A TOPOLOGICAL CENTRAL POINT THEOREM

R.N. KARASEV

ABSTRACT. In this paper a generalized topological central point theorem is proved for maps of a simplex to finite-dimensional metric spaces. Similar generalizations of the Tverberg theorem are considered.

1. INTRODUCTION

Let us state the discrete version of the Neumann–Rado theorem [7, 8, 4] (see also the reviews [3] and [2]).

Theorem (The discrete central point theorem). Suppose $X \subset \mathbb{R}^d$ is a finite set with |X| = (d+1)(r-1) + 1. Then there exists $x \in \mathbb{R}^d$ such that for any halfspace $H \ni x$

 $|H \cap X| \ge r.$

An important and nontrivial generalization of this theorem is proved in [9].

Theorem (Tverberg's theorem). Consider a finite set $X \in \mathbb{R}^d$ with |X| = (d+1)(r-1)+1. Then X can be partitioned into r subsets X_1, \ldots, X_r so that

$$\bigcap_{i=1}^{\prime} \operatorname{conv} X_i \neq \emptyset.$$

In [1, 10] the following topological generalization of the Tverberg theorem was established.

Theorem (The topological Tverberg theorem). Let n = (d+1)(r-1) + 1, r be a prime power, and let Δ^{n-1} be the (n-1)-dimensional simplex. Suppose $f : \Delta^{n-1} \to \mathbb{R}^d$ is a continuous map. Then there exist r disjoint faces $F_1, \ldots, F_r \subset \Delta^{n-1}$ such that

$$\bigcap_{i=1}^{r} f(F_i) \neq \emptyset$$

It is still unknown whether such a theorem holds for r not equal to a prime power. But if we return to the central point theorem, we see that the following topological version holds without restrictions on r. Moreover, the target space can be any d-dimensional metric space, not necessarily \mathbb{R}^d .

Theorem 1.1. Let n = (d+1)(r-1)+1, and let Δ^{n-1} be the (n-1)-dimensional simplex, let W be a d-dimensional metric space. Suppose $f : \Delta^{n-1} \to W$ is a continuous map. Then

$$\bigcap_{\substack{F \subset \Delta^{n-1} \\ \dim F = d(r-1)}} f(F) \neq \emptyset,$$

where the intersection is taken over all faces of dimension d(r-1).

²⁰⁰⁰ Mathematics Subject Classification. 52A35,52C35,55M35.

Key words and phrases. Tverberg's theorem, central point theorem.

This research is supported by the Dynasty Foundation, the President's of Russian Federation grant MK-113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-00139, the Federal Program "Scientific and scientific-pedagogical staff of innovative Russia" 2009–2013.

R.N. KARASEV

Note that for $W = \mathbb{R}^d$ this theorem can also be deduced from the topological Tverberg theorem (see Section 4 for details). The goal of this paper is another proof of Theorem 1.1, valid for any *d*-dimensional W. In Section 5 we show that a similar generalization of the Tverberg theorem for maps into finite-dimensional spaces essentially needs larger values of n.

The author thanks Alexey Volovikov and Pavle Blagojević for the discussion and useful comments.

2. The index of \mathbb{Z}_2 -spaces

Let us remind some basic facts on the homological index of \mathbb{Z}_2 -action (\mathbb{Z}_2 is a group with two elements), the reader may consult the book [6] for more details. Denote $G = \mathbb{Z}_2$, if we consider \mathbb{Z}_2 as a transformation group. The algebra $H^*(BG, \mathbb{F}_2)$ is a polynomial ring $\mathbb{F}_2[c]$ with the one-dimensional generator c.

In this section we consider the cohomology with \mathbb{F}_2 coefficients, the coefficients are omitted in the notation. Define the equivariant cohomology for a space X with continuous action of G (a G-space) by

$$H^*_G(X) = H^*(X \times_G EG) = H^*((X \times EG)/G),$$

thus we have $H_G^*(\text{pt}) = H^*(BG)$ for a one-point space with trivial action of G and $H_G^*(X) = H^*(X/G)$ for a free G-space. For $G = \mathbb{Z}_2$ we may take EG to be the infinitedimensional sphere S^{∞} with the antipodal action of G, and $BG = \mathbb{R}P^{\infty}$. For any G-space X the natural map $X \to \text{pt}$ induces the natural cohomology map

$$\pi^*_X : H^*_G(\mathrm{pt}) = H^*(BG) \to H^*_G(X).$$

Definition 2.1. For a *G*-space *X* define $\operatorname{ind}_G X$ to be the maximal *n* such that $\pi_X^*(c^n) \neq 0 \in H^*_G(X)$.

We need the following two properties of index. The first is the generalized Borsuk-Ulam theorem.

Lemma 2.2. Let $\operatorname{ind}_G X = n$, let V be an n-dimensional vector space with antipodal G-action. Then for every continuous G-equivariant map $f: X \to V$

$$f^{-1}(0) \neq \emptyset.$$

The following lemma is proved in [14], see also [5].

Lemma 2.3. Let X be a compact metric G-space, $\operatorname{ind}_G X \ge (d+1)k$, let W be a ddimensional metric space with trivial G-action. Then for every continuous G-equivariant map $f: X \to W$ there exists $x \in W$ such that

$$\operatorname{ind}_G f^{-1}(x) \ge k.$$

In this lemma it is important to use the Čech cohomology, which is assumed in the sequel.

3. Proof of Theorem 1.1

Let us map the (n-1)-dimensional sphere S^{n-1} to Δ^{n-1} by the following formula

$$g(x_1,\ldots,x_n)=(x_1^2,\ldots,x_n^2).$$

Apply Lemma 2.3 to the composition $f \circ g$, it is possible because g(x) = g(-x). We obtain a point $x \in W$ such that for $Z = (f \circ g)^{-1}(x)$ we have $\operatorname{ind}_G Z \ge r$.

We are going to show that x is the required intersection point. Assume the contrary: a face $F \subseteq \Delta^{n-1}$ of dimension d(r-1) does not intersect g(Z). Without loss of generality, let $g^{-1}(F)$ be defined by the equations

$$x_1 = \dots = x_{r-1} = 0.$$

Note that the r-1 coordinates x_1, \ldots, x_{r-1} give a continuous *G*-equivariant map $h : S^{n-1} \to \mathbb{R}^{r-1}$, where *G* acts on \mathbb{R}^{r-1} antipodally. By Lemma 2.2 the intersection $g^{-1}(F) \cap Z = h^{-1}(0) \cap Z = h|_Z^{-1}(0)$ should be nonempty. The proof is complete.

4. The case
$$W = \mathbb{R}^d$$
 of Theorem 1.1

We are going remind the known fact: the case $W = \mathbb{R}^d$ of Theorem 1.1 follows from the topological Tverberg theorem (only the case of prime r is needed).

The proof goes as follows. Consider a simplicial map $\varphi : \Delta^{N-1} \to \Delta^{n-1}$, where R = k(r-1) + 1 is a prime (for some k it is so by the Dirichlet theorem on arithmetic progressions), N = (R-1)(d+1) + k, and there are k vertices of Δ^{N-1} in the preimage of every vertex of Δ^{n-1} . For Δ^{N-1} the topological Tverberg theorem holds (since $N \ge (R-1)(d+1) + 1$), and there exist R disjoint faces $\tilde{F}_1, \ldots, \tilde{F}_R$ of Δ^{N-1} such that

$$\bigcap_{i=1}^{R} f(\varphi(\tilde{F}_i)) \ni x.$$

Consider a face $F \subseteq \Delta^{n-1}$ of dimension d(r-1) and assume that $\varphi^{-1}(F)$ does not contain any of \tilde{F}_i , then N should be at least the number of vertices in $\varphi^{-1}(F)$ plus R, that is

$$N \ge k(r-1)d + k + R = (R-1)d + k + R = N + 1,$$

which is a contradiction. So $\varphi^{-1}(F)$ contains some of \tilde{F}_i , and $f(F) \ni x$.

5. TVERBERG TYPE THEOREMS FOR MAPS TO FINITE-DIMENSIONAL SPACES

It would be natural to ask whether the corresponding version of the Tverberg theorem holds for maps from Δ^{n-1} to a *d*-dimensional metric space, at least for *r* being a prime power. In fact, the number n = (d+1)(r-1) + 1 should be increased, as claimed by the following:

Theorem 5.1. Let n = (d+1)r - 1. Then there exists a d-dimensional polyhedron Wand a continuous map $f : \Delta^{n-1} \to W$ with the following properties. For any pairwise disjoint faces $F_1, \ldots, F_r \subseteq \Delta^{n-1}$ there exists i such that

$$f(F_i) \cap f(F_j) = \emptyset$$

for all $j \neq i$.

This theorem also shows that our way to prove Theorem 1.1 cannot be applied to the topological Tverberg theorem. Indeed, this proof does not distinguish between \mathbb{R}^d and any metric *d*-dimensional space, but the topological Tverberg theorem does not hold for maps to *d*-dimensional metric spaces.

Proof of Theorem 5.1. The construction in the proof is taken from [13]. Let Δ^{n-1} be a regular simplex in \mathbb{R}^{n-1} , centered at the origin. Denote by Δ_{d-1}^{n-1} its (d-1)-skeleton, and $W = C\Delta_{d-1}^{n-1}$ the cone (centered at the origin) of this skeleton. Define the PL-map (of the barycentric subdivision to the barycentric subdivision) $f : \Delta_{d-1}^{n-1} \to W$ as follows. For every face $F \subseteq \Delta^{n-1}$ of dimension $\leq d-1$ its center is mapped to itself, for every face $F \subseteq \Delta^{n-1}$ of dimension $\geq d$ its center is mapped to the origin.

R.N. KARASEV

Let $F_1, \ldots, F_r \subseteq \Delta^{n-1}$ be a set of r pairwise disjoint faces. For some *i* the dimension dim F_i is less than d-1 by the pigeonhole principle. For such face we have $f(F_i) = F_i$, and

$$f(F_i) \cap f(F_j) \subseteq F_i \cap f(F_j) \subseteq \partial \Delta^{n-1}.$$

Since $f(F_j) \cap \partial \Delta^{n-1} \subseteq F_j$ we obtain

$$f(F_i) \cap f(F_j) \subseteq F_i \cap F_j = \emptyset.$$

The following positive result for larger n is a direct consequence of the reasonings in [12].

Theorem 5.2. Let n = (d + 1)r, let r be a prime power. Suppose $f : \Delta^{n-1} \to W$ is a continuous map to d-dimensional metric space W. Then there exist r disjoint faces $F_1, \ldots, F_r \subset \Delta^{n-1}$ such that

$$\bigcap_{i=1}^{r} f(F_i) \neq \emptyset.$$

Proof. Without loss of generality we may assume W to be a finite *d*-dimensional polyhedron. Assume the contrary and denote $\Delta^{n-1} = K$ for brevity. Then there exists a map

$$\tilde{f}: K^{*r}_{\Delta(2)} \to W^{*r}_{\Delta(r)}$$

from the *r*-fold pairwise deleted join $K_{\Delta(2)}^{*r}$ in the simplicial sense to the *r*-fold *r*-wise deleted join $W_{\Delta(r)}^{*r}$ in the topological sense (the notation is from [6]). Following mostly [10], put $r = p^{\alpha}$ and consider the group $G = (\mathbb{Z}_p)^{\alpha}$ and let G act on the factors of the deleted join transitively. The rest of the reasoning is based on the following facts from [11, 12].

Definition 5.3. Let X be a connected G-space. Consider the Leray-Serre spectral sequence with

 $E_2^{*,*} = H^*(BG, H^*(X, \mathbb{F}_p))$

converging to $H^*_G(X, \mathbb{F}_p)$. Denote by $i_G(X)$ the minimum r such that the differential d_r of this spectral sequence has nontrivial image in the bottom row.

The index i_G has the following properties, if G is a p-torus $G = (\mathbb{Z}_p)^{\alpha}$.

- (1) (Monotonicity) If there is a G-map $f: X \to Y$, then $i_G(X) \leq i_G(Y)$. If in addition $i_G(X) = i_G(Y) = n + 1$ then the map $f^*: H^n(Y, \mathbb{F}_p) \to H^n(X, \mathbb{F}_p)$ is nontrivial.
- (2) (Dimension upper bound) $i_G(X) \leq \operatorname{hdim}_{\mathbb{F}_p} X + 1$.
- (3) (Cohomology lower bound) If X is connected and acyclic over \mathbb{F}_p in degrees $\leq N-1$, then $i_G(X) \geq N+1$.

Now note that from the cohomology lower bound it follows that $i_G\left(K_{\Delta(2)}^{*r}\right) \geq n$, from the dimension upped bound it follows that $i_G\left(W_{\Delta(r)}^{*r}\right) \leq n$, and from (1) the map

$$\tilde{f}^*: H^{n-1}\left(W^{*r}_{\Delta(r)}, \mathbb{F}_p\right) \to H^{n-1}\left(K^{*r}_{\Delta(2)}, \mathbb{F}_p\right)$$

should be nontrivial. From the cohomology exact sequence of a pair it follows that the natural map

 $g^*: H^{n-1}\left(W^{*r}, \mathbb{F}_p\right) \to H^{n-1}\left(W^{*r}_{\Delta(r)}, \mathbb{F}_p\right)$

is surjective because $H^n(W^{*r}, W^{*r}_{\Delta(r)}, \mathbb{F}_p) = 0$ by the dimension considerations. Now it follows that the map

$$(g \circ \tilde{f})^* : H^{n-1}(W^{*r}, \mathbb{F}_p) \to H^{n-1}(K^{*r}_{\Delta(2)}, \mathbb{F}_p)$$

should be nontrivial. But the map $g \circ \tilde{f}$ is a composition of the natural inclusion

$$h: K^{*r}_{\Delta(2)} \to K^{*r}$$

with the map

$$f^{*r}: K^{*r} \to W^{*r}$$

The latter map has contractible domain, and therefore induces a zero map on the cohomology $H^{n-1}(\cdot, \mathbb{F}_p)$. We obtain a contradiction.

References

- I. Bárány, S.B. Shlosman, A. Szücs. On a topological generalization of a theorem of Tverberg. // J. Lond. Math. Soc., 23, 1981, 158–164.
- [2] L. Danzer, B. Grünbaum, V. Klee. Helly's theorem and its relatives. // Convexity, Proc. Symp. Pure Math. Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, 101–179.
- [3] J. Eckhoff. Helly, Radon, and Carathéodory type theorems. // Handbook of Convex Geometry, ed. by P.M. Gruber and J.M. Willis, North-Holland, Amsterdam, 1993, 389–448.
- [4] B. Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes. // Pacific J. Math., 10, 1960, 1257–1261.
- [5] R.N. Karasev. The genus and the Lyusternik–Schnirelmann category of preimages. (In Russian) // Modelirovaniye i Analiz Informatsionnyh Sistem, 14(4), 2007, 66–70; translated in arXiv:1006.3144, 2010.
- [6] J. Matoušek. Using the Borsuk–Ulam theorem. // Berlin-Heidelberg, Springer Verlag, 2003.
- [7] B.H. Neumann. On an invariant of plane regions and mass distributions. // J. London Math. Soc., 20, 1945, 226–237.
- [8] R. Rado. A theorem on general measure. // J. London Math. Soc., 21, 1946, 291–300.
- [9] H. Tverberg. A generalization of Radon's theorem. // J. London Math. Soc., 41, 1966, 123–128.
- [10] A.Yu. Volovikov. On a topological generalization of the Tverberg theorem. // Mathematical Notes, 59(3), 1996, 324–326.
- [11] A.Yu. Volovikov. On the index of G-spaces (In Russian). // Mat. Sbornik, 191(9), 2000, 3–22; translation in Sbornik Math., 191(9), 2000, 1259–1277.
- [12] A.Yu Volovikov. Coincidence points of functions from \mathbb{Z}_p^k -spaces to CW-complexes. // Russian Mathematical Surveys, 57(1), 2002, 170–172.
- [13] A.Yu. Volovikov, E.V. Shchepin. Antipodes and embeddings (In Russian). // Sb. Math., 196(1), 2005, 1–28; translations from Mat. Sb., 196(1), 2005, 3–32.
- [14] C.-T. Yang. On Theorems of Borsuk-Ulam, Kakutani–Yamabe–Yujobo and Dyson, II. // The Annals of Mathematics, 2nd Ser., 62(2), 1955, 271–283.

E-mail address: r_n_karasev@mail.ru

Roman Karasev, Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Russia 141700