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LAGRANGIAN AVERAGED NAVIER-STOKES EQUATIONS WITH

ROUGH DATA IN SOBOLEV SPACE

NATHAN PENNINGTON

Abstract. We prove the existence of short time, low regularity solutions to the
incompressible, isotropic Lagrangian Averaged Navier-Stokes equations with ini-
tial data in Sobolev spaces. In the special case of initial datum in the Sobolev
space H3/2,2(R3), we obtain a global solution, improving on previous results, which
required data in H

3,2(R3).

1. Introduction

The incompressible Navier-Stokes equations govern the motion of incompressible
fluids and are given by

(1.1) ∂tu+ (u · ∇)u− νAu = 0,

where A is (essentially) the Laplacian, ν is a constant greater than zero due to the
viscosity of the fluid, and u is a velocity field, which means u(t, x) is the velocity of
the particle of fluid located at position x a time of t units after the fluid is put in
motion. These equations are derived from the Euler Equations, and setting ν = 0
recovers the Euler Equations.

The Navier-Stokes equations govern the behavior of many physical phenomena,
including ocean currents, the weather and water flowing through a pipe. The question
of global existence for the Navier-Stokes equations is one of the most significant
remaining open problems in mathematics, and because of the intractability of the
Navier-Stokes equations, several different equations that approximate the Navier-
Stokes equations have been studied. A recently derived approximating equation is
the Lagrangian Averaged Navier-Stokes equations (LANS). The LANS equations
come from the Lagrangian Averaged Euler (LAE) equations in the same way that
the Navier-Stokes equations come from the Euler equations. Like the Euler equations,
the LAE equations are the geodesics of a specific functional. For the Euler equation,
this is the Energy functional. For the LAE equations, the functional is derived via an
averaging process, with the averaging occurring at the level of the initial data. For
an exhaustive treatment of this process, see [10], [11], [8] and [5]. In [9] and [14], the
authors discuss the numerical improvements that use of the LANS equation provides
over more common approximation techniques of the Navier-Stokes equations.
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Like the Navier-Stokes equations, the LANS equations have both a compressible
and an incompressible formulation. The compressible LANS equations are derived
and studied in [6]. The incompressible LANS equations exist most generally in the
anisotropic form, and are derived and studied in [5]. In this paper, we will consider a
special case of these anisotropic equations called the isotropic incompressible LANS
equations. One form of the incompressible, isotropic LANS equations on a region
without boundary is

(1.2)
∂tu+ (u · ∇)u+ div ταu = −(1− α2△)−1grad p+ ν△u

div u = 0, u(t, x)|t=0 = ϕ(x),

where α > 0 and ϕ is the initial data. The Reynolds stress τα is given by

(1.3) ταu = α2(1− α2△)−1[Def(u) · Rot(u)]

where Rot(u) = (∇u−∇uT )/2 is the antisymmetric part of the velocity gradient and
Def(u) = (∇u+∇uT )/2. Lastly, (1− α2△) is the Helmholtz operator.

Setting ν = 1, we write (1.2) as

(1.4)
∂tu−Au+ P α(div · (u⊗ u) + div ταu) = 0,

x ∈ R
n, n ≥ 2, t ≥ 0, u(0) = ϕ = P αϕ

where u = u(t) : Rn → R
n, A = P α△, u ⊗ u is the tensor with jk-components

ujuk and div · (u⊗ u) is the vector with j-component
∑

k ∂k(ujuk). P
α is the Stokes

Projector defined as

(1.5) P α(w) = w − (1− α2△)−1grad f

where f is a solution of the Stokes problem: Given w, there is a unique v and a
unique (up to additive constants) function f such that

(1.6) (1− α2△)v + grad f = (1− α2△)w

with div v = 0. For a more explicit treatment of the Stokes Projector, see Theorem
4 of [11].

The averaging process has a smoothing effect on the resulting PDE. In [4], this
smoothing is exploited to show the existence of a global solution to (1.2) for initial
data of any size in H3,2(R3). This is in stark contrast to the case for the Navier-Stokes
equations, where such a global existence result is one of the great remaining open
problems in mathematics.

Inspired by the approach used for the Navier-Stokes equations in [2], we prove
local existence of solutionsto the LANS equations in the class of weighted continuous
functions in time and in the class of integral norms in time. When n = 3 and p = 2,
we extend these local solutions to global solutions with initial data in Hs,2(R3), where
s ≥ 3/2, improving on the result from [4].

The paper is organized as follows. The main results in this article are Theorems
A, B, and C, and their full statements can be found in Section 3.1, Section 5.1,
and Section 7, respectively. In Section 2, we state the most important special cases
and consequences of these three main theorems. In Section 3, we define the weighted
continuous in time spaces, state Theorem A, and prove some preliminary results. The
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proof of Theorem A is in Section 4. In Sections 5 and 6, we repeat this process for
the integral norms in time and Theorem B. In Section 7, we state and prove Theorem
C, which is our global existence result.

Acknowledgmenets: This work has its origins in the author’s graduate thesis,
completed at the University of North Carolina-Chapel Hill. The author would like to
thank the UNC Mathematics Department, his dissertation committee, and especially
his advisor Professor Michael Taylor for their helpful suggestions and support.

2. Special Cases of the main theorems

Our first result is a special case of Theorem A, and comes from setting b′ = 1 in
(4.18).

Theorem 1. For any ϕ = P αϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique solution
to (1.2) such that

(2.1) u ∈ Cr,p ∩ Ċa;k,c

provided the parameters (with r = n/p + b) satisfy (4.19). If ‖ϕ‖r,p is sufficiently
small, T = ∞.

The function spaces C and ·C are defined in Section 3. We record two additional
special cases that illustrate our “best” result, emphasizing that we can achieve a local
existence result for regularity arbitrarily close to zero if we allow sufficiently large p.

Theorem 2. Let r = n/p, n < p, and n ≥ 2. Then for any ϕ = P αϕ ∈ Hr,p(Rn)
there is a T = T (ϕ) > 0 and a unique solution to (1.2) such that

(2.2) u ∈ Cr,p ∩ Ċ(1−n/p)/2;1,p.

We note that the result from [2] gives local existence for the standard Navier-Stokes
equations with initial data in Hn/p−1,p(Rn).

We also record the result in the special case n = 3 and p = 2, which requires a
different choice of parameters.

Theorem 3. For any ϕ = P αϕ ∈ H3/2,2(R3) there is a T = T (ϕ) > 0 and a unique
solution to (1.2) such that

(2.3) u ∈ C3/2,2 ∩ Ċ1/4;2,2.

In Theorem C, we extend this special case to a global existence result. For the
details, see section 7. We compare this with the result in [4], where the authors
achieve global existence for solutions to 1.2 for initial data in H3,2(R3).

Our next series of results generate solutions to (1.2) in a slightly different functional
setting. We begin with a special case of Theorem B obtained by setting b′ = 1 in
(6.4).

Theorem 4. For any ϕ = P αϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique solution
to (1.2) such that

(2.4) u ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,c)
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provided the parameters (with r = n/p+b) satisfy (6.5). If ‖ϕ‖r,p is sufficiently small,
then T = ∞. Lastly, we have that solutions depend continuously on the initial data.

We also state a further special case.

Theorem 5. Let r = n/p and assume p > 5/4 and 2 ≤ n ≤ 5/4 + p. Then for any
ϕ = P αϕ ∈ Hr,p(Rn) there is a T = T (ϕ) > 0 and a unique solution to (1.2) such
that

(2.5) u ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,n)

where k = 5p/4 + 1 and a = 8p/5.

We note that the case n = 3 and p = 2 satisfies these conditions, and that Theorem
C extends the result in this case to a global solution.

We conclude this introduction with a comment about the regularity of our solu-
tions. For example, for n ≥ p, choosing k = r + 1/4, c = p, a = 1/8, b′ = 1
and s′ = n/p − 3/4 satisfies (4.18). Using these choices for the parameters, let
ϕ ∈ Hr,p(Rn) be our chosen initial data and let

(2.6) u ∈ BC([0, T ) : Hr,p) ∩ Ċ1/8;r+1/4,p

be the solution to (1.2) given by Theorem A. Then, for any 0 < t′ < T , define
ϕ′ = u(t′). Viewing ϕ′ as “new” initial data, applying Theorem A gives the existence
of a solution v to (1.2) such that

(2.7) v ∈ BC([0, T ) : Hr+1/4,p) ∩ Ċ1/8;r+1/2,p

where v(0) = ϕ′ = u(t′). Because

(2.8) BC([0, T ) : Hr+1/4,p) ∩ Ċ1/8;r+1/2,p ⊂ BC([0, T ) : Hr,p) ∩ Ċ1/8;r+1/4,p,

uniqueness of our solution gives that u and v are the same solution. Each iteration
of this process results in a “gain” of one-quarter of a derivative, and thus for any
0 < t′ < T , u(t′) ∈ Hs,p for any s ∈ R. We record this as a corollary of Theorem A,
but first we remark that for n < p, choosing k = b+1, c = p, a = (1−n/p)/2, b′ = 1
and s′ = 0 also satisfies (4.18), so we have the same result for the n < p case.

Corollary 1. Let ϕ ∈ Hr,p(Rn), with n ≥ p. If n ≥ p, let

(2.9) u ∈ BC([0, T ) : Hr,p) ∩ Ċ1/8;r+1/4,p

be the solution to (1.2) given by Theorem A. Then for any 0 < t < T , u(t) ∈ Hs,p(Rn)
for any real s. If n < p, let

(2.10) v ∈ BC([0, T ) : Hr,p) ∩ Ċ(1−n/p)/2;b+1,p

be the solution to (1.2) given by Theorem A. Then for any 0 < t < T , v(t) ∈ Hs,p(Rn)
for any real s.

We also remark that a similar corollary applies to Theorem B.
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3. Weighted continuous functions and preliminary results

3.1. Definition of weighted continuous functions in time and statement of

Theorem A. Fixing 0 < T ≤ ∞, for any k ≥ 0, we define the space

(3.1) CT
k;s,q = {f ∈ C((0, T ) : Hs,q) : ‖f‖k;s,q < ∞}

where

(3.2) ‖f‖k;s,q = sup{tk‖f(t)‖s,q : t ∈ (0, T )}.

ĊT
k;s,q denotes the subspace of CT

k;s,q consisting of f such that

(3.3) lim
t→0+

tkf(t) = 0 (in Hs,q).

If k = 0, we write C
T

s,q for BC([0, T ) : Hs,q), the space of bounded, continuous

functions from [0, T ) to Hs,q. We will typically write CT
k;s,q and C

T

s,q as Ck;s,q and

Cs,q, respectively, suppressing the T dependence.
We now state our first theorem in its full generality.

Theorem A. For any ϕ = P αϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique
solution to (1.2) such that

(3.4) u ∈ Cr,p ∩ Ċa;k,c

provided there exists a real number b′ such that the list of conditions (4.18) is satisfied
(where r = n/p + b). If ‖ϕ‖r,p is sufficiently small, T = ∞.

This result is in the spirit of Theorem 2.1 in [2], which gave local existence results
for the Navier-Stokes equations.

3.2. Preliminary work. Before proving the theorem, we do some preliminary work.
We begin by using Duhamel’s principle to write (1.4) as the integral equation

(3.5) u = Γϕ−G · P α(div(u⊗ u+ τα(u)))

with

(3.6) (Γϕ)(t) = etAϕ,

where A agrees with △ when restricted to P αHs,p, and

(3.7) G · g(t) =

∫ t

0

e(t−s)A · g(s)ds.

Our plan is to construct a contraction mapping based on (3.5). This requires
appropriate estimates for Γ, G, and the Reynolds stress term τα. We begin by
examining the Reynolds stress term.

Lemma 1. Let r ∈ [1,∞) and 1 < q, p < ∞, with 2/p − 1/q < 1 and 0 ≤ n(2q −
p)/pq ≤ r − 1. Then div τα : Hr,p → Hr,q, where we recall τα(u, v) = α2(1 −
α2△)−1(Def(u)) · (Rot(v)). Specifically, we have the estimate

(3.8) ‖div τα(u)‖r,q ≤ C‖u‖2r,p
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Proof. Recalling the definitions of Def(u) and Rot(u) and applying Proposition 1.1
from [13] (which has its origins in [3], [1], and [7]) we get

(3.9)

‖τα(u)‖r+1,q ≤ C‖[Def(u) · Rot(u)]‖r−1,q

≤ C‖∇u‖2r−1,p

≤ C‖u‖2r,p.

Since the divergence is a degree one differential operator, we get

(3.10) ‖div τα(u)‖r,q ≤ ‖τα(u)‖r+1,q ≤ C‖u‖2r,p

which proves the lemma. �

This immediately gives

(3.11) t2a‖div τα(u)‖r,q ≤ C(ta‖u‖r,p)
2

which proves the following corollary.

Corollary 2. div τα : Ċa;r,p → Ċ2a;r,q, with the estimate ‖div τα(u)‖2a;r,q ≤ C‖u‖2a;r,p.

We remark here that r ≥ 1 is forced by the need to estimate the τα term. For the
Navier-Stokes equation, we would only need r ≥ 0.

Our next task is to establish some properties of the operator V α defined by

(3.12) V α(u, v) = div u⊗ v + div τα(u, v).

Abusing notation, we will write V α(u, u) = V α(u). We also observe that V α is linear
in each of its arguments.

Proposition 1. Let a ≥ 0, b ≥ 1, 1 < q, p < ∞, and q = np
2n−s′p

where 0 ≤ s′ ≤ b− 1

and s′p < n. Then

(3.13) V α : Ċa;b,p × Ċa;b,p → Ċ2a;b−1,q

with the estimate

(3.14) ‖V α(u, v)‖2a;b−1,q ≤ ‖u‖a;b,p‖v‖a;b,p.

This follows directly from Corollary 2.
Next, we observe that

(3.15) V α(u)− V α(v) = −(V α(u, u− v) + V α(u− v, v)).

Using Proposition 1, we have

(3.16) ‖V α(u, u− v)‖b−1,q ≤ ‖u‖b,p‖u− v‖b,p

and

(3.17) ‖V α(u− v, v)‖b−1,q ≤ ‖v‖b,p‖u− v‖b,p.

These estimates give that

(3.18) ‖V α(u(s))− V α(v(s))‖b−1,q ≤ C (‖u(s)‖b,p + ‖v(s)‖b,p) ‖u(s)− v(s)‖b,p.

Multiplying both sides by ta and distributing through the right hand side, we get the
following corollary to Proposition 1.
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Corollary 3. With the same assumptions on the parameters as in Proposition 1, we
have that if u, v ∈ Ċa/2;b,q then

(3.19) ‖V α(u(s))− V α(v(s))‖a;b−1,q ≤ C(‖u‖a/2;b,p + ‖v‖a/2;b,p)‖u− v‖a/2;b,p.

Our next topic is the operator Γ.

Proposition 2. Let s′ ≤ s′′, 1 < q′ ≤ q′′ < ∞, and define k′′ = (n/q′ − n/q′′ + s′′ −
s′)/2. Then

(3.20) ‖Γf‖k′′;s′′,q′′ ≤ C‖f‖s′,q′

and for any ε > 0, there exists sufficiently small T such that

(3.21) ‖Γf‖k′′;s′′,q′′ ≤ ε,

provided k′′ > 0.

This is an immediate consequence of equation 1.15 in Chapter 15 of [12].
We now turn our attention to the operator G. Assuming s′ ≤ s′′, q′ ≤ q′′, and

u ∈ Ċk′;s′,q′, we formally calculate

(3.22)

‖G · u‖s′′,q′′ = ‖

∫ t

0

e(t−s)Au(s)ds‖s′′,q′′

≤ C

∫ t

0

‖e(t−s)Au(s)‖s′′,q′′ds

≤ C

∫ t

0

(t− s)−(s′′−s′+n/q′−n/q′′)/2‖u(s)‖s′,q′ds

≤ C

∫ t

0

(t− s)zs−k′sk
′

‖u(s)‖s′,q′ds

≤ Ctz−k′+1‖u‖k′;s′,q′

where z = −(s′′ − s′ + n/q′ − n/q′′)/2. This result will hold provided 0 ≤ (s′′ − s′ +
n/q′ − n/q′′)/2 < 1 and k′ < 1, and this leads to our first result involving G.

Proposition 3. With s′ ≤ s′′, q′ ≤ q′′ and setting k′′ = k′−1+(s′′−s′+n/q′−n/q′′)/2,

G continuously maps ĊT
k′;s′,q′ into ĊT

k′′;s′′,q′′ with 0 ≤ (s′′ − s′ +m/q′ −m/q′′)/2 < 1
and k′ < 1 with the estimate

(3.23) ‖G · u‖k′′;s′′,q′′ ≤ C‖u‖k′;s′,q′.

4. Proof of Theorem A

To prove Theorem A, we begin by constructing the nonlinear map

(4.1) Φu = Γϕ−G · P α(div (u⊗ u) + div ταu).

Our goal is to show that this map is a contraction on an appropriate function space.
Using (3.12), Φ can be re-written as

(4.2) Φu = Γϕ−G · P α(V α(u)).
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Beginning with initial data ϕ ∈ Hr,p(Rn) where r = n
p
+ b, we construct the space

(4.3) ET,M = {v ∈ C̄r,p ∩ Ċa;k,c : ‖v − Γϕ‖0;r,p + ‖v‖a;k,c ≤ M},

recalling that the definition of C̄r,p and Ċa;k,c requires a choice of T . Our goal will be
to show that Φ is a contraction on this space for appropriate choices of parameters.

To show Φ is a contraction, we use the mapping properties of G to send each
component space of ET,M into an intermediate space, and then use Proposition 1.

Our intermediate space will be of the form Ċ2a;k−b′,c̄.
Our first task is to show that Φ maps ET,M into ET,M . To do this, we need to

estimate

(4.4) ‖Φ(u)− Γϕ‖0;r,p = ‖G · P αV α(u)‖0;r,p

and

(4.5) ‖Φ(u)‖a;k,c = ‖Γϕ−G · P αV α(u)‖a;k,c.

To estimate (4.4), we note that by Proposition 3 and that P α is a projection, we
have that

(4.6) ‖GV αu‖0;n
p
+b,p ≤ C‖V αu‖2a;k−b′,c̄

will hold provided

(4.7)

0 = 2a− 1 +

(

n

p
+ b− (k − b′) +

n

c̄
−

n

p

)

/2

2a < 1

0 ≤ (n/p+ b− (k − b′) + n/c̄− n/p)/2 < 1

k − b′ ≤ n/p+ b

c̄ ≤ p.

Proposition 1 gives

(4.8) ‖V αu‖2a;k−b′,c̄ ≤ C‖u‖2a;k,c

provided

(4.9)

k, b′ ≥ 1,

c > 1,

c̄ =
nc

2n− s′c
0 ≤ s′ ≤ k − 1

s′c < n.

These combine to give our estimate on (4.4). To estimate ‖G · P αV α(u)‖a;k,c, we
have

(4.10) ‖GV αu‖a;k,c ≤ C‖V αu‖2a;k−b′,c̄ ≤ C‖u‖2a;k,c
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will hold provided

(4.11)

a = 2a− 1 +
(

k − (k − b′) +
n

c̄
−

n

c

)

/2

2a < 1

c̄ ≤ c

0 ≤ (k − (k − b′) + n/c̄− n/c)/2 < 1.

Using (4.6) and (4.10), we have

(4.12) ‖Φ(u)− Γϕ‖0;r,p + ‖Φ(u)‖a;k,c ≤ C‖u‖2a;k,c + ‖Γϕ‖a;k,c.

By assumption, u ∈ ET,M , so ‖u‖2a;k,c ≤ M2. So our last task is to estimate
‖Γϕ‖a;k,c. From Proposition 2, we have that

(4.13) Γ : Ċ0;n
p
+b,p → Ċa;k,c

if a > 0, k ≥ n
p
+ b, c ≤ p, and

(4.14) a =

(

n

p
−

n

c
+ k −

(

n

p
+ b

))

/2

which simplifies to

(4.15) 2a = k −
n

c
− b.

Because Γϕ ∈ Ċa;k,c, there exists a T , depending only on M and the norm of the
initial data ϕ, such that ‖Γϕ‖a;k,c ≤ M/2. So by choosing a sufficiently small M and
an appropriate T , we have that Φ : ET,M → ET,M .

Now we seek to show that Φ is a contraction map. Let u, v ∈ ET,M . Then by
Corollary 3 we have

(4.16)

‖Φu(t)− Φv(t)‖r,p = ‖G(P αV αu− P αV α(v))‖r,p

≤ C‖V αu− V α(v)‖2a;k−b′,c̄

≤ C(‖u‖a;k,c + ‖v‖a;k,c)‖u− v‖a;k,c

≤ CM‖u − v‖a;k,c,

and similarly we have

(4.17)

‖Φu(t)− Φv(t)‖a;k,c = ‖G(V αu− V α(v))‖a;k,c

≤ C‖V αu− V α(v)‖2a;k−b′,c̄

≤ C(‖u‖a;k,c + ‖v‖a;k,c)‖u− v‖a;k,c

≤ CM‖u− v‖a;k,c.

So for a sufficiently small choice of M , we can choose a T such that Φ sends ET,M

into itself and is a contraction on ET,M . So by the contraction mapping principle,
we have a unique fixed point u ∈ ET,M provided our parameters satisfy all the
requisite inequalities. Combining and simplifying these inequalities, and allowing
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s′ = k − 2 − b + b′ to define s′, we get the following list of restrictions on the
parameters:

(4.18)

1 < p ≤ c < ∞

s′ := k − 2− b+ b′

k ≥ 1, b′ ≥ 1, s′c < n

0 < 2a = k − n/c− b < 1

0 ≤ s′ ≤ k − 1

1 <
nc

2n− s′c
≤ p

1 ≥ b′ − b

1 ≤ b′ +
n

c
− s′ < 2

2− 2b′ + s′ ≤
n

p
≤ 2− b′ + s′.

This is not optimal, because of the presence of the “extra” parameter b′. However,
this version does make it easy to ascertain certain bounds on the original parameters.
For example, the second and seventh conditions require that b ≥ 0, which provides a
lower bound of n/p on the regularity of our initial data.

To eliminate the extra parameter b′, we remark that the conditions force 1 ≤ b′ < 2,
and our optimal case (b = 0) requires b′ = 1. So setting b′ = 1, we let k = 1 + b+ s′

define s′, and our list of conditions becomes

(4.19)

1 < p ≤ c < ∞

b ≥ 0

s′ := k − 1− b

k ≥ 1, s′c < n

0 < 2a = k − n/c− b < 1

1 <
nc

2n− s′c
≤ p

0 ≤
n

c
− s′ < 1

s′ ≤
n

p
≤ 1 + s′.

To get Theorem 2, we choose p > n, b = 0, k = 1, c = p and a = 1− n/p. To get
Theorem 3, we choose p = c = k = 2, n = 3, b = 0, and a = 1/4.

5. Integral norms in time and preliminary results

5.1. Definition of integral norms in time and statement of Theorem B.

We now seek to solve (1.2) in a different function space. We fix T > 0 and let
M((0, T ) : E) be the set of measurable functions defined on (0, T ) with values in the
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space E. Then we define

(5.1) Lσ((0, T ) : Hs,q) = {f ∈ M((0, T ) : Hs,q) : (

∫ T

0

‖f(t)‖σs,qdt)
1/σ < ∞}.

We state our second theorem.

Theorem B. For any ϕ = P αϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique
solution to (1.2) such that

(5.2) u ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,c)

provided the parameters (with r = n/p+b) satisfy (6.4). If ‖ϕ‖r,p is sufficiently small,
then T = ∞. Lastly, we have that solutions depend continuously on the initial data.

This is analogous to Theorem 3.1 in [2], where the authors prove a similar result
for Navier-Stokes equations.

5.2. Preliminary results. Our first supporting result is Lemma 3.2 in [2] and in-
volves the operator Γ.

Proposition 4. Let 1 < q0 ≤ q1 < ∞, s0 ≤ s1, and assume 0 < (s1 − s0 + n/q0 −
n/q1)/2 = 1/σ ≤ 1/q0. Then Γ maps Hs0,q0 continuously into Lσ((0,∞) : Hs1,q1),
with the estimate

(5.3)

(
∫ ∞

0

‖Γu‖σHs1,q1

)1/σ

≤ C‖u‖Hs0,q0 .

Proof. We first observe that (s1− s0+n/q0−n/q1)/2 = 1/σ < 1 implies s1− s0 < 2.
So without loss of generality, we assume s0 = 0 and s1 ∈ [0, 2). Next, we define the
quasi-linear operator K by

(5.4) (Kf)(t) = ‖et△f‖Hs1,q1 ,

where s1 and q1 have been fixed. Using the heat kernel estimate, we have that

(5.5) (Kf)(t) = ‖et△f‖Hs1,q1 ≤ Ct−1/σ‖f‖Lq0 = C(Tf)(t),

so K is a quasi-linear map that satisfies

(5.6) K : Lq0(Rn) → L1/σ,∞(I).

The Proposition then follows from an application of the Marcinkiewitz interpolation
theorem. �

The following corollary follows from an application of the dominated convergence
theorem.

Corollary 4. For any ε > 0, there exists a T which depends only on ε and ‖u‖Hs0,q0

such that

(5.7)

(
∫ T

0

‖et△u‖σHs1,q1dt

)1/σ

≤ ε,

for all 0 < t < T .

Next, we consider the operator V α on our integral norm space.
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Proposition 5. Let b ≥ 1, 1 < q, p < ∞, with 2/p−1/q < 1 and 0 ≤ n(2q−p)/pq ≤
b− 1. Then

(5.8) V α : Lσ((0, T ) : Hb,p) → Lσ/2((0, T ) : Hb−1,q)

with the estimate

(5.9)

(
∫ T

0

‖V α(u(s))‖
σ/2
b−1,qds

)2/σ

≤

(
∫ T

0

‖u(s)‖σb,pds

)2/σ

.

This follows directly from Proposition 1. We also have that

(5.10)

(
∫ T

0

‖V α(u(s))− V α(v(s))‖
σ/2
b−1,qds

)2/σ

≤

(
∫ T

0

(‖v(s)‖b,p + ‖u(s)‖b,p)
σ/2(‖v(s)− u(s)‖b,p)

σ/2ds

)2/σ

≤

(
∫ T

0

(‖v(s)‖b,p + ‖u(s)‖b,p)
σds

)2/σ (∫ T

0

‖v(s)− u(s)‖σb,pds

)2/σ

where we used Holder’s inequality and Minkowski’s inequality. This gives an analog
to Corollary 3.

Corollary 5. With the same assumptions on the parameters as in Proposition 5, we
have that if u, v ∈ Lσ((0, T ) : Hb,p) then

(5.11)

(
∫ T

0

‖V α(u(s))− V α(v(s))‖
σ/2
b−1,qds

)2/σ

≤

(
∫ T

0

(‖v(s)‖b,p + ‖u(s)‖b,p)
σds

)2/σ (∫ T

0

‖v(s)− u(s)‖σb,pds

)2/σ

.

Our next set of results involve the operator G.

Proposition 6. Let 1 ≤ q′ ≤ q′′ < ∞, s′ ≤ s′′, 1 < σ′ < σ′′ < ∞, and let
1/σ′ − 1/σ′′ = 1 − (s′′ − s′ + n/q′ − n/q′′)/2. Then for any T ∈ (0,∞], G maps
Lσ′

((0, T ) : Hs′,q′) continuously into Lσ′′

((0, T ) : Hs′′,q′′).

Using Proposition 3, we observe that

(5.12) ‖Gu(t)‖s′′,q′′ ≤ C

∫ T

0

|t− s|(s
′′−s′+m/q′−m/q′′)/2‖u(s)‖s′,q′ds

where 1/r = (s′′ − s′ + n/p′ − n/p′′)/2. Applying the Hardy-Littlewood-Sobolev
Theorem, we have

(5.13) (

∫ T

0

‖Gu‖σ
′′

s′′,q′′dt)
1/σ′′

≤ C‖f‖Lσ′(I)

where f(t) = ‖u(t)‖s′,q′. This completes the proof.
Our next result also involves the operator G.
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Proposition 7. Let 1 < q′ ≤ q′′ < ∞, s′ ≤ s′′ and assume 1/q′′ ≤ 1/σ = 1 −
(s′′ − s′ + n/q′ − n/q′′)/2 ≤ 1. Then G maps Lσ((0, T ) : Hs′,q′) continuously into
BC([0, T ) : Hs′′,q′′).

The proof is a duality argument, which we include for completeness. We begin
by defining H by (Hf)(s, x) = es△f(s, x). We recall that the dual of the space
Lq((0, T ) : Lp) is Lq̄((0, T ) : Lp̄) (where q̄ and p̄ denote the conjugate exponents to q
and p and 1 ≤ p, q < ∞). So for any g ∈ L∞((0, T ) : H−s′′,q̄′′), we have

(5.14)

∫ T

0

∫

Rn

g(s, x)es△(1−△)s
′′/2f(s, x)dxds

≤C

∫ T

0

∫

Rn

es△(1−△)(s
′′−s′)/2g(s, x)(1−△)s

′/2f(s, x)dxds

≤C

∫ T

0

‖es△g(s)‖Hs′′−s′,q̄′‖f(s)‖Hs′,q′ds

≤C(

∫ T

0

‖es△g(s)‖σ̄
Hs′′−s′,q̄′ds)

1/σ̄(

∫ T

0

‖f(s)‖σ
Hs′,q′ds)

1/σ

≤C sup
s

‖g(s)‖q̄′′(

∫ T

0

‖f(s)‖σ
Hs′,q′ds)

1/σ,

where the last line is a slight generalization of Proposition 4. Since g is an arbitrary
element of the dual space of L1((0, T ) : Hs′′,q′′), we have

(5.15)

∫ T

0

‖es△f(s)‖Hs′′,q′′ds ≤ C(

∫ T

0

‖f(s)‖σ
Hs′,q′ds)

1/σ.

To finish the proposition, making liberal use of the change of variables formula and
using (5.15), we have

(5.16)

‖G · f(t)‖s′′,q′′ = ‖

∫ t

0

e(t−s)△f(s)ds‖s′′,q′′

≤

∫ t

0

‖e(t−s)△f(s)‖s′′,q′′ds

=

∫ t

0

‖es△f(t− s)‖s′′,q′′ds

≤ C(

∫ t

0

‖f(t− s)‖σs′,q′ds)
1/σ

≤ C(

∫ T

0

‖f(s)‖σs′,q′ds)
1/σ,

which proves the proposition.

6. Proof of Theorem B

As in Section 4, we begin with the nonlinear map

(6.1) Φu = Γϕ−G · P α(V α(u))
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and the space FT,M defined to be the space of all

(6.2) v ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,c)

such that

(6.3) sup
0≤t≤T

‖v(t)− Γϕ‖r,p +

(
∫ T

0

‖v(s)‖ak,cds

)1/a

≤ M.

Using the same argument used in Section 4, we get that Φ will be a contraction
mapping provided the following list of conditions is satisfied

(6.4)

1 < c̄ ≤ p ≤ c < ∞

s′ := k − 2 + b′ − b

k ≥ 1, b′ ≥ 1, s′c < n

0 < 2/a = k − n/c− b < 1

0 ≤ s′ ≤ k − 1

c̄ =
nc

2n− s′c
1 ≥ b′ − b

k − b′ ≤
n

p
+ b ≤ k

a/2 ≤ p ≤ a.

We observe that as in the previous case, these conditions require that b ≥ 0. We
also record the simplified list that arises from setting b′ = 1:

(6.5)

1 < c̄ ≤ p ≤ c < ∞

s′ := k − 1− b

k ≥ 1, s′c < n

0 < 2/a = k − n/c− b < 1

0 ≤ k − 1− b

k = 1 + b+
2n

c
− nc̄

k − 1 ≤
n

p
+ b ≤ k

a/2 ≤ p ≤ a.

We record the result for the special case p = 2, n = 3.

Theorem 6. For any ϕ = P αϕ ∈ H3/2,2 there is a unique global solution to (1.2)
such that

(6.6) u ∈ BC([0, T ) : H3/2,2) ∩ L5/2((0, T ) : H2,5/2).

The local solution follows by choosing p = k = c = 2, n = 3, b = 0, b′ = s′ = 1 and
a = 4.



LANS EQUATION WITH ROUGH DATA 15

The local result extends to a global result via an argument similar to the one used
in Section 7, and the continuous dependence on the initial data follows from the
argument in 4.

7. Global Existence in Sobolev space

In this section we extend the result from Theorem 3 to a global existence result.
We recall that Theorem 3 says that, given ϕ ∈ H3/2,2(R3), there exists a T and a
unique solution u to (1.2) such that

(7.1) u ∈ C̄3/2,2 ∩ Ċ1/4;2,2,

where we again recall that the definition of C implies a choice of T . Following the
work in [4], we will extend this to a global result.

Theorem C. Let φ ∈ H3/2,2(R3) and let

(7.2) u ∈ C̄3/2,2 ∩ Ċ1/4;2,2

be the unique solution to (1.2) with initial data ϕ on the time strip [0, T ). Then
u ∈ L∞([0, T ], C̄3/2,2 ∩ Ċ1/4;2,2).

Proof. We start by recalling (1.2)

(7.3) ∂tu+ (u · ∇)u+ div ταu = −(1− α2△)−1∇p + ν△

and stating an equivalent form (see Section 3 of [4])

(7.4)
∂t(1− α2△)u+∇u[(1− α2△)u]− α2(∇u)T · △u

=− (1− α2△)Au−∇p.

To start, we take the L2 product of (7.4) with u. We get

(7.5) I1 + I2 + I3 = J1 + J2

where

(7.6)

I1 = (∂t(1− α2△)u, u)

I2 = (∇uu, u)

I3 = −α2
(

(∇u△u, u) + ((∇u)T · △u, u)
)

J1 = −((1− α2△)(Au), u)

J2 = (∇p, u).

We start with I1, which becomes

(7.7)
I1 = (∂tu, u)− α2(△∂tu, u)

=
1

2
∂t(‖u‖

2
L2 + α2‖A1/2u‖2L2).

Applying integration by parts to I2, I3, and J2 and recalling that div u = 0, we get
that all three terms vanish. For J1 we have

(7.8) J1 = −((1− α2△)(Au), u) = −(A1/2u,A1/2u)− α2(Au,Au).
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Applying this to (7.4), we get

(7.9)
1

2
∂t(‖u(t)‖

2
L2 + α2‖u(t)‖2

Ḣ1,2) ≤ −(‖A1/2u(t)‖2L2 + α2‖Au(t)‖2L2),

where Ḣ denotes the homogeneous Sobolev norm. This proves that ‖u(t)‖H1,2 is
decreasing in time.

For our next estimate, we will apply A to (1.2) and take the L2 product with Au
to get

(7.10) (∂tAu,Au) + (A2u,Au) + (AP α(∇uu+ div ταu,Au) = 0.

The first piece satisfies

(7.11) (∂tAu,Au) =
1

2
∂t‖Au‖

2
L2

and the second satisfies

(7.12) (A2u,Au) = (A3/2u,A3/2) = ‖A3/2‖2L2 .

To handle the last term of (7.10), we write it as

(7.13) (AP α(∇uu), Au) + (AP αdiv ταu,Au) = K1 +K2.

To proceed, we will need two inequalities. The first is the well known Sobolev
embedding:

(7.14) ‖u‖L∞ ≤ C‖u‖Hk,2

provided 2k > 3. The second is called a Ladyzhenskaya inequality, and is (5.3) in [4]:

(7.15) ‖u‖Ḣi ≤ C‖u‖
1−i/m
L2 ‖u‖

i/m

Ḣm
,

where Ḣ is the homogeneous Sobolev space.
Starting with K1, we have

(7.16)

(AP α(∇uu), Au) = (A1/2(∇u · u), A3/2u)

≤ C‖A3/2u‖L2(‖(A1/2∇u)u‖L2 + ‖(A1/2u)∇u‖L2)

≤ C‖u‖Ḣ3(‖u‖L∞‖A1/2∇u‖L2 + ‖A1/2u‖L∞‖∇u‖L2)

≤ C‖u‖Ḣ3

(

‖u‖L∞‖u‖Ḣ2 + ‖A1/2u‖L∞‖u‖Ḣ1

)

.

By Sobolev embedding and the observation that ‖u‖Hs,p ≤ ‖u‖Lp + ‖u‖Ḣs,p, we have

(7.17)
‖u‖L∞ ≤ C‖u‖Hk1 ≤ C(‖u‖L2 + ‖u‖Ḣk1 ) ≤ C(‖u‖H1 + ‖u‖Ḣk1 )

‖A1/2u‖L∞ ≤ C‖u‖Hk2 ≤ C(‖∇u‖L2 + ‖u‖Ḣk2 ) ≤ C(‖u‖H1 + ‖u‖Ḣk2 )

where k1 = 3/2+ ε and k2 = 5/2+ δ for positive numbers ε and δ. So (7.16) becomes

(7.18)
(AP α(∇uu), Au) ≤ C‖u‖Ḣ3‖u‖Ḣ2‖u‖H1 + C‖u‖Ḣ3‖u‖Ḣ2‖u‖Ḣk1

+ C‖u‖Ḣ3‖u‖H1‖u‖Ḣk2 + C‖u‖Ḣ3‖u‖
2
H1.
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By (7.15), we have

(7.19)

‖u‖Ḣ2 = ‖∇u‖Ḣ1 ≤ C‖∇u‖
1/2

L2 ‖∇u‖
1/2

Ḣ2
≤ C‖u‖

1/2

Ḣ1
‖u‖

1/2

Ḣ3

‖u‖Ḣk1 = ‖∇u‖Ḣk1−1 ≤ C‖u‖
1−(k1−1)/2

Ḣ1
‖u‖

(k1−1)/2

Ḣ3

‖u‖Ḣk2 = ‖∇u‖Ḣk2−1 ≤ C‖u‖
1−(k2−1)/2

Ḣ1
‖u‖

(k2−1)/2

Ḣ3
.

Applying (7.19) to (7.18), we have

(7.20)
(AP α(∇uu), Au) ≤C‖u‖

1+k1/2

Ḣ3
‖u‖

2−k1/2

Ḣ1
+ C‖u‖

(k2+1)/2

Ḣ3
‖u‖

(k2+3)/2

Ḣ1

+ C‖u‖
3/2

Ḣ3
‖u‖

3/2
H1 + C‖u‖Ḣ3‖u‖2H1.

Choosing ε = δ = 1/4, we get

(7.21)
(AP α(∇uu), Au) ≤C‖u‖

15/8

Ḣ3
(‖u‖

9/8

Ḣ1
+ ‖u‖

23/8

Ḣ1
)

+C‖u‖
3/2

Ḣ3
‖u‖

3/2

H1 + C‖u‖Ḣ3‖u‖2H1,

which finishes our K1 estimate. For K2, we have

(7.22) (A(div τα)(u), Au) ≤ ‖u‖Ḣ2‖A(div τα)(u)‖L2.

To estimate the second term, we remark that it is sufficient to consider A(1 −
α2△)−1div (∇u · ∇u), and we have

(7.23)
‖A(1− α2△)−1div (∇u · ∇u)‖L2 ≤ ‖div (∇u · ∇u)‖L2

≤ C‖∇u‖L∞‖u‖Ḣ2.

Plugging this back into (7.22) and using (7.17) and (7.19) gives

(7.24)

(A(div τα)(u), Au) ≤ C‖u‖2
Ḣ2‖∇u‖L∞

≤ C(‖u‖2
Ḣ2‖u‖H1 + ‖u‖2

Ḣ2‖u‖Ḣk2 )

≤ C(‖u‖Ḣ3‖u‖
2
H1 + ‖u‖

15/8

Ḣ3
‖u‖

23/8
H1 ).

Combining (7.21) and (7.24) gives

(7.25)
(AP α(∇uu+ div ταu), Au) ≤C‖u‖

15/8

Ḣ3
(‖u‖

9/8

Ḣ1
+ ‖u‖

23/8

Ḣ1
)

+C‖u‖
3/2

Ḣ3
‖u‖

3/2

H1 + C‖u‖Ḣ3‖u‖2H1.

Applying Young’s multiplicative inequality with p = 16/15 and p′ = 16, we get

(7.26) ‖u‖
15/8

Ḣ3
(‖u‖

9/8

Ḣ1
+ ‖u‖

23/8

Ḣ1
) ≤ Cε‖u‖2

Ḣ3 +
C

ε
(‖u‖18H1 + ‖u‖46H1).

Choosing ε = (4C)−1, (7.26) becomes

(7.27) ‖u‖
15/8

Ḣ3
(‖u‖

9/8

Ḣ1
+ ‖u‖

23/8

Ḣ1
) ≤

1

4
‖u‖2

Ḣ3 + C(‖u‖18H1 + ‖u‖46H1).

Similarly, Young’s multiplicative inequality applied to the second term on the right
hand side of (7.25) gives

(7.28) ‖u‖
3/2

Ḣ3
‖u‖

3/2

H1 + C‖u‖Ḣ3‖u‖2H1 ≤
1

4
‖u‖2

Ḣ3 + C(‖u‖6H1 + ‖u‖4H1).
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Using (7.27) and (7.28) in (7.25) gives

(7.29) (AP α(∇uu+div ταu), Au) ≤
1

2
‖u‖2

Ḣ3 +C(‖u‖18H1 + ‖u‖46H1 + ‖u‖6H1 + ‖u‖4H1).

Finally, using (7.11), (7.12) and (7.29) in (7.10) gives

(7.30)

1

2
∂t‖u(t)‖

2
Ḣ2 ≤

−1

2
‖u(t)‖2

Ḣ3 + C(‖u(t)‖18H1 + ‖u(t)‖46H1 + ‖u‖6H1 + ‖u‖4H1)

≤
−1

2
‖u(t)‖2

Ḣ3 + C(‖ϕ‖18H1 + ‖ϕ‖46H1 + ‖ϕ‖6H1 + ‖ϕ‖4H1),

where the last line used (7.9). So, for any t such that

(7.31) ‖u(t)‖Ḣ3 ≥ C(‖ϕ‖18H1 + ‖ϕ‖46H1 + ‖ϕ‖6H1 + ‖ϕ‖4H1)1/2,

we get that ‖u(t)‖Ḣ2 is decreasing as a function of time at t. So our last task is to
show that ‖u‖Ḣ2 is bounded provided

(7.32) ‖u(t)‖Ḣ3 < C(‖ϕ‖18H1 + ‖ϕ‖46H1 + ‖ϕ‖6H1 + ‖ϕ‖4H1)1/2.

To handle this case, we again use (7.15), and get
(7.33)

‖u(t)‖Ḣ2 ≤ C‖u(t)‖
1/3

L2 ‖u(t)‖
2/3

Ḣ3
≤ C‖ϕ‖

1/3

L2 (‖ϕ‖
10
H1 + ‖ϕ‖2H1 + ‖ϕ‖6H1 + ‖ϕ‖4H1)1/3.

Since the right hand side has no time dependence, we get that ‖u(t)‖Ḣ2 is bounded
independent of time. Combining this with (7.9), we finally get

(7.34) u ∈ L∞([0, T ], C̄3/2,2 ∩ Ċ1/4;2,2),

which proves the Theorem. �
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