Sweeping the cd-Index and the Toric h-Vector

Carl W. Lee
Department of Mathematics
University of Kentucky

April 6, 2009, Revised November 1, 2010

Abstract

We derive formulas for the cd-index and the toric h-vector of a convex polytope P from a sweeping by a hyperplane. These arise from interpreting the corresponding S shelling [14] of the dual of P. We describe a partition of the faces of the complete truncation of P to reflect explicitly the nonnegativity of its cd-index and what its components are counting. One corollary is a quick way to compute the toric h-vector directly from the cdindex that turns out to be an immediate consequence of formulas in [2]. We also propose an "extended toric" h-vector that fully captures the information in the flag h-vector.

1 Introduction

By sweeping a hyperplane across a simple convex d-polytope P, the h-vector, $h\left(P^{*}\right)=$ $\left(h_{0}, \ldots, h_{d}\right)$, of its dual can be computed - the edges in P are oriented in the direction of the sweep and h_{i} equals the number of vertices of outdegree i. Moreover, the nonempty faces of P can be partitioned to explicitly reflect the formula for the h-vector. For a general convex polytope, in place of the h-vector, one often considers the flag f-vector and flag h-vector as well their encoding into the cd-index, and also the toric h-vector (which does not contain the full information of the flag h-vector). In this paper we derive formulas for the cd-index and for the toric h-vector of a convex polytope P from a sweeping of P (Theorems 2, 3, 4 and 6). These arise from interpreting the corresponding S-shelling [14] of the dual of P. We describe a partition of the faces of the complete truncation of P to provide an interpretation of what the components of the cd-index are counting (Theorem 1 and Corollary 11). One corollary (Theorem (5) is a quick way to compute the toric h-vector directly from the cd-index that turns out to be an immediate consequence of formulas in [2]. We also propose an "extended toric" h-vector that fully captures the information in the flag h-vector (Section 4.3).

Refer to [4, 5, 6, 7, 10, 11, 15], for example, for background information on polytopes and their face numbers.

2 The h-Vector

We begin by reviewing some well-known facts about f-vectors of polytopes. For a convex d-dimensional polytope (d-polytope) P let $f_{i}=f_{i}(P)$ denote the number of i-faces (i-dimensional faces) of $P, i=-1, \ldots, d$. (Note that $f_{-1}=1$, counting the empty set, and $f_{d}=1$, counting P itself.) The vector $f(P)=\left(f_{0}, \ldots, f_{d-1}\right)$ is the f-vector of P, and $f(P, x)$ is defined to be $\sum_{i=0}^{d} f_{i} x^{i}$. Faces of dimension 0,1 , and $d-1$ are called, respectively, vertices, edges, and facets of P. The set of vertices of P will be denoted vert (P). A d-polytope is simplicial if every face is a simplex. A d-polytope is simple if every vertex is contained in exactly d edges. A dual to a simplicial polytope is simple, and vice versa.

Let $P \subset \mathbf{R}^{d}$ be a simple d-polytope. The h-vector of the dual P^{*} of P is $\left(h_{0}, \ldots, h_{d}\right)$ where $h(P, x)=f(P, x-1)=\sum_{i=0}^{d} h_{i} x^{i}$. Choose a direction $p \in \mathbf{R}^{d}$ such that the inner product $p \cdot x$ is different for each vertex v of P. Sweep the hyperplane $H=\left\{x \in \mathbf{R}^{d}: p \cdot x=q\right\}$ across P by letting the parameter q range from $-\infty$ to ∞. (Recall that if P contains the origin in its interior, then ordering the vertices of P using a sweeping hyperplane corresponds to ordering the facets of the polar dual P^{*} using a line shelling induced by a line through the origin.) Orient each edge of P in the direction of increasing value of $p \cdot x$.

Each face of P will have a unique minimal vertex with respect to this orientation. To each vertex v associate the set B_{v} of nonempty faces having v as the minimal vertex, and (with a small abuse of notation) associate the monomial $h_{v}=x^{i}$, where i is the outdegree of v. Then $\mathcal{B}=\left\{B_{v}: v \in \operatorname{vert}(P)\right\}$ is a partition of the nonempty faces of P. The faces in B_{v} contribute $(x+1)^{i}$ to $f(P, x)$ and so contribute h_{v} to $h(P, x)$. Therefore $h(P, x)=\sum_{v} h_{v}$ and each block B_{v} contributes a coefficient of 1 to a single monomial.

3 The cd-Index

Two objects of study that each, in its own way, generalizes the simplicial h-vector, are the cd-index and the toric h-vector. Stanley 14 introduced the notion of S-shellings to demonstrate the nonnegativity of the cd-index.

We will consider a sweeping of a polytope P and, motivated by the calculations associated with the S-shelling of its dual, will construct a partition $\mathcal{B}(P)$ of the nonempty faces of the complete truncation of P, such that each block of $\mathcal{B}(P)$ contributes a coefficient of 1 to one word of the cd-index of P.

3.1 Definitions

Let P be a convex d-polytope. Using the notation $[d-1]=\{0, \ldots, d-1\}$, for every subset $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq[d-1]$ where $s_{1}<\cdots<s_{k}$, define an S-chain to be a chain of faces of P of the form $F_{1} \subset \cdots \subset F_{k}$ where F_{i} is face of P of dimension $s_{i}, i=1, \ldots, k$. Let $f_{S}(P)$ be the number of S-chains. The vector $\bar{f}(P)=\left(f_{S}(P)\right)_{S \subseteq[d-1]}$ is the flag f-vector of P.

Now define

$$
\begin{equation*}
h_{S}=h_{S}(P)=\sum_{T \subseteq S}(-1)^{|S|-|T|} f_{T}(P), S \subseteq[d-1] . \tag{1}
\end{equation*}
$$

The vector $\bar{h}(P)=\left(h_{S}(P)\right)_{S \subseteq[d-1]}$ is the flag h-vector or extended h-vector of P, introduced by Stanley [12].

Bayer and Billera showed that the affine span of the set $\{\bar{h}(P): h$ is a convex d-polytope $\}$ has dimension $F_{d}-1$, where F_{d} is the d th Fibonacci number. Bayer and Klapper [3] proved that the flag h-vector can be encoded into the cd-index, which precisely reflects this dimension. Associate with each subset $S \subseteq[d-1]$ the word $w_{S}=w_{0} \cdots w_{d-1}$ in the noncommuting indeterminates \mathbf{a} and \mathbf{b}, where $w_{i}=\mathbf{a}$ if $i \notin S$ and $w_{i}=\mathbf{b}$ if $i \in S$. The $\mathbf{a b}$-index of P is then the polynomial

$$
\Psi(P)=\Psi(P, \mathbf{a}, \mathbf{b})=\sum_{S \subseteq[d-1]} h_{S}(P) w_{S}
$$

The existence of the cd-index asserts that there is a polynomial in the noncommuting indeterminates \mathbf{c} and $\mathbf{d}, \Phi(P)=\Phi(P, \mathbf{c}, \mathbf{d})$, such that setting $\mathbf{c}=\mathbf{a}+\mathbf{b}$ and $\mathbf{d}=\mathbf{a b}+\mathbf{b a}$ we have $\Phi(P, \mathbf{c}, \mathbf{d})=\Phi(P, \mathbf{a}+\mathbf{b}, \mathbf{a b}+\mathbf{b a})=\Psi(P, \mathbf{a}, \mathbf{b})$. Note that \mathbf{c} has degree one, \mathbf{d} has degree two, and $\Phi(P)$ has degree d. There are $F_{d} \mathbf{c d}$-words of degree d and one of them, \mathbf{c}^{d}, will always have coefficient 1 . Therefore the remaining $F_{d}-1$ terms of the $\mathbf{c d}$-index capture the dimension of the affine span of the flag f-vectors of d-polytopes.

3.2 Partitioning the Complete Truncation

Given a d-polytope, we will first construct its complete truncation $T(P)$, the faces of which are in bijection with the chains of P. We will partition the faces of $T(P)$ into blocks, with a certain collection of blocks (and corresponding contribution toward $\Phi(P)$) associated with each vertex of P.

Truncate all of the faces of P by first truncating the vertices of P, translating a supporting hyperplane to each vertex a depth ϵ into P and giving each resulting $(d-1)$-face the label 0 . Then continue by truncating the original edges of P at a depth of ϵ^{2} and giving each resulting $(d-1)$-face the label 1 , truncating the original 2 -faces of P at a depth of ϵ^{3}, etc., until finally truncating the original $(d-1)$-faces of P at a depth of ϵ^{d}. Here, $\epsilon>0$ is taken
to be sufficiently small for the sake of subsequent arguments. The resulting simple polytope, $T(P)$, called the complete truncation of P, is dual to the complete barycentric subdivision of the dual P^{*} of P, and its faces are in one-to-one correspondence with the chains of P. In fact, each nonempty face G of $T(P)$ corresponds to an S-chain of P, where $\sigma(G)=S$ is the set of labels of all of the facets of $T(P)$ containing G. The polytope $T(P)$ itself is labeled by the empty set. For the sweeping hyperplane, choose a vector $p \in \mathbf{R}^{d}$ such that the inner product $p \cdot x$ is different for all vertices occurring at all stages in the truncation process. See the first row of Figure 2 for an example of a pentagon and its truncation.

For each nonempty face G of $T(P)$ of positive dimension $\operatorname{dim}(G)$ let $j=\min \{i: i \notin \sigma(G)\}$ and w be the vertex of G with greatest value of $p \cdot x$. Define the top face of G to be the unique face $\tau(G)$ of G of dimension $\operatorname{dim}(G)-1$ that contains w and has label set $\sigma(G) \cup\{j\}$. Similarly, let w^{\prime} be the vertex of G with the smallest value of $p \cdot x$, and define the bottom face of G to be the unique face $\beta(G)$ of G of dimension $\operatorname{dim}(G)-1$ that contains w^{\prime} and has label set $\sigma(G) \cup\{j\}$. See the second row of Figure 2- each polygon depicts a certain face of $T(P)$, together with its top and bottom faces.

For vertex v of P, let Q_{v} be the $(d-1)$-face created when truncating v in P, and $T\left(Q_{v}\right)$ be the complete truncation of Q_{v} induced by $T(P)$. Define $H_{v}=\left\{x \in \mathbf{R}^{d}: p \cdot x=q_{v}\right\}$ to be the hyperplane in the sweeping family that contains v, H_{v}^{+}to be the open halfspace $\left\{x \in \mathbf{R}^{d}: p \cdot x>q_{v}\right\}$, and H_{v}^{-}to be the open halfspace $\left\{x \in \mathbf{R}^{d}: p \cdot x<q_{v}\right\}$. Faces of $T\left(Q_{v}\right)$ will be called upper, middle, or lower faces according to whether they lie in H_{v}^{+}, intersect H_{v}, or lie in H_{v}^{-}, respectively. Note that if v is the vertex of P minimizing $p \cdot x$ then $T\left(Q_{v}\right)$ has no middle or lower faces, and if v is the vertex of P maximizing $p \cdot x$ then $T\left(Q_{v}\right)$ has no middle or upper faces. Let R_{v} be the polytope $Q_{v} \cap H_{v}$, which has dimension $d-2$ when it is nonempty. (R_{v} will be empty if and only if v minimizes or maximizes $p \cdot x$ over P.) Let $T\left(R_{v}\right)$ be the complete truncation of R_{v} induced by $T(P)$; namely, $T\left(R_{v}\right)=T\left(Q_{v}\right) \cap H_{v}$. Hence the faces of $T\left(R_{v}\right)$ are precisely the intersections of H_{v} with the middle faces of $T\left(Q_{v}\right)$. Observe that for a face G of $T(P), 0 \in \sigma(G)$ if and only if G is a face of some $T\left(Q_{v}\right)$.

Lemma 1 For any face G of $T(P)$ such that $0 \notin \sigma(G)$, the top face $\tau(G)$ is a lower face of some $T\left(Q_{v}\right)$, and the bottom face $\beta(G)$ is an upper face of some (other) $T\left(Q_{v}\right)$. Further, for every v, every lower and upper face of $T\left(Q_{v}\right)$ is uniquely obtainable in this way.

Proof. Suppose $0 \notin \sigma(G)$. Then $\sigma(\tau(G))=\sigma(G) \cup\{0\}$. Let v be the vertex of P for which $T\left(Q_{v}\right)$ contributes the label $\{0\}$ to $\tau(G)$, and let w be the vertex of G that maximizes $p \cdot x$ over G. Then $p \cdot w<p \cdot v$, and so $\tau(G)$, which is a face of $T\left(Q_{v}\right)$, lies in H_{v}^{-}. The analogous argument shows that $\beta(G)$ is an upper face of some $T\left(Q_{v}\right)$. Now let G^{\prime} be a lower face of some $T\left(Q_{v}\right)$. G^{\prime} corresponds to an S-chain $F_{1} \subset \cdots \subset F_{k}$ in $P, S=\left\{s_{1}, \ldots, s_{k}\right\}$, where $0=s_{1}<s_{2}<\cdots<s_{k}$ and $F_{1}=\{v\}$. Each F_{i} contributes a facet F_{i}^{\prime} to $T(P)$ and G^{\prime} is the
intersection of these facets. Because G^{\prime} lies in H_{v}^{-}, by convexity we conclude that there is some $F_{i}^{\prime} \neq F_{1}^{\prime}$ that also lies in H_{v}^{-}. Define G to be the unique face of $T(P)$ with label set $\sigma(G)=\sigma\left(G^{\prime}\right) \backslash\{0\}$ that contains G^{\prime}. Then $G=F_{2}^{\prime} \cap \cdots \cap F_{k}^{\prime}$ lies in H_{v}^{-}. Hence the top vertex of G cannot lie above H_{v} or be associated with any $T_{v^{\prime}}$ for any higher vertex v^{\prime} of P, and so must be in G^{\prime}, confirming that $G^{\prime}=\tau(G)$.

Given the partitions for complete truncations of polytopes of dimension less than d, we will recursively define the partition $\mathcal{B}(P)$ of the faces of $T(P)$. Three properties to be maintained are:

P1. Every vertex v of P will contribute an associated (though possibly empty) collection $\mathcal{B}_{v}(P)$ of blocks to the partition.

P2. If $d>0$ then every face G for which $0 \notin \sigma(G)$ will be placed in the same block as its top face $\tau(G)$.

P3. Suppose $d>0$ and H is any hyperplane in the sweeping family not meeting any $T\left(Q_{v}\right)$. Then for any vertex v of P in H^{+}, the faces in the blocks $\mathcal{B}_{v}(P)$ all lie in H^{+}.

Construction of $\mathcal{B}(P)$:

Step 0: If P is a 0-polytope, $T(P)$ is a single vertex v and $\mathcal{B}_{v}(P)$ contains the single block $\{v\}$. So assume that P has positive dimension.

Step 1: For every face G of $T(P)$ such that $0 \notin \sigma(G)$ create the "pre-block" $\{G, \tau(G), \beta(G)\}$ consisting of G, its top face and its bottom face. At this point, by Lemma 1, every face of $T(P)$ except the middle faces of the various $T\left(Q_{v}\right)$ have been assigned to pre-blocks.

Step 2: For each vertex v and each middle face G of $T\left(Q_{v}\right)$, insert G in the pre-block containing its top face $\tau(G)$, which will be an upper face of $T\left(Q_{v}\right)$. At this point every face of $T(P)$ has been assigned to a pre-block, there is a one-to-one correspondence between upper faces and pre-blocks, and middle faces are in separate pre-blocks.

Step 3: For each vertex v, consider the recursively defined partition $\mathcal{B}\left(R_{v}\right)$ of the faces of $T\left(R_{v}\right)$ (empty if R_{v} is empty). Let B be a block in this partition. Each face in B corresponds to a certain middle face in $T\left(Q_{v}\right)$. Merge the pre-blocks containing these corresponding middle faces into a block B^{\prime}. Place B^{\prime} into $\mathcal{B}_{v}(P)$.

Step 4: For each vertex v, consider the recursively defined partition $\mathcal{B}\left(Q_{v}\right)$ of the faces of $T\left(Q_{v}\right)$. For each vertex w of Q_{v} in H_{v}^{+}, let $\mathcal{B}_{w}\left(Q_{v}\right)$ be the blocks of $\mathcal{B}\left(Q_{v}\right)$ associated with w. Let B be a block in $\mathcal{B}_{w}\left(Q_{v}\right)$ (if any). By property (P3) the faces in B are

Figure 1: Partitioning the Truncation of a Line Segment
certain upper faces of $T\left(Q_{v}\right)$. Merge the pre-blocks containing these upper faces into a block B^{\prime}, and place B^{\prime} into $\mathcal{B}_{v}(P)$. Once this is carried out for every vertex v of P, all of the pre-blocks have been merged as necessary and $\mathcal{B}(P)=\bigcup_{v} \mathcal{B}_{v}(P)$.

To verify that there are no conflicts between the mergings in Step 3 and the mergings in Step 4, we need to make some observations. Let G be a middle face of $T\left(Q_{v}\right)$. Note that $0 \in \sigma(G)$ but $1 \notin \sigma(G)$, because H_{v} does not contain any vertices of Q_{v} and the truncations of the edges and other faces of P are made at sufficiently small depths. Now regard Q_{v} as a polytope in its own right. The label set $\sigma^{\prime}(G)$ of G with respect to $T\left(Q_{v}\right)$ is obtained from that of $\sigma(G)$ by deleting 0 and reducing the remaining elements of $\sigma(G)$ by one. Thus $0 \notin \sigma^{\prime}(G)$. By property (P2), within $\mathcal{B}\left(Q_{v}\right), G$ will be placed in the same block as $\tau(G)$. Thus the blocks in $\mathcal{B}(P)$, restricted to the faces in Q_{v}, will be blocks or subsets of blocks in the partition of the faces of $T\left(Q_{v}\right)$.

It is straightforward from the construction to verify that $\mathcal{B}(P)$ satisfies properties (P1)(P3).

Theorem $1 \mathcal{B}(P)$ is a partition of $T(P)$.

Examples

1. The line segment $(d=1)$. See Figure 1. If P is a line segment with two vertices swept in the order v_{1}, v_{2}, then $Q_{v_{i}}$ is a point and $R_{v_{i}}$ is empty, $i=1,2$. There is only one pre-block, and this becomes the only block in the partition of $T(P)$.
2. The n-gon $(d=2)$. See Figures 2 and 6, If P is an n-gon with vertices swept in the order v_{1}, \ldots, v_{n}, then $Q_{v_{i}}$ is a line segment, $i=1, \ldots, n ; R_{v_{1}}$ and $R_{v_{n}}$ are empty; and $R_{v_{i}}$ is a point, $i=2, \ldots, n-1 . Q_{v_{1}} \subset H_{v_{1}}^{+}, Q_{v_{n}} \subset H_{v_{n}}^{-}$, and only the top vertex of $Q_{v_{i}}$ is in $H_{v_{i}}^{+}, i=2, \ldots, n-1$. In Figure 2, the first row shows a pentagon and its

Preblocks without middle faces

Figure 2: Partitioning a Truncated Pentagon

Figure 3: Sweeping a Pyramid (View from Above)
truncation, with the sweeping to occur from bottom to top. The second row shows the result of Step 1, in which the pre-blocks excluding the middle faces have been constructed. The third row shows the result of inserting the three middle faces (one for each of $T\left(Q_{v_{2}}\right), T\left(Q_{v_{3}}\right)$, and $T\left(Q_{v_{4}}\right)$) into the appropriate pre-blocks. The fourth row shows the final partition - the first three pre-blocks in row 3 are merged, because the partition of $T\left(Q\left(v_{1}\right)\right)$, a truncated line segment, has a single block consisting of one 1-face and two 0 -faces. The other three blocks in row 3 remain unmerged-each is induced by the trivial partition of a single point $R_{v_{i}}, i=2,3,4$.
3. The square-based pyramid $(d=3)$. Figure 3 shows the square-based pyramid P with truncated vertices. The view is from above, and the vertices are swept in order v_{1}, \ldots, v_{5}. Figure 4 is the complete truncation of the pyramid together with the facet labels (the base octagon has label 2). Figure 5 shows the blocks in the partition of $T(P)$.
Blocks (1) and (2) are associated with vertex v_{1} of the original pyramid-note that block (1) also includes the truncated base of the pyramid (the outer octagon) as well as the truncated pyramid itself. Block (1) is the result of merging 9 pre-blocks, corre-

Figure 4: Truncated Pyramid
sponding to the 9 faces in a block of the partition of $T\left(Q_{v_{1}}\right)$ (e.g., see the first block in the bottom row of Figure (2). Block (2) is the result of merging 4 pre-blocks, corresponding to the 4 faces in a block of the partition of $T\left(Q_{v_{1}}\right)$ (e.g., see the second block in the bottom row of Figure 2). Neither of these pre-blocks include middle faces, because $T\left(Q_{v_{1}}\right)$ has none. These two blocks are induced by the partition of the faces of $T\left(Q_{v_{1}}\right)$ into two blocks. Blocks (3) and (4) are associated with vertex v_{2}. Block (3) is induced by the single block of the partition of $T\left(Q_{v_{2}}\right)$ associated with an upper vertex of $Q_{v_{2}}$. Block (4) is induced by the partition of the three faces of $T\left(R_{v_{2}}\right)$ into a single block. In a similar manner, blocks (5) and (6) are associated with vertex v_{3}. Block (7) is associated with vertex v_{4}, and is induced by the partition of the three faces of $T\left(R_{v_{4}}\right)$ into a single block.

3.3 Sweeping the cd-Index

The partition described in the previous section leads to a recursive method to compute the cd-index of P by sweeping. Each vertex of P will be assigned a certain portion $\Phi_{v}(P)$ of the cd-index of P, corresponding to the contribution by $\mathcal{B}_{v}(P)$. This formula is dual to the results of Stanley [14].

Theorem 2 For any convex d-polytope P,

1. If $d=0$ then P has one vertex v and $\Phi_{v}(P)=\Phi(P)=1$.

Figure 5: Partitioning a Truncated Pyramid (View from Above)
2. If $d>0$ then

$$
\Phi_{v}(P)=\mathbf{d} \Phi\left(R_{v}\right)+\sum_{w \in \operatorname{vert}\left(Q_{v}\right) \cap H_{v}^{+}} \mathbf{c} \Phi_{w}\left(Q_{v}\right), v \in \operatorname{vert}(P)
$$

and

$$
\Phi(P)=\sum_{v \in \operatorname{vert}(P)} \Phi_{v}(P) .
$$

Note in particular that the last vertex v to be swept contributes nothing to the cd-index, since R_{v} is empty, and there are no vertices w in $\operatorname{vert}\left(Q_{v}\right) \cap H_{v}^{+}$.

Proof. We prove by induction that each block in the partition of the faces $T(P)$ has a cd-index consisting of a single cd-word, and that the contribution of $\mathcal{B}_{v}(P)$ to $\Phi(P)$ is taken into account in the formula for $\Phi_{v}(P)$ stated in the theorem. This is is easy to check for $d=0$: if P is a 0 -polytope with vertex v, then $\mathcal{B}(P)=\mathcal{B}_{v}(P)=\{\{v\}\}, \sigma(v)=\emptyset$, and $\Phi(P)=1$. So assume $d>0$.

Let G be a middle face as in Step 3 of the partition construction, and let $S=\sigma(G)$. Note as before that $0 \in \sigma(G)$ but $1 \notin \sigma(G)$. Let $S^{\prime}=S \backslash\{0\}$. The four faces that will be in the same pre-block as G will be:

- G, with label set $\{0\} \cup S^{\prime}$.
- $\tau(G)$, with label set $\{0,1\} \cup S^{\prime}$.
- The face G^{\prime} for which $\tau(G)$ is the bottom face, with label set $\{1\} \cup S^{\prime}$.
- $\tau\left(G^{\prime}\right)$, with label set $\{0,1\} \cup S^{\prime}$.

Observe that the label set \hat{S} of $G \cap H_{v}$ with respect to the truncation $T\left(R_{v}\right)$ regarded as a $(d-2)$-polytope in its own right is obtained by subtracting 2 from each label in S^{\prime}. Therefore the \hat{S}-chain in R_{v} contributes in P to one $\left(\{0\} \cup S^{\prime}\right)$-chain, one $\left(\{1\} \cup S^{\prime}\right)$-chain, and two $\left(\{0,1\} \cup S^{\prime}\right)$-chains. Equation (11) then implies that the contribution to $h_{\{0\} \cup S^{\prime}}$ and $h_{\{1\} \cup S^{\prime}}$ is each 1. Thus, in terms of ab-words, if u is the $\mathbf{a b}$-word for \hat{S}, then this word contributes $\mathbf{b a} u+\mathbf{a b} u=\mathbf{d} u$ to the ab-index of P. Since such a contribution occurs for each face in a given block B of $\mathcal{B}\left(R_{v}\right)$, then the entire block contributes $\mathbf{d} \Phi(B)$. Therefore $\mathcal{B}\left(R_{v}\right)$ contributes $\mathbf{d} \Phi\left(R_{v}\right)$ to $\Phi(P)$.

Now let G be an upper face as in Step 4, and assume $S=\sigma(G)$. Observe that $0 \in \sigma(G)$, and define $S^{\prime}=S \backslash\{0\}$. The three faces that will be in the same pre-block as G will be:

- G, with label set $\{0\} \cup S^{\prime}$.
- The face G^{\prime} for which G is the bottom face, with label set $S^{\prime \prime}$.
- $\tau\left(G^{\prime}\right)$, with label set $\{0\} \cup S^{\prime}$.

Note that the label set \hat{S} of G with respect to the truncation $T\left(Q_{v}\right)$ regarded as a $(d-1)$ polytope in its own right is obtained by subtracting 1 from each label in S^{\prime}. Therefore the \hat{S}-chain in Q_{v} contributes in P to one S^{\prime}-chain and two $\left(\{0\} \cup S^{\prime}\right)$-chains. Equation (1) then implies that the contribution to $h_{S^{\prime}}$ and $h_{\{0\} \cup S^{\prime}}$ is each 1 . Thus, in terms of ab-words, if u is the $\mathbf{a b}$-word for \hat{S}, then this word contributes $\mathbf{a} u+\mathbf{b} u=\mathbf{c} u$ to the $\mathbf{a b}$-index of P. Since such a contribution occurs for each face in a given block B of $\mathcal{B}\left(Q_{v}\right)$, then the entire block contributes $\mathbf{c} \Phi(B)$. Therefore $\mathcal{B}_{w}\left(Q_{v}\right)$ contributes $\mathbf{c} \Phi_{w}\left(Q_{v}\right)$ to $\Phi(P)$.

Corollary 1 Each block in the partition of the nonempty faces of $T(P)$ contributes precisely one cd-word to $\Phi(P)$.

Corollary 2 (Stanley) For a convex d-polytope P the coefficients of $\Phi(P)$ are nonnegative.

Examples:

1. The line segment $(d=1)$. See Figure 1 .

If P is a line segment with two vertices swept in the order v_{1}, v_{2}, then $Q_{v_{i}}$ is a point and $R_{v_{i}}$ is empty, $i=1,2 . Q_{v_{1}}$ is in $H_{v_{1}}^{+}, \Phi_{v_{1}}(P)=\mathbf{c} \Phi\left(Q_{v_{1}}\right)+\mathbf{d} \Phi\left(R_{v_{1}}\right)=\mathbf{c}(1)+\mathbf{d}(0)=\mathbf{c}$; and $Q_{v_{2}}$ is in $H_{v_{2}}^{-}, \Phi_{v_{2}}(P)=\mathbf{c}(0)+\mathbf{d}(0)=0$. Thus $\Phi(P)=\mathbf{c}$.
2. The n-gon $(d=2)$. See Figure 6

If P is an n-gon with vertices swept in the order v_{1}, \ldots, v_{n}, then $Q_{v_{i}}$ is a line segment, $i=1, \ldots, n ; R_{v_{1}}$ and $R_{v_{n}}$ are empty; and $R_{v_{i}}$ is a point, $i=2, \ldots, n-1 . Q_{v_{1}} \subset H_{v_{1}}^{+}$, $Q_{v_{n}} \subset H_{v_{n}}^{-}$, and only the top vertex of $Q_{v_{i}}$ is in $H_{v_{i}}^{+}, i=2, \ldots, n-1$. So $\Phi_{v_{1}}(P)=$ $\mathbf{c} \Phi\left(Q_{v_{1}}\right)+\mathbf{d} \Phi\left(R_{v_{1}}\right)=\mathbf{c}(\mathbf{c})+\mathbf{d}(0)=\mathbf{c}^{2}, \Phi_{v_{n}}(P)=\mathbf{c}(0)+\mathbf{d} \Phi\left(R_{v_{n}}\right)=\mathbf{c}(0)+\mathbf{d}(0)=0$, and $\Phi_{v_{i}}(P)=\mathbf{c}(0)+\mathbf{d} \Phi\left(R_{v_{i}}\right)=\mathbf{c}(0)+\mathbf{d}(1)=\mathbf{d}, i=2, \ldots, n-1$. Thus $\Phi(P)=\mathbf{c}^{2}+(n-2) \mathbf{d}$.
3. The octahedron.

If P is the octahedron with vertices swept in the order v_{1}, \ldots, v_{6} as indicated in Figure 7 , then $Q_{v_{i}}$ is a square, $i=1, \ldots, 6 ; R_{v_{1}}$ and $R_{v_{6}}$ are empty; and $R_{v_{i}}$ is a line segment, $i=2, \ldots, 5$. All of the vertices of $Q_{v_{1}}$ are in $H_{v_{1}}^{+}$; only the top three vertices of $Q_{v_{2}}$ are in $H_{v_{2}}^{+}$; only the top two vertices of $Q_{v_{i}}$ are in $H_{v_{i}}^{+}, i=3,4$; only the top vertex of $Q_{v_{5}}$ is in $H_{v_{5}}^{+}$; and none of the vertices of $Q_{v_{6}}$ are in $H_{v_{6}}^{+}$. So $\Phi_{v_{1}}(P)=\mathbf{c}\left(\mathbf{c}^{2}+2 \mathbf{d}\right)+\mathbf{d}(0)=\mathbf{c}^{3}+2 \mathbf{c d}$, $\Phi_{v_{2}}(P)=\mathbf{c}(2 \mathbf{d})+\mathbf{d}(\mathbf{c})=2 \mathbf{c d}+\mathbf{d} \mathbf{c}, \Phi_{v_{3}}(P)=\Phi_{v_{4}}(P)=\mathbf{c}(\mathbf{d})+\mathbf{d}(\mathbf{c})=\mathbf{c d}+\mathbf{d c}$, $\Phi_{v_{5}}(P)=\mathbf{c}(0)+\mathbf{d}(\mathbf{c})=\mathbf{d c}$, and $\Phi_{v_{6}}(P)=\mathbf{c}(0)+\mathbf{d}(0)=0$. Thus $\Phi(P)=\mathbf{c}^{3}+6 \mathbf{c d}+4 \mathbf{d c}$ (and we can reverse the letters in each word of $\Phi(P)$ to get the cd-index of the cube, $\left.\mathbf{c}^{3}+6 \mathbf{d} \mathbf{c}+4 \mathbf{c d}\right)$.

Figure 6: Sweeping the cd-Index of a Polygon

Figure 7: Sweeping the cd-Index of an Octahedron

Figure 8: Sweeping the cd-Index of a Pyramid (View from Above)
4. The square-based pyramid. See Figure 8.

If P is the square-based pyramid with vertices swept in the order v_{1}, \ldots, v_{5} as indicated in Figure 8, then $Q_{v_{i}}$ is a triangle, $i=1,2,4,5 ; Q_{v_{3}}$ is a square; $R_{v_{1}}$ and $R_{v_{5}}$ are empty; and $R_{v_{i}}$ is a line segment, $i=2,3,4$. All of the vertices of $Q_{v_{1}}$ are in $H_{v_{1}}^{+}$; only the top two vertices of $Q_{v_{2}}$ are in $H_{v_{2}}^{+}$; only the top two vertices of $Q_{v_{3}}$ are in $H_{v_{3}}^{+}$; only the top vertex of $Q_{v_{4}}$ is in $H_{v_{4}}^{+}$; and none of the vertices of $Q_{v_{5}}$ are in $H_{v_{5}}^{+}$. So $\Phi_{v_{1}}(P)=\mathbf{c}\left(\mathbf{c}^{2}+\mathbf{d}\right)+\mathbf{d}(0)=\mathbf{c}^{3}+\mathbf{c d}, \Phi_{v_{2}}(P)=\mathbf{c}(\mathbf{d})+\mathbf{d}(\mathbf{c})=\mathbf{c d}+\mathbf{d} \mathbf{c}, \Phi_{v_{3}}(P)=$ $\mathbf{c}(\mathbf{d})+\mathbf{d}(\mathbf{c})=\mathbf{c d}+\mathbf{d} \mathbf{c}, \Phi_{v_{4}}(P)=\mathbf{c}(0)+\mathbf{d}(\mathbf{c})=\mathbf{d} \mathbf{c}$, and $\Phi_{v_{5}}(P)=\mathbf{c}(0)+\mathbf{d}(0)=0$. Thus $\Phi(P)=\mathbf{c}^{3}+3 \mathbf{c d}+3 \mathbf{d} \mathbf{c}$.

3.4 A Symmetric Formula

Since the cd-index is independent of the sweeping used, we can symmetrize the formula in Theorem 2 by taking the average of the results from a sweep and its opposite. In the following theorem the contribution $\Phi_{v}(P)$ from the sweep is different from that in Theorem 2 , even though we are using the same notation. Note in particular that $\Phi_{v}(P)$ now involves the entire $\mathbf{c d}$-indices of both Q_{v} and R_{v}.

Theorem 3 For any convex d-polytope P,

1. If $d=0$ then P has one vertex v and $\Phi_{v}(P)=\Phi(P)=1$.
2. If $d>0$ then

$$
\Phi_{v}(P)=\frac{1}{2}\left[\mathbf{c} \Phi\left(Q_{v}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right) \Phi\left(R_{v}\right)\right], v \in \operatorname{vert}(P)
$$

and

$$
\Phi(P)=\sum_{v \in \operatorname{vert}(P)} \Phi_{v}(P) .
$$

Proof. It is helpful first to extend the computation of the cd-index to some "near" polytopes. Let R be a $(d-1)$-polytope and consider the infinite cylinder $R \times \mathbf{R}$ with two points v^{+}and v^{-}adjoined at infinity, one in each direction, each declared to be formally incident to each of the faces of the cylinder. Call this object \bar{R}. Now \bar{R} is not a d-polytope, but its complete truncation $T(\bar{R})$ is: first truncate each of its two vertices by capping the cylinder with a hyperplane at each end, resulting in a prism over R. Then continue by truncating the faces of R. In sweeping the cd-index of R from v^{-}toward v^{+}, the last vertex v^{+}contributes nothing. Now $R_{v^{-}}$is empty and $Q_{v^{-}}$is combinatorially equivalent to the original R. Therefore by Theorem 2, $\Phi(\bar{R})=\mathbf{c} \Phi(R)$.

Now let P be a d-polytope with vertices swept in the order v_{1}, \ldots, v_{ℓ}. For each vertex v define $\vec{\Phi}_{v}(P)$ to be the contribution by v to $\Phi(P)$ in this sweeping order, and $\overleftarrow{\Phi}_{v}(P)$ to be the contribution by v to the cd-index of P in the reverse sweeping direction. Hence

$$
\Phi(P)=\sum_{i=1}^{\ell} \vec{\Phi}_{v_{i}}(P)=\sum_{i=1}^{\ell} \overleftarrow{\Phi}_{v_{i}}(P)
$$

Let H be a hyperplane in the sweeping family positioned so that it separates v_{k} from v_{k+1}. Define P^{+}to be the object obtained by taking $P \cap H^{-}$, applying a projective transformation that sends the facet $P \cap H$ to infinity, and adjoining a point v^{+}at infinity, formally incident to each of the unbounded faces of P^{+}. (This latter operation is dual to the "capping" operation arising in S-shellings.) Again P^{+}is not a polytope, but its complete truncation $T\left(P^{+}\right)$is: first truncate v^{+}by capping the unbounded faces of P^{+}with a single hyperplane. Then continue by truncating the other vertices, and then the other faces. In sweeping the cd-index of P^{+}in the same vertex order as P, the last vertex v^{+}contributes nothing, and the remaining vertices contribute to the cd-index of P^{+}in the same way that they contributed to P. Thus

$$
\Phi\left(P^{+}\right)=\sum_{i=1}^{k} \vec{\Phi}_{v_{i}}(P)
$$

In a similar manner, define P^{-}by taking $P \cap H^{+}$, applying a projective transformation that sends the facet $P \cap H$ to infinity, and adjoining a point v^{-}at infinity, formally incident to each of the unbounded faces of P^{-}. Then

$$
\Phi\left(P^{-}\right)=\sum_{i=k+1}^{\ell} \overleftarrow{\Phi}_{v_{i}}(P)
$$

Let $R=P \cap H$. Now as complexes, P^{+}and P^{-}together equal P with an extra copy of \bar{R}, so

$$
\Phi\left(P^{+}\right)+\Phi\left(P^{-}\right)=\Phi(P)+\Phi(\bar{R})=\Phi(P)+\mathbf{c} \Phi(R)
$$

Thus

$$
\begin{aligned}
\sum_{i=k+1}^{\ell} \vec{\Phi}_{v_{i}}(P)+\sum_{i=1}^{k} \stackrel{\leftarrow}{\Phi}_{v_{i}}(P) & =2 \Phi(P)-\sum_{i=1}^{k} \vec{\Phi}_{v_{i}}(P)-\sum_{i=k+1}^{\ell} \overleftarrow{\Phi}_{v_{i}}(P) \\
& =2 \Phi(P)-(\Phi(P)+\mathbf{c} \Phi(R)) \\
& =\Phi(P)-\mathbf{c} \Phi(R)
\end{aligned}
$$

Applying the above formula to Q_{v}, Theorem 2 then implies

$$
\begin{aligned}
\Phi_{v}(P) & =\frac{1}{2}\left[\Phi_{v}(P)+\Phi_{v}(P)\right] \\
& =\frac{1}{2}\left[\mathbf{d} \Phi\left(R_{v}\right)+\sum_{w \in \operatorname{vert}\left(Q_{v}\right) \cap H_{v}^{+}} \mathbf{c} \vec{\Phi}_{w}\left(Q_{v}\right)+\mathbf{d} \Phi\left(R_{v}\right)+\sum_{w \in \operatorname{vert}\left(Q_{v}\right) \cap H_{v}^{-}} \mathbf{c} \overleftarrow{\Phi}_{w}\left(Q_{v}\right)\right] \\
& =\frac{1}{2}\left[2 \mathbf{d} \Phi\left(R_{v}\right)+\mathbf{c} \Phi\left(Q_{v}\right)-\mathbf{c}^{2} \Phi\left(R_{v}\right)\right] \\
& =\frac{1}{2}\left[\mathbf{c} \Phi\left(Q_{v}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right) \Phi\left(R_{v}\right)\right]
\end{aligned}
$$

Though it might not be obvious from the formula, note that $\Phi_{v}(P)$ in the theorem is necessarily nonnegative since it is the sum of two nonnegative quantities.

Examples:

1. The line segment. See Figure 1. $\Phi_{v_{i}}(P)=\frac{1}{2}\left[\mathbf{c} \Phi\left(Q_{v_{i}}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right) \Phi\left(R_{v_{i}}\right)\right]=\frac{1}{2}[\mathbf{c}(1)+$ $\left.\left(2 \mathbf{d}-\mathbf{c}^{2}\right)(0)\right]=\frac{1}{2} \mathbf{c}, i=1,2$. Thus $\Phi(P)=\mathbf{c}$.
2. The n-gon. See Figure 6. For $i=1$ or $i=n, \Phi_{v_{i}}(P)=\frac{1}{2}\left[\mathbf{c} \Phi\left(Q_{v_{i}}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right) \Phi\left(R_{v_{i}}\right)\right]=$ $\frac{1}{2}\left[\mathbf{c}(\mathbf{c})+\left(2 \mathbf{d}-\mathbf{c}^{2}\right)(0)\right]=\frac{1}{2} \mathbf{c}^{2} ;$ and for $i=2, \ldots, n-1, \Phi_{v_{i}}(P)=\frac{1}{2}\left[\mathbf{c} \Phi\left(Q_{v_{i}}\right)+(2 \mathbf{d}-\right.$ $\left.\left.\mathbf{c}^{2}\right) \Phi\left(R_{v_{i}}\right)\right]=\frac{1}{2}\left[\mathbf{c}^{2}+\left(2 \mathbf{d}-\mathbf{c}^{2}\right)\right]=\mathbf{d}, i=2, \ldots, n-1$. Thus $\Phi(P)=\mathbf{c}^{2}+(n-2) \mathbf{d}$.
3. The octahedron. See Figure 3, $\Phi_{v_{i}}(P)=\frac{1}{2}\left[\mathbf{c}\left(\mathbf{c}^{2}+2 \mathbf{d}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right)(0)\right]=\frac{1}{2} \mathbf{c}^{3}+\mathbf{c d}, i=1$ and $i=6$; and $\Phi_{v_{i}}(P)=\frac{1}{2}\left[\mathbf{c}\left(\mathbf{c}^{2}+2 \mathbf{d}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right)(\mathbf{c})\right]=\mathbf{c d}+\mathbf{d c}, i=2, \ldots, 5$. Thus $\Phi(P)=\mathbf{c}^{3}+6 \mathbf{c d}+4 \mathbf{d c}$.
4. The square-based pyramid. See Figure 3, $\Phi_{v_{i}}(P)=\frac{1}{2}\left[\mathbf{c}\left(\mathbf{c}^{2}+\mathbf{d}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right)(0)\right]=$ $\frac{1}{2} \mathbf{c}^{3}+\frac{1}{2} \mathbf{c d}, i=1$ and $i=5 ; \Phi_{v_{i}}(P)=\frac{1}{2}\left[\mathbf{c}\left(\mathbf{c}^{2}+\mathbf{d}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right)(\mathbf{c})\right]=\frac{1}{2} \mathbf{c d}+\mathbf{d c}, i=2,4$; and $\Phi_{v_{3}}(P)=\frac{1}{2}\left[\mathbf{c}\left(\mathbf{c}^{2}+2 \mathbf{d}\right)+\left(2 \mathbf{d}-\mathbf{c}^{2}\right)(\mathbf{c})\right]=\mathbf{c d}+\mathbf{d} \mathbf{c}$, Thus $\Phi(P)=\mathbf{c}^{3}+3 \mathbf{c d}+3 \mathbf{d} \mathbf{c}$.

4 The Toric h-Vector

4.1 Definitions

The toric h-vector of (the boundary complex of) a convex d-polytope $P, h(\partial P)=$ $\left(h_{0}, \ldots, h_{d}\right)$, is a linear combination of the components of the flag h-vector that is a nonnegative, symmetric, generalization of the h-vector of a simplicial polytope. The component $h_{i}=h_{i}(\partial P)$ is the rank of the $(2 d-2 i)$ th middle perversity intersection homology group of the associated toric variety in the case that P is rational (has a realization with rational vertices). The g-Theorem [13] implies that the h-vector of a simplicial polytope is unimodal. Karu [8] proved that this is also the case for the toric h-vector of a general polytope P, even when P is not rational. For a summary of some other results on the toric h-vector see [4].

To define the toric h-vector recursively, let $h(\partial P, x)=\sum_{i=0}^{d} h_{i} x^{d-i}$ and $g(\partial P, x)=$ $\sum_{i=0}^{\lfloor d / 2\rfloor} g_{i} x^{i}$ where $g_{0}=g_{0}(\partial P)=h_{0}$ and $g_{i}=g_{i}(\partial P)=h_{i}-h_{i-1}, i=1, \ldots,\lfloor d / 2\rfloor$. Then

$$
g(\emptyset, x)=h(\emptyset, x)=1
$$

and

$$
h(\partial P, x)=\sum_{G \text { face of } \partial P} g(\partial G, x)(x-1)^{d-1-\operatorname{dim} G} .
$$

In the case that P is simplicial the toric h-vector of ∂P agrees with the simplicial h-vector of P.

For example, the toric h-vectors of the boundary complexes of a point, line segment, n gon, octahedron, and cube are, respectively, (1), (1, 1), (1, $n-2,1),(1,3,3,1)$, and $(1,5,5,1)$.

4.2 Sweeping the Toric h-Vector

In Section 2 we recalled that by sweeping any simple polytope P we can compute the h vector of its dual P^{*}. Analogously, as we sweep any polytope P, we can compute the toric h-vector of its dual P^{*}.

Define operators $\mathbf{c}: \mathbf{R}^{d+1} \rightarrow \mathbf{R}^{d+2}$ and $\mathbf{d}: \mathbf{R}^{d+1} \rightarrow \mathbf{R}^{d+3}$ on symmetric vectors $\left(h_{0}, \ldots, h_{d}\right)$ by

$$
\left(h_{0}, \ldots, h_{d}\right) \mathbf{c}= \begin{cases}\left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}, g_{\lfloor d / 2\rfloor}, \ldots, g_{1}, g_{0}\right) & \text { if } d \text { is even } \\ \left(g_{0}, g_{1}, \ldots, g_{\lfloor d / 2\rfloor}, 0, g_{\lfloor d / 2\rfloor}, \ldots, g_{1}, g_{0}\right) & \text { if } d \text { is odd }\end{cases}
$$

and

$$
\left(h_{0}, \ldots, h_{d}\right) \mathbf{d}= \begin{cases}\left(0, \ldots, 0, g_{\lfloor d / 2\rfloor}, 0, \ldots, 0\right) & \text { if } d \text { is even } \\ (0, \ldots, 0) & \text { if } d \text { is odd }\end{cases}
$$

where as before $g_{0}=h_{0}$ and $g_{i}=h_{i}-h_{i-1}, i=1, \ldots,\lfloor d / 2\rfloor$.
Define (with a small abuse of notation) $h_{v}\left(\partial P^{*}\right)$ to be the contribution by v to the toric h-vector of P^{*} during the sweeping of P. We now have an analog to Theorem 2;

Theorem 4 For any convex d-polytope P,

1. If $d=0$ then P has one vertex v and $h_{v}\left(\partial P^{*}\right)=h\left(\partial P^{*}\right)=(1)$.
2. If $d>0$ then, regarding \mathbf{c} and \mathbf{d} as operators,

$$
h_{v}\left(\partial P^{*}\right)=h\left(\partial\left(R_{v}\right)^{*}\right) \mathbf{d}+\sum_{w \in \operatorname{vert}\left(Q_{v}\right) \cap H_{v}^{+}} h_{w}\left(\partial\left(Q_{v}\right)^{*}\right) \mathbf{c}, v \in \operatorname{vert}(P),
$$

and

$$
h\left(\partial P^{*}\right)=\sum_{v \in \operatorname{vert}(P)} h_{v}\left(\partial P^{*}\right) .
$$

Proof. Returning to the definitions of the operators \mathbf{c} and \mathbf{d}, write $h(x)=\sum_{i=0}^{d} h_{i} x^{i}$ and $g(x)=\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} g_{i} x^{i}$. For any polynomial $p(x)=\sum_{i=0}^{d} p_{i} x^{i}$ and nonnegative integer m define $U_{\leq m} p(x)=\sum_{i=0}^{m} p_{i} x^{i}$. Then it is easy to verify that the operators \mathbf{c} and \mathbf{d} can be expressed as

$$
\begin{aligned}
h(x) \mathbf{c} & =(x-1) h(x)+2 g(x) \\
h(x) \mathbf{d} & =(x-1) g(x)+U_{\leq m}[(1-x) g(x)]
\end{aligned}
$$

where $m=\left\lfloor\frac{d+1}{2}\right\rfloor$. Bayer and Ehrenborg [2] developed explicit formulas for computing the toric h-vector from the cd-index (Theorem 4.2) in which the contribution for each cd-word is determined. Their Lemma 7.9 and Proposition 7.10 relate the contribution toward the toric h-vector for $\mathbf{c d}$-words $u \mathbf{c}$ and $u \mathbf{d}$ with that of $\mathbf{c d}$-word u, and these correspond precisely to the formulas for the operators \mathbf{c} and \mathbf{d} defined above.

For any cd-polynomial Φ write Φ^{*} for the polynomial resulting from reversing all of the words in Φ. Thus for any polytope $P, \Phi\left(P^{*}\right)=\Phi^{*}(P)$.

By Theorem 2,

$$
\Phi\left(P^{*}\right)=\Phi^{*}(P)=\sum_{v \in \operatorname{vert}(P)} \Phi_{v}^{*}(P)
$$

and

$$
\Phi_{v}^{*}(P)=\Phi^{*}\left(R_{v}\right) \mathbf{d}+\sum_{w \in \operatorname{vert}\left(Q_{v}\right) \cap H_{v}^{+}} \Phi_{w}^{*}\left(Q_{v}\right) \mathbf{c}, v \in \operatorname{vert}(P) .
$$

Now use induction and compute the toric h-vectors of both sides.
Induction immediately yields a formula to obtain the toric h-vector directly from the cd-index and to an analog of Theorem 3.

Theorem 5 Let P be a convex d-polytope. Then, regarding \mathbf{c} and \mathbf{d} as operators, $h(\partial P)=$ (1) $\Phi(P)$.

Lemma 7.9 and Proposition 7.10 of [2] can be regarded as definitions of operators \mathbf{c} and \mathbf{d} acting upon toric h-vectors, and these results imply Theorem 5 directly.

In the following theorem the contribution $h_{v}\left(\partial P^{*}\right)$ from the sweep is different from that in Theorem 4, even though we are using the same notation. Note in particular that $h_{v}\left(\partial P^{*}\right)$ now involves the entire toric h-vectors of both $\partial\left(Q_{v}\right)^{*}$ and $\partial\left(R_{v}\right)^{*}$.

Theorem 6 For any convex d-polytope P,

1. If $d=0$ then P has one vertex v and $h_{v}\left(\partial P^{*}\right)=h\left(\partial P^{*}\right)=(1)$.
2. If $d>0$ then, regarding \mathbf{c} and \mathbf{d} as operators,

$$
h_{v}\left(\partial P^{*}\right)=\frac{1}{2}\left[h\left(\partial\left(Q_{v}\right)^{*}\right) \mathbf{c}+h\left(\partial\left(R_{v}\right)^{*}\right)\left(2 \mathbf{d}-\mathbf{c}^{2}\right)\right], v \in \operatorname{vert}(P),
$$

and

$$
h\left(\partial P^{*}\right)=\sum_{v \in \operatorname{vert}(P)} h_{v}\left(\partial P^{*}\right) .
$$

Examples

1. If $d=0$ and P is a point then $h(\partial P)=(1) \Phi(P)=(1) 1=(1)$.
2. If $d=1$ and P is a line segment then $h(\partial P)=(1) \mathbf{c}=(1,1)$.
3. If $d=2$ and P is an n-gon then

$$
\begin{aligned}
h(P) & =(1) \Phi(P) \\
& =(1)\left(\mathbf{c}^{2}+(n-2) \mathbf{d}\right) \\
& =(1,1) \mathbf{c}+(n-2)(0,1,0) \\
& =(1,0,1)+(n-2)(0,1,0) \\
& =(1, n-2,1)
\end{aligned}
$$

We can also use Theorem 4, see Figure 6, Vertex v_{1} contributes $(1,1) \mathbf{c}=(1,0,1)$ and each remaining vertex except the last contributes $(1) \mathbf{d}=(0,1,0)$, yielding $(1, n-2,1)$.
4. If $d=3$ and P is the cube then

$$
\begin{aligned}
h\left(\partial P^{*}\right) & =\Phi(P)(1) \\
& =\left(\mathbf{c}^{3}+6 \mathbf{c d}+4 \mathbf{d} \mathbf{c}\right)(1) \\
& =\mathbf{c}^{2}(1,1)+6 \mathbf{c}(0,1,0)+4 \mathbf{d}(1,1) \\
& =\mathbf{c}(1,0,1)+6(0,1,1,0)+4(0,0,0,0) \\
& =(1,-1,-1,1)+(0,6,6,0)+(0,0,0,0) \\
& =(1,5,5,1)
\end{aligned}
$$

We can use Theorem 4 to compute the toric h-vector of a cube P^{*} from a sweeping of the octahedron P (see Figure 3): $h_{v_{1}}\left(\partial P^{*}\right)=(1,2,1) \mathbf{c}+(0) \mathbf{d}=(1,1,1,1), h_{v_{2}}\left(\partial P^{*}\right)=$ $(0,2,0) \mathbf{c}+(1,1) \mathbf{d}=(0,2,2,0)+(0,0,0,0)=(0,2,2,0), \Phi_{v_{3}}(P)=\Phi_{v_{4}}(P)=(0,1,0) \mathbf{c}+$ $(1,1) \mathbf{d}=(0,1,1,0)+(0,0,0,0)=(0,1,1,0), \Phi_{v_{5}}(P)=(0) \mathbf{c}+(0,1,1,0) \mathbf{d}=(0,0,0,0)$, and $\Phi_{v_{6}}(P)=(0) \mathbf{c}+(0) \mathbf{d}=0$. Thus $h\left(\partial P^{*}\right)=(1,5,5,1)$.
We can also apply Theorem 6 to the octahedron to compute the h-vector of the cube: $h_{v_{i}}\left(\partial P^{*}\right)=\frac{1}{2}\left[(1,2,1) \mathbf{c}+(0,0)\left(2 \mathbf{d}-\mathbf{c}^{2}\right)\right]=\frac{1}{2}(1,1,1,1), i=1$ and $i=6$; and $h_{v_{i}}\left(P^{*}\right)=$ $\left.\frac{1}{2}\left[(1,2,1)+\mathbf{c}(1,1)\left(2 \mathbf{d}-\mathbf{c}^{2}\right)\right]=\frac{1}{2}[(1,1,1,1)+2(0,0,0,0)-(1,-1,-1,1))\right]=\frac{1}{2}(0,2,2,0)=$ $(0,1,1,0), i=2, \ldots, 5$. Thus $h\left(\partial P^{*}\right)=(1,5,5,1)$.

4.3 An "Extended Toric" h-Vector

Even though for a d-polytope P the cd-index $\Phi(P)$ contains $F_{d}-1$ independent pieces of information, the toric h-vector $h(P)$ contains only $\lfloor(d+1) / 2\rfloor$ independent pieces of information. The source of the loss from $\Phi(P)$ to $h(P)$ is evident-the d operator "erases" information. We can get around this by keeping track of some of the intermediate calculations (those vectors that are about to be acted upon by d).

Let W be the set of all cd-words w of degree at most d (including the word 1). Denote by $W^{\mathbf{d}}$ the set of all words in W having \mathbf{d} as the first letter, and include 1 in this set also.

For $w \in W$ let $\Phi^{w}(P) w$ be that portion of $\Phi(P)$ with terms ending in w. Define $h^{w}(P)=$ $(1) \Phi^{w}(P)$. Define the "extended toric" h-vector of P to be $\hat{h}(P)=\left(h^{w}(P): w \in W^{\mathbf{d}}\right)$. For example, if P is the octahedron, then $\Phi(P)=\mathbf{c}^{3}+4 \mathbf{d} \mathbf{c}+6 \mathbf{c d}$. We have:

w	$\Phi^{w}(P)$	$h^{w}(P)$
1	$\mathbf{c}^{3}+4 \mathbf{d} \mathbf{c}+6 \mathbf{c d}$	$(1,3,3,1)$
\mathbf{c}	$\mathbf{c}^{2}+4 \mathbf{d}$	$(1,4,1)$
\mathbf{d}	$6 \mathbf{c}$	$(6,6)$
\mathbf{c}^{2}	\mathbf{c}	$(1,1)$
$\mathbf{d c}$	4	(4)
$\mathbf{c d}$	6	(6)
\mathbf{c}^{3}	1	(1)

Then $W^{\mathbf{d}}=\{1, \mathbf{d}, \mathbf{d c}\}$ and the extended toric h-vector is $\hat{h}(P)=\left(h^{1}(P), h^{\mathbf{d}}(P), h^{\mathbf{d c}}(P)\right)=$ $((1,3,3,1),(6,6),(4)))$.

Theorem 7 For a d-polytope P each $h^{w}(P), w \in W^{\mathrm{d}}$, is nonnegative, symmetric, and unimodal, and $\hat{h}(P)$ determines $\Phi(P)$.

To prove this, recall that the toric h-vector of any polytope is nonnegative, symmetric, and unimodal, and by the recursive application of Proposition 2 the operator \mathbf{d} is always multiplied onto the cd-index of some polytope. Hence each $h^{w}(P), w \in W^{\text {d }}$, being a sum of h-vectors of such polytopes, is nonnegative, symmetric, and unimodal. To show that $\hat{h}(P)$ determines $\Phi(P)$, observe that

1. Any symmetric vector h can be recovered from $h \mathbf{c}$.
2. For any $\mathbf{c d}$-word $w, h^{\mathbf{c} w}(P)$ can be recovered from $h^{w}(P)$ and $h^{\mathbf{d} w}(P)$, since $h^{w}(P)=$ $\left(h^{\mathbf{c} w}(P)\right) \mathbf{c}+\left(h^{\mathbf{d} w}(P)\right) \mathbf{d}$. Therefore, by reverse induction on the degree of w, we can recover all of the vectors $h^{w}(P)$ from $\hat{h}(P)$.
3. For any cd-word w of degree d, the coefficient of w in $\Phi(P)$ is precisely the single entry of $h^{w}(P)$.

This concludes the proof.
At this point it remains to be seen whether or not one can get a better understanding of the collection of flag f-vectors of convex d-polytopes from their extended toric h-vectors, or indeed whether one is even justified in giving $\hat{h}(P)$ this name.

5 Comments

Karu [9] described the cd-index of a complete fan Δ by beginning with its first barycentric subdivision which, in the case of polytopes, is dual to the complete truncation. He defines operators C and D on functions $f: \Delta^{\leq m} \rightarrow \mathbf{Z}$ on the m-skeleta of the fan Δ. He proves (Proposition 1.2) that if u is a cd-word, then the result of applying the corresponding $C D$ operator to the constant function 1 on Δ is the coefficient of u in the cd-index of Δ. He then demonstrates how C and D have counterparts in the category of sheaves, and uses this to prove nonnegativity of the cd-index of Δ. Karu asks what the coefficients of the cd-index count, and so we can now provide one answer of a sort in the case of complete fans associated with polytopes. It is natural to ask what the connection might be between the operators C and D and the toric h-vector.

References

[1] M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Invent. Math. 79 (1985) 143-157.
[2] M. M. Bayer and R. Ehrenborg, The toric h-vectors of partially ordered sets, Trans. Amer. Math. Soc. 352 (2000) 4515-4531 (electronic).
[3] M. M. Bayer and A. Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991) 33-47.
[4] M. M. Bayer and C. W. Lee, Combinatorial aspects of convex polytopes, in Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 485-534.
[5] A. Brøndsted, An Introduction to Convex Polytopes, Springer-Verlag, New York, 1983.
[6] B. Grünbaum, Convex Polytopes, vol. 221 of Graduate Texts in Mathematics, Springer-Verlag, New York, Second ed., 2003.
[7] T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw, Glebe, 1992.
[8] K. Karu, Hard Lefschetz theorem for nonrational polytopes, Invent. Math. 157 (2004) 419-447.
[9] K. Karu, The $c d$-index of fans and posets, Compos. Math. 142 (2006) 701-718.
[10] V. Klee and P. Kleinschmidt, Convex polytopes and related complexes, in Handbook of Combinatorics, Vol. 1, 2, Elsevier, Amsterdam, 1995, pp. 875-917.
[11] P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture, Cambridge University Press, London, 1971.
[12] R. P. Stanley, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979) 139-157.
[13] R. P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980) 236-238.
[14] R. P. Stanley, Flag f-vectors and the $c d$-index, Math. Z. 216 (1994) 483-499.
[15] G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 2007.

