t = 3 and the approximation of the Barenblatt-Pattle
solution. In Figure [l we compare the relative entropy £™ and its dissipation Z" computed with
the scheme (24)) and different fluxes: the Upwind flux, the SG-JP flux and the SG-ext flux. We
made the same findings as in the case of the drift-diffusion system for semiconductors: the third
scheme is the only one of the three for which there is no saturation phenomenon, which confirms
the importance of preserving the equilibrium to obtain a consistent asymptotic behavior of the
approximate solution. Moreover it appears that the entropy decays exponentially fast, which has
been proved in [7].

In Figure [6] we represent the discrete L' norm of U — U®? (obtained with the SG-ext flux) in log
scale. According to the paper of J. Carrillo and G. Toscani, there exists a constant C' > 0 such
that, in this case,

3
|u(t,z) — ueq(I)HLl(R) < Cexp <—gt> , t>0.

We observe that the experimental decay of u towards the steady state u? is exponential, at a rate

3
better than 5
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0.6 T T T T T 0.6 T T -
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Figure 4: Evolution of the density of the gas u and stationary solution u°?.
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Relative entropy Entropy dissipation
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Figure 5: Evolution of the relative entropy £" and its dissipation Z" in log-scale for different
schemes.
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Figure 6: Decay rate of |[U — U®?|| 1.

6 Conclusion

In this article, we presented how to build a new finite volume scheme for nonlinear convection-
diffusion equations. To this end, we have to adapt the Scharfetter-Gummel scheme, in such way
that ensures that a particular type of steady-state is preserved. Moreover, this new scheme is easier
to implement than existing schemes preserving steady-state.

In addition, we have shown that there is convergence of our scheme in the nondegenerate case. The
proof of this convergence is essentially based on a discrete L? (0, T Hl) estimate (38). A first step
to then prove the convergence in the degenerate case would be to show this estimate without using
the uniform lower bound of wug.

Finally, we have observed that this scheme appears to be more accurate than the upwind one, even
in the degenerate case. Indeed, we have applied it to the drift-diffusion model for semiconductors
as well as to the porous media equation. In these two specific cases, we clearly underlined the
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efficiency of our scheme in order to preserve long-time behavior of the solutions. At this point, it
still remains to prove rigorously this asymptotic behavior, by showing a similar estimate to the one
of the continuous framework (7)) for discrete energy and discrete dissipation.

Acknowledgement: The author would like to thank C. Chainais-Hillairet and F. Filbet for fruitful
suggestions and comments on this work.
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