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A TOPOLOGICAL CENTRAL POINT THEOREM

R.N. KARASEV

Abstract. In this paper a generalized topological central point theorem is proved for
maps of a simplex to finite-dimensional metric spaces. Similar generalizations of the
Tverberg theorem are considered.

1. Introduction

Let us state the the discrete version of the Neumann–Rado theorem [7, 8, 4] (see also
the reviews [3] and [2]).

Theorem (The discrete central point theorem). Suppose X ⊂ R
d is a finite set with

|X| = (d+ 1)(r − 1) + 1. Then there exists x ∈ R
d such that for any halfspace H ∋ x

|H ∩X| ≥ r.

An important and nontrivial generalization of this theorem is proved in [9].

Theorem (Tverberg’s theorem). Consider a finite set X ∈ R
d with |X| = (d+1)(r−1)+1.

Then X can be partitioned into r subsets X1, . . . , Xr so that
r
⋂

i=1

convXi 6= ∅.

In [1, 10] the following topological generalization of the Tverberg theorem was estab-
lished.

Theorem (The topological Tverberg theorem). Let n = (d+ 1)(r− 1) + 1, r be a prime

power, and let ∆n−1 be the (n − 1)-dimensional simplex. Suppose f : ∆n−1 → R
d is a

continuous map. Then there exist r disjoint faces F1, . . . , Fr ⊂ ∆n−1 such that
r
⋂

i=1

f(Fi) 6= ∅.

It is still unknown whether such a theorem holds for r not equal to a prime power. But
if we return to the central point theorem, we see that the following topological version
holds without restrictions on r. Moreover, the target space can be any d-dimensional
metric space, not necessarily R

d.

Theorem 1.1. Let n = (d+1)(r−1)+1, and let ∆n−1 be the (n−1)-dimensional simplex,

let W be a d-dimensional metric space. Suppose f : ∆n−1 → W is a continuous map.

Then
⋂

F⊂∆n−1

dimF=d(r−1)

f(F ) 6= ∅,

where the intersection is taken over all faces of dimension d(r − 1).
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Note that for W = R
d this theorem can also be deduced from the topological Tverberg

theorem (see Section 4 for details). The goal of this paper is another proof of Theorem 1.1,
valid for any d-dimensional W . In Section 5 we show that a similar generalization of the
Tverberg theorem for maps into finite-dimensional spaces essentially needs larger values
of n.

The author thanks Alexey Volovikov and Pavle Blagojević for the discussion and useful
comments.

2. The index of Z2-spaces

Let us remind some basic facts on the homological index of Z2-action (Z2 is a group
with two elements), the reader may consult the book [6] for more details. Denote G = Z2,
if we consider Z2 as a transformation group. The algebra H∗(BG,F2) is a polynomial
ring F2[c] with the one-dimensional generator c.

In this section we consider the cohomology with F2 coefficients, the coefficients are
omitted in the notation. Define the equivariant cohomology for a space X with continuous
action of G (a G-space) by

H∗

G(X) = H∗(X ×G EG) = H∗((X ×EG)/G),

thus we have H∗

G(pt) = H∗(BG) for a one-point space with trivial action of G and
H∗

G(X) = H∗(X/G) for a free G-space. For G = Z2 we may take EG to be the infinite-
dimensional sphere S∞ with the antipodal action of G, and BG = RP∞. For any G-space
X the natural map X → pt induces the natural cohomology map

π∗

X : H∗

G(pt) = H∗(BG) → H∗

G(X).

Definition 2.1. For a G-space X define indGX to be the maximal n such that π∗

X(c
n) 6=

0 ∈ H∗

G(X).

We need the following two properties of index. The first is the generalized Borsuk-Ulam
theorem.

Lemma 2.2. Let indG X = n, let V be an n-dimensional vector space with antipodal

G-action. Then for every continuous G-equivariant map f : X → V

f−1(0) 6= ∅.

The following lemma is proved in [14], see also [5].

Lemma 2.3. Let X be a compact metric G-space, indG X ≥ (d + 1)k, let W be a d-
dimensional metric space with trivial G-action. Then for every continuous G-equivariant

map f : X → W there exists x ∈ W such that

indG f−1(x) ≥ k.

In this lemma it is important to use the Čech cohomology, which is assumed in the
sequel.

3. Proof of Theorem 1.1

Let us map the (n− 1)-dimensional sphere Sn−1 to ∆n−1 by the following formula

g(x1, . . . , xn) = (x2
1, . . . , x

2
n).

Apply Lemma 2.3 to the composition f ◦ g, it is possible because g(x) = g(−x). We
obtain a point x ∈ W such that for Z = (f ◦ g)−1(x) we have indG Z ≥ r.
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We are going to show that x is the required intersection point. Assume the contrary: a
face F ⊆ ∆n−1 of dimension d(r− 1) does not intersect g(Z). Without loss of generality,
let g−1(F ) be defined by the equations

x1 = · · · = xr−1 = 0.

Note that the r − 1 coordinates x1, . . . , xr−1 give a continuous G-equivariant map h :
Sn−1 → R

r−1, where G acts on R
r−1 antipodally. By Lemma 2.2 the intersection g−1(F )∩

Z = h−1(0) ∩ Z = h|−1
Z (0) should be nonempty. The proof is complete.

4. The case W = R
d of Theorem 1.1

We are going remind the known fact: the case W = R
d of Theorem 1.1 follows from

the topological Tverberg theorem (only the case of prime r is needed).
The proof goes as follows. Consider a simplicial map ϕ : ∆N−1 → ∆n−1, where R =

k(r − 1) + 1 is a prime (for some k it is so by the Dirichlet theorem on arithmetic
progressions), N = (R− 1)(d+ 1) + k, and there are k vertices of ∆N−1 in the preimage
of every vertex of ∆n−1. For ∆N−1 the topological Tverberg theorem holds (since N ≥
(R− 1)(d+ 1) + 1), and there exist R disjoint faces F̃1, . . . , F̃R of ∆N−1 such that

R
⋂

i=1

f(ϕ(F̃i)) ∋ x.

Consider a face F ⊆ ∆n−1 of dimension d(r−1) and assume that ϕ−1(F ) does not contain

any of F̃i, then N should be at least the number of vertices in ϕ−1(F ) plus R, that is

N ≥ k(r − 1)d+ k +R = (R− 1)d+ k +R = N + 1,

which is a contradiction. So ϕ−1(F ) contains some of F̃i, and f(F ) ∋ x.

5. Tverberg type theorems for maps to finite-dimensional spaces

It would be natural to ask whether the corresponding version of the Tverberg theorem
holds for maps from ∆n−1 to a d-dimensional metric space, at least for r being a prime
power. In fact, the number n = (d+ 1)(r− 1) + 1 should be increased, as claimed by the
following:

Theorem 5.1. Let n = (d + 1)r − 1. Then there exists a d-dimensional polyhedron W
and a continuous map f : ∆n−1 → W with the following properties. For any pairwise

disjoint faces F1, . . . , Fr ⊆ ∆n−1 there exists i such that

f(Fi) ∩ f(Fj) = ∅

for all j 6= i.

This theorem also shows that our way to prove Theorem 1.1 cannot be applied to the
topological Tverberg theorem. Indeed, this proof does not distinguish between R

d and
any metric d-dimensional space, but the topological Tverberg theorem does not hold for
maps to d-dimensional metric spaces.

Proof of Theorem 5.1. The construction in the proof is taken from [13]. Let ∆n−1 be a
regular simplex in R

n−1, centered at the origin. Denote by ∆n−1
d−1 its (d− 1)-skeleton, and

W = C∆n−1
d−1 the cone (centered at the origin) of this skeleton. Define the PL-map (of

the barycentric subdivision to the barycentric subdivision) f : ∆n−1
d−1 → W as follows. For

every face F ⊆ ∆n−1 of dimension ≤ d − 1 its center is mapped to itself, for every face
F ⊆ ∆n−1 of dimension ≥ d its center is mapped to the origin.
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Let F1, . . . , Fr ⊆ ∆n−1 be a set of r pairwise disjoint faces. For some i the dimension
dimFi is less than d − 1 by the pigeonhole principle. For such face we have f(Fi) = Fi,
and

f(Fi) ∩ f(Fj) ⊆ Fi ∩ f(Fj) ⊆ ∂∆n−1.

Since f(Fj) ∩ ∂∆n−1 ⊆ Fj we obtain

f(Fi) ∩ f(Fj) ⊆ Fi ∩ Fj = ∅.

�

The following positive result for larger n is a direct consequence of the reasonings in [12].

Theorem 5.2. Let n = (d + 1)r, let r be a prime power. Suppose f : ∆n−1 → W is

a continuous map to d-dimensional metric space W . Then there exist r disjoint faces

F1, . . . , Fr ⊂ ∆n−1 such that
r
⋂

i=1

f(Fi) 6= ∅.

Proof. Without loss of generality we may assume W to be a finite d-dimensional poly-
hedron. Assume the contrary and denote ∆n−1 = K for brevity. Then there exists a
map

f̃ : K∗r
∆(2) → W ∗r

∆(r)

from the r-fold pairwise deleted join K∗r
∆(2) in the simplicial sense to the r-fold r-wise

deleted joinW ∗r
∆(r) in the topological sense (the notation is from [6]). Following mostly [10],

put r = pα and consider the group G = (Zp)
α and let G act on the factors of the deleted

join transitively. The rest of the reasoning is based on the following facts from [11, 12].

Definition 5.3. Let X be a connected G-space. Consider the Leray-Serre spectral se-
quence with

E∗,∗
2 = H∗(BG,H∗(X,Fp))

converging to H∗

G(X,Fp). Denote by iG(X) the minimum r such that the differential dr
of this spectral sequence has nontrivial image in the bottom row.

The index iG has the following properties, if G is a p-torus G = (Zp)
α.

(1) (Monotonicity) If there is a G-map f : X → Y , then iG(X) ≤ iG(Y ). If in addition
iG(X) = iG(Y ) = n+ 1 then the map f ∗ : Hn(Y,Fp) → Hn(X,Fp) is nontrivial.

(2) (Dimension upper bound) iG(X) ≤ hdimFp
X + 1.

(3) (Cohomology lower bound) If X is connected and acyclic over Fp in degrees ≤
N − 1, then iG(X) ≥ N + 1.

Now note that from the cohomology lower bound it follows that iG

(

K∗r
∆(2)

)

≥ n, from

the dimension upped bound it follows that iG

(

W ∗r
∆(r)

)

≤ n, and from (1) the map

f̃ ∗ : Hn−1
(

W ∗r
∆(r),Fp

)

→ Hn−1
(

K∗r
∆(2),Fp

)

should be nontrivial. From the cohomology exact sequence of a pair it follows that the
natural map

g∗ : Hn−1 (W ∗r,Fp) → Hn−1
(

W ∗r
∆(r),Fp

)

is surjective because Hn(W ∗r,W ∗r
∆(r),Fp) = 0 by the dimension considerations. Now it

follows that the map

(g ◦ f̃)∗ : Hn−1 (W ∗r,Fp) → Hn−1
(

K∗r
∆(2),Fp

)
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should be nontrivial. But the map g ◦ f̃ is a composition of the natural inclusion

h : K∗r
∆(2) → K∗r

with the map
f ∗r : K∗r → W ∗r.

The latter map has contractible domain, and therefore induces a zero map on the coho-
mology Hn−1(·,Fp). We obtain a contradiction. �
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[2] L. Danzer, B. Grünbaum, V. Klee. Helly’s theorem and its relatives. // Convexity, Proc. Symp. Pure
Math. Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, 101–179.
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