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Abstract

Floorplan partitions are certain tilings of a rectangle by other rectangles. There are natural ways to
order their elements (rectangles and segments). In particular, Ackerman, Barequet, and Pinter studied a
pair of orders induced by neighborhood relations between rectangles of a floorplan partition, and obtained
a natural bijection between these pairs and (2-41-3,3-14-2)-avoiding permutations (also known as Baxter
permutations).

In the present paper, we study a pair of orders induced by neighborhood relations between seg-

ments of a floorplan partition. We obtain a natural bijection between these pairs and another family
of permutations, namely (2-14-3,3-41-2)-avoiding permutations. We also enumerate these permuta-
tions, investigate relations between the two kinds of pairs of orders — and correspondingly, between
(2-14-3,3-41-2)-avoiding permutations and Baxter permutations — and study the special case of “guil-
lotine” partitions.

Keywords: Floorplan partitions, Permutation patterns, Baxter permutations, Generating functions.

1 Introduction

A floorplan partition is a partition of a rectangle into interior-disjoint rectangles (Fig. 1). It is stipulated
that a point may belong to the boundary of at most three rectangles in the partition. In other words, the
segments forming a floorplan partition do not cross, and a meeting of segments can have one of the following
forms: ⊣, ⊥, ⊢, ⊤ (but not +). In particular, this implies that the number of (internal) segments in a
floorplan partition is less than the number of rectangles by 1. Throughout the paper, for a given floorplan
partition P , the number of segments in P is denoted by n, and accordingly, n+ 1 is the number of rectangles
in P . We say that P has size n + 1. For instance, the trivial partition formed of a single rectangle and no
(internal) segment has size 1.

Recently, Ackerman, Barequet, and Pinter studied a representation of neighborhood relations between
rectangles in floorplan partitions by means of permutations [1]. These neighborhood relations are defined as
follows. A rectangle A is a left-neighbor of B (equivalently, B is a right-neighbor of A) if there is a vertical
segment in the partition that contains the right side of A and the left side of B (note that the right side of
A and the left side of B may be disjoint). The relation “A is to the left of B” (equivalently, B is to the
right of A), denoted by A← B, is defined as the transitive closure of the relation “A is a left-neighbor of B.”
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Finally, the relation ↞ is defined as follows: A↞ B if A = B or A ← B. The terms A is a below-neighbor
of B (equivalently, B is an above-neighbor of A) and A is below B (equivalently, B is above A) are defined
similarly, as well as the notation A ↓ B for “A is below B,” and A ↡ B for “A = B or A ↓ B.” It is not hard to
see that the relations ↞ and ↡ are partial orders. In the partitions of Fig. 1, there holds A ↓D and B ← C.

Two floorplan partitions P1 and P2 of size n + 1 are said to be R-equivalent if there exists a labeling of
the rectangles of P1 by A1,A2, . . . ,An+1 and a labeling of the rectangles of P2 by B1,B2, . . . ,Bn+1 such that
for all k,m ∈ [n + 1] ∶= {1,2, . . . , n + 1}, the rectangles Ak and Am stand in the same neighborhood relations
as Bk and Bm. See Fig. 1 for an example1.
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Figure 1: Two R-equivalent floorplan partitions.

The following results are proved (in slightly different terms) in [1]. Let P be a floorplan partition of size
n + 1. Two distinct rectangles A and B of P are in exactly one of the relations A ← B, B ← A, A ↓ B, or
B ↓ A. It follows that the relations � and � between rectangles of P defined by

A� B if A = B, or A is to the left of B, or A is below B (A = B, or A← B, or A ↓ B),
A� B if A = B, or A is to the left of B, or A is above B (A = B, or A← B, or B ↓ A),

are linear orders. Each of these orders can be used for labeling the rectangles of P by 1,2, . . . , n + 1. In the
� order, the rectangle in the lower left corner will be labeled 1, and the rectangle in the upper right corner
n+ 1. In the � order, the rectangle in the upper left corner will be labeled 1, and the rectangle in the lower
right corner n+1. Let R(P ) be the sequence a1, a2, . . . , an+1, where, for all 1 ≤ i ≤ n+1, ai is the label in the
� order of the rectangle which is labeled i in the � order. It is clear that R(P ) is a permutation of [n+ 1];
we call it the R-permutation of P . Loosely speaking, R(P ) is obtained by labeling the rectangles according
to the � order, and then reading these labels while passing the rectangles according to the � order. Fig. 2
shows a floorplan partition and the corresponding R-permutation. Note that by construction, R-equivalent
partitions have the same R-permutation.
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Figure 2: Constructing the R-permutation of a floorplan partition P .

The main result of [1] states that R, regarded as a function from R-equivalence classes of partitions to

1In [1], two R-equivalent partitions are considered to be the same.

2



(2-41-3,3-14-2)-avoiding permutations2 (originally known as Baxter permutations), is a bijection. Through
this correspondence, the number of rectangles becomes the size of the permutation, and the neighborhood
relations between rectangles in P can be easily read from R(P ). The papers [8, 16, 19] suggest that bipolar
orientations of planar maps, which are also in bijection with Baxter permutations, provide a convenient
geometric description of R-equivalence classes of floorplan partitions. Besides, several other classes of objects
in bijection with Baxter permutations are mentioned in [16].

There are many works about floorplan partitions to be found in the literature. Their study in computa-
tional geometry [11, 24, 26] is motivated, in particular, by the fact that their generation is a critical stage in
integrated circuit layout [22, 23, 27, 34, 35], in architectural designs [7, 14, 18, 30, 31], etc.

In the present work we study neighborhood relations between segments forming a floorplan partition.
We define these relations in Section 2. This leads to the notion of S-equivalent partitions3. Then we
construct a permutation from these relations in a way similar to that described above; we call it the S-
permutation of P , and denote it by S(P ). In Section 3 we prove the main results: all S-permutations are(2-14-3,3-41-2)-avoiding permutations, and S, regarded as a function from S-equivalence classes of floorplan
partitions to (2-14-3,3-41-2)-avoiding permutations, is a bijection. In Section 4 we show that R-equivalence
of partitions implies their S-equivalence (this means that S-equivalence classes are unions of R-equivalence
classes), and explain how S(P ) can be constructed directly from R(P ). We also describe in terms of R when
two floorplan partitions give rise to the same S-permutation. In Section 5 we construct the generating tree
of (2-14-3,3-41-2)-avoiding permutations and enumerate them. Their generating function turns out to be
simply related to that of Baxter permutations, but we have not found any direct combinatorial explanation
of this fact. In Section 6 we study in more details S-permutations corresponding to the so-called guillotine
partitions, and obtain several results for their multidimensional generalization.

2 Orders between segments of a floorplan partition

In this section we define neighborhood relations between segments in a floorplan partition, and construct
from them four order relations:

• two partial orders: ↞ (West – East) and ↡ (South – North); and

• two linear orders: � (South-West – North-East) and � (North-West – South-East);

and prove several facts about these relations (most of which are analogous to the ones for the relations
between rectangles mentioned in the introduction, and proved in [1]).

Definition 2.1. Let P be a floorplan partition. Let I and J be two segments in P . We say that I is a
left-neighbor of J (equivalently, J is a right-neighbor of I) if one of the following holds:

• I and J are vertical, there is a rectangle A in P such that the left side of A is contained in I and the
right side of A is contained in J ; moreover, the vertical projection of A coincides with the intersection
of the vertical projections of I and J ;

• I is vertical, J is horizontal, and the left endpoint of J lies in I; or

• I is horizontal, J is vertical, and the right endpoint of I lies in J .

The terms I is a below-neighbor of J (equivalently, J is an above-neighbor of I) and I is below J (equivalently,
J is above I) are defined similarly.

Typical examples are shown in Fig. 3.
Note that a horizontal segment I has at most one left-neighbor and at most one right-neighbor (exactly

one when the corresponding endpoint(s) of I do not lie on the boundary), which are both vertical segments.
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Figure 3: The segment I is a left-neighbor of the segment J .

I

Figure 4: The right-neighbors of a vertical segment I (thick segments).

In contrast, a vertical segment may have several left- and right-neighbors, which may be horizontal or vertical.
This is illustrated in Fig. 4.

Definition 2.2. The relation “I is to the left of J” (equivalently, J is to the right of I), denoted by I ← J ,
is the transitive closure of the relation “I is a left-neighbor of J .” The relation↞ between segments of P is
defined as follows: I ↞ J if I = J or I ← J .

The relations I ↓ J (for “I is below J”) and I ↡ J (for “I = J or I ↓ J”) are defined similarly.

Observation 2.3. The relations ↞ and ↡ are partial orders.

Proof. We prove the claim for the relation ↞.
Reflexivity and transitivity are clear from the definition.
For antisymmetry, note that I ← J and J ← I cannot hold simultaneously because if I ← J , then any

interior point of I has a smaller abscissa than any interior point of J .

Definition 2.4. Let P1 and P2 be two floorplan partitions of size n + 1. We say that P1 and P2 are S-
equivalent if it is possible to label the segments of P1 by I1, I2, . . . , In and the segments of P2 by J1, J2, . . . , Jn
so that for all k,m ∈ [n], the segments Ik and Im stand in exactly the same neighborhood relations as Jk
and Jm.

Fig. 5 shows two floorplan partitions which are S-equivalent: in both cases, the left-right neighborhood
relations are 1 ← 4, 2 ← 4, 3 ← 4, 4 ← 5, 4 ← 6, and the below-above neighborhood relations are 2 ↓ 1, 3 ↓
2, 6 ↓ 5. We will see in Section 4 that two R-equivalent partitions are always S-equivalent; but the partitions
of the figure are not R-equivalent.

2This notation is defined in Section 3.2.
3Of course, R stands for rectangles and S for segments.
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Figure 5: Two S-equivalent (but not R-equivalent) floorplan partitions.

The following observation may help to understand the ↞ order. If I and J are vertical segments and
right-left neighbors, let us create a horizontal edge, called traversing edge, in the rectangle A that lies
between them. Fig. 6 shows a chain of neighbors in the ↞ order, starting from a vertical segment I, and the
corresponding traversing edges (dashed lines).

I

Figure 6: A chain in the ↞ order (thick segments), and the corresponding traversing edges (dashed lines).

Observation 2.5. Assume I ↞ J . Then any point of J lies weakly to the right of any point of I (that is,
its abscissa is at least as large).

Let x (respectively, y) be a point of minimal (respectively, maximal) abscissa on I (respectively, J). Then
there exists a path from x to y formed of vertical and horizontal sections, such that

– each vertical section is part of a vertical segment of P ,

– each horizontal section is an (entire) horizontal segment of P , or a traversing edge of P , visited from
left to right,

– if I (respectively, J) is horizontal, it is entirely included in the path.

It suffices to prove these properties when J is a right-neighbor of I, and they are obvious in this case (see
Fig. 3).

Lemma 2.6. In the ↞ order, J covers I if and only if J is a right-neighbor of I. A similar statement holds
for the ↡ order.

Proof. Since↞ is constructed as the transitive closure of the right-left neighborhood relation, every covering
relation is a neighborhood relation.

Conversely, let us prove that any neighborhood relation is a covering relation. Equivalently, this means
that the right-neighbors of any segment I form an antichain. If I is horizontal, it has at most one right-
neighbor, and there is nothing to prove. Assume I is vertical (as in Fig. 4), and that two of its neighbors, J1

5



and J2, are comparable (but distinct): J1 ← J2. By the first part of Observation 2.5, J2 cannot be horizontal
(because its leftmost point would then lie on I). Hence J2 is vertical. Let y be a point of J2, and let x be
a point of J1 of minimal abscissa. Consider the path from x to y described in Observation 2.5. The last
horizontal section of this path cannot be a horizontal segment (all segments that end on J2 start to the left
of I). Hence the last horizontal section is a traversing edge. If the vertical projection of J2 is included in the
vertical projection of I (as is the case for the highest two vertical neighbors of I in Fig. 4), any traversing
edge ending on J2 starts on I, so that the path cannot have started from J1. Thus the vertical projection of
J2 is not included in the vertical projection of I, and there exist points of J2 that have (for instance) a smaller
ordinate than all points of I (as is the case for the lowest vertical neighbor of I in Fig. 4). Then the path
from x to y must cross the above-neighbor of J2. But segments do not cross in a floorplan partition. Hence
the neighbors of I form an antichain, and the covering relation coincides with the neighborhood relation.

Lemma 2.7. Let I and J be two different segments in a floorplan partition P . Then exactly one of the
relations: I ← J , J ← I, I ↓ J , or J ↓ I, holds.

Proof. We first observe that, as ← and ↓ are antisymmetric, there can not hold simultaneously I ← J and
J ← I, nor I ↓ J and J ↓ I. Assume without loss of generality that I is a horizontal segment. Construct
the NE-sequence K1,K2, . . . of I as follows (see Fig. 7 for an illustration): K1 is the right-neighbor of I, K2

the above-neighbor of K1, K3 the right-neighbor of K2, and so on, until the boundary is reached. Construct
similarly the SE-, NW-, and SW-sequences of I. These sequences partition the rectangle into four (or less, if
some endpoints of I lie on the boundary) regions; each segment of P (except I and those belonging to either
of the sequences) lies in precisely one of them. Also, if J is in the interior of a region, then its neighbors are
either in the same region, or in one of the sequences that bound the region.

It is not hard to see that the vertical segments of the NE-sequence are to the right of I, while horizontal
segments are above I. A horizontal segment K2i cannot be to the left of I, since it ends to the right of I.
Let us prove that K2i cannot be the right of I either. Assume this is the case, and consider the path going
from the leftmost point of I to the rightmost point of K2i, as described in Observation 2.5. The last section
of this path is K2i. Hence the path has points in the interior of the region comprised between the NW- and
NE-sequences. But since the path follows entirely every horizontal segment it visits, it can never enter the
interior of this region. Thus K2i cannot be to the right of I. Thus, its only relation to I is I ↓K2i. Similar
arguments apply for vertical segments of the NE-sequence, and for the other three sequences.

Consider now a segment J that lies in the region bounded by the NE-sequence, the NW-sequence, and
the boundary. Then I is below J : if we consider the below-neighbors of J , then their below-neighbors, and so
on, then we necessarily reach one of the horizontal segments of the NW- or NE-sequence, which, as we have
seen, are above I (we cannot reach a vertical segment of the sequences without having reached an horizontal
segment first).

To prove that J cannot be to the right of I, we argue as we did for K2i: the path from I to J starting
from the leftmost point of I cannot enter the North region. Similarly, J cannot be to the left of I. This
completes the proof.

Definition 2.8. The relations� and� between segments of a floorplan partition P are defined as follows:

I � J if I = J , or I is to the left of J , or I is below J (I = J , or I ← J , or I ↓ J),
I � J if I = J , or I is to the left of J , or I is above J (I = J , or I ← J , or J ↓ I).

We also write I ↲ J when I � J and I ≠ J ; and I ↰ J when I � J and I ≠ J .

Observation 2.9. The relations � and � are linear orders.

Proof. We prove the claim for the relation �.
Reflexivity follows directly from the definition.
Antisymmetry follows from the fact that ↞ and ↡ are order relations, and from Lemma 2.7.
For transitivity, assume that I ↲ J and J ↲ K. If I ← J and J ← K (respectively, I ↓ J and J ↓ K),

then we have I ←K (respectively, I ↓K) by the transitivity of ← (respectively, ↓). Assume now that I ← J

6
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Figure 7: Four regions determining in which relation I stands with other segments of the partition.

and J ↓ K (the case I ↓ J and J ← K is proven similarly). By Lemma 2.7, I = K is impossible, and we
have either I ← K, K ← I, I ↓ K, or K ↓ I. However, the combination of K ← I and I ← J yields K ← J ,
contradicting the assumption that J ↓ K. Similarly, combining K ↓ I with J ↓K yields J ↓ I, contradicting
the assumption that I ← J . Therefore, we have either I ←K or I ↓K; that is, I ↲K.

Linearity follows from Lemma 2.7.

Observation 2.10. The orders ↞ and ↡ can be recovered from � and �. Indeed, I ↞ J if and only if
I � J and I � J ; moreover, I ↡ J if and only if I � J and J � I.

The signs� and� are intended to resemble the inequality sign ≤. Throughout the paper, the ith segment
in the � order (1 ≤ i ≤ n) will be denoted by Ii. See Fig. 5 for examples.

Consider the segment Ii in a floorplan partition P . The following observation describes the segment Ii+1
(that is, the immediate successor of Ii in the � order). By Lemma 2.6, the segment Ii+1 is either a right- or
below-neighbor of Ii. There are several cases depending on the existence of such neighbors and the relations
between them. We use the following notation. For a horizontal segment I, we denote by R(I) the right-
neighbor of I (when it exists). By Lemma 2.6, the below-neighbors of I form an antichain of the ↡ order.
Since � is a linear order, they are totally ordered for the ↞ order. By the first part of Observation 2.5,
the smallest of them is also the leftmost one, denoted LB(I). Thus LB(I) is either LVB(I) (the leftmost
vertical below-neighbor of I) or LHB(I) (the leftmost horizontal below-neighbor of I). Similarly, for a
vertical segment I, we denote by B(I) the below-neighbor of I; by UR(I) the highest right-neighbor of I,
and by UHR(I) (respectively, UVR(I)) the highest horizontal (respectively, vertical) right-neighbor of I.

Observation 2.11. Let Ii be a segment in a floorplan partition P of size n+1. If Ii is horizontal, then Ii+1
is either R(Ii) or LB(Ii). More precisely,

• If none of LB(Ii) and R(Ii) exists, then Ii is the last segment in the � order (that is, i = n).

• If exactly one of LB(Ii) and R(Ii) exists, then Ii+1 is this segment.

• As soon as Ii has at least one vertical below-neighbor, Ii+1 = LB(Ii). This segment is LHB(Ii) if it
exists, and otherwise LVB(Ii).

• If LVB(Ii) does not exist but LHB(Ii) and R(Ii) exist, then
– If the join of LHB(Ii) and R(Ii) is of type ⊣, then Ii+1 = LHB(Ii).
– If the join of LHB(Ii) and R(Ii) is of type ⊥, then Ii+1 = R(Ii).

If Ii is vertical, then Ii+1 is either B(Ii), UHR(Ii), or UVR(Ii) (the details are similar to those in the
case of a horizontal segment).
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See Fig. 8 for an illustration. In all configurations it is assumed that there are no other candidates to be
Ii+1 except those depicted. The dashed lines belong to the boundary.
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Figure 8: The segment Ii+1 is the immediate successor of Ii in the � order.

The group of symmetries of the square acts on floorplan partitions (one should draw these partitions in a
square rather than a rectangle before talking about this action). It is thus worth examining how the orders
are transformed when applying such symmetries. As this symmetry group is generated by two generators,
for instance the reflections across the first diagonal and across a horizontal line, it suffices to study these two
transformations. The following observation easily follows from the neighborhood relations of Fig. 3.

Observation 2.12. Let P be a floorplan partition, and P ′ be obtained by reflecting P across the first
diagonal. If I is a segment of P , let I ′ denote the corresponding segment of P ′. Then

I ↞ J ⇔ I ′ ↡ J ′,
I ↡ J ⇔ I ′ ↞ J ′,
I � J ⇔ I ′ � J ′,
I � J ⇔ J ′ � I ′.

If instead P ′ is obtained by reflecting P across a horizontal line,

I ↞ J ⇔ I ′ ↞ J ′,
I ↡ J ⇔ J ′ ↡ I ′,
I � J ⇔ I ′ � J ′,
I � J ⇔ I ′ � J ′.

One consequence of this observation is that if P ′ is obtained by applying a half-turn rotation to P , then
I ↞ J ⇔ J ′ ↞ I ′, and similarly for the other three orders. Also, if P ′ is obtained by applying a clockwise
quarter-turn rotation to P , then I � J ⇔ J ′ � I ′.

3 A bijection between S-equivalence classes of floorplan partitions

and (2-14-3,3-41-2)-avoiding permutations

In this section we define a map S from floorplan partitions to permutations. We show that S(P ) encodes
all neighborhood relations — and hence the four order relations defined in Section 2 — between segments of
P . In fact, S can be seen as an injection from S-equivalence classes of floorplan partitions to permutations.
We then prove that the class of permutations obtained from floorplan partitions can be described in terms
of (generalized) patterns, in a way that is reminiscent of Baxter permutations.
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3.1 S-permutations

Let P be a floorplan partition of size n+1. There are n segments in P . Let S(P ) be the sequence b1, b2, . . . , bn,
where bi is the label in the � order of the segment labeled i in the � order, for all 1 ≤ i ≤ n. Then S(P ) is
a permutation of [n] = {1,2, . . . , n}; we call it the S-permutation of P and denote it by S(P ). Equivalently,
if I1, . . . , In is the list of segments in the � order, then Iσ−1(1), . . . , Iσ−1(n) is the list of segments in the �
order. An example is shown in Fig. 9.

Thus, we assign a permutation to a floorplan partition in a way similar to that used in [1], but this time
we use order relations between segments rather than rectangles. Note that S(P ) is a permutation of [n],
while R(P ) is a permutation of [n + 1].

For σ, a permutation of [n], the graph of σ is the point set {(i, σ(i)) ∶ i ∈ [n]}. By definition of S(P ),
if a segment of P is labeled i in the � order and j in the � order, then S(P )(i) = j. In other words, the
graph of S(P ) contains the point (i, j), which will be denoted by Ni.
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(11, 10)
(12, 11)
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1 2 3

Figure 9: (1) A floorplan partition P , with segments labeled (i, j), where i (respectively, j) is the label
according to the� (respectively,�) order; (2) Hasse diagrams of the ↡ and↞ orders (the minimal elements
are at the bottom in the first diagram, but on the left in the second diagram); (3) The corresponding
S-permutation.

It follows from Observation 2.12 that the map S has a simple behavior with respect to symmetries.

Observation 3.1. Let P be a floorplan partition, and P ′ be obtained by reflecting P across the first diagonal.
Let σ = S(P ) and σ′ = S(P ′). Then σ′ is obtained by reading σ from right to left or equivalently, by reflecting
the graph of σ across a vertical line.

If instead P ′ is obtained by reflecting P across a horizontal line, then σ′ = σ−1. Equivalently, σ′ is
obtained by reflecting the graph of σ across the first diagonal.

Since these two reflections generate the group of symmetries of the square, we can describe what happens
for the other elements of this group: applying a rotation to P boils down to applying the same rotation to
S(P ), and reflecting P across ∆, a symmetry axis of the bounding square, boils down to reflecting S(P )
across ∆′, a line obtained by rotating ∆ of 45○ in counterclockwise direction. These properties will be
extremely useful to decrease the number of cases we have to study in certain proofs.

We will now prove that S(P ) characterizes the S-equivalence class of P . Clearly, two S-equivalent
partitions give rise to the same orders, and thus to the same S-permutation. Conversely, let us define
neighborhood relations between points in the graph of a permutation as follows. Let σ be a permutation.
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Let Ni = (i, σ(i)), Nj = (j, σ(j)) be two points in the graph of σ. If i < j and σ(i) < σ(j), then the point
Nj is to the NE of the point Ni. If, in addition, there is no i′ such that i < i′ < j and σ(i) < σ(i′) < σ(j),
then the point Nj is a NE-neighbor of the point Ni. In a similar way we define when the point Nj is to the
SE / SW / NW of the point Ni, and when the point Nj is a SE- / SW- / NW-neighbor of the point Ni.
For example, in the graph in Fig. 9(3), the points (1,7), (2,8), (3,6), (5,9) and (6,12) are to the NW of
N7 = (7,5); among them, (3,6), (5,9) and (6,12) are NW-neighbors of N7.

The neighborhood relations between segments of P correspond to the neighborhood relations in the graph
of S(P ) in the following way.

Observation 3.2. Let P be a floorplan partition, and let Ii and Ij be two segments in P .
The segment Ij is to the right of Ii if and only if the point Nj lies to the NE of Ni. Consequently, Ij is

a right-neighbor of Ii if and only if Nj is a NE-neighbor of Ni.
Similar statements hold for the other directions: left (respectively, above, below) neighbors in segments

correspond to SW- (respectively, NW-, SE-) neighbors in points.

Proof. The segment Ij is to the right of Ii if and only if Ii� Ij and Ii� Ij . By construction of S(P ), this
means that i < j and S(P )(i) < S(P )(j). Equivalently, Nj lies to the NE of Ni.

Remark. An analogous fact holds for rectangles of a floorplan partition and points in the graph of the
corresponding R-permutation. It is not stated explicitly in [1], but follows directly from the definitions in
the same way as our Observation 3.2 does.

Since the neighborhood relations characterize the S-equivalence class, we have proved the following result.

Corollary 3.3. Two floorplan partitions are S-equivalent if and only if they have the same S-permutation.

3.2 (2-14-3,3-41-2)-Avoiding permutations

In this section we first discuss the dash notation and bar notation for pattern avoidance in permutations,
and then prove several facts about (2-14-3,3-41-2)-avoiding permutations. As we will see in Section 3.3,
these are precisely the permutations obtained from floorplan partitions.

In the classical notation, a permutation π = a1a2 . . . an avoids a permutation (a pattern) τ = b1b2 . . . bk if
there are no 1 ≤ i1 < i2 < . . . < ik ≤ n such that ai1ai2 . . . aik (a subpermutation of π) is order isomorphic to τ

(bx < by if and only if aix < aiy ).
The dash notation and the bar notation generalize the classical notation and provide a convenient way

to define more classes of restricted permutations. For a recent survey, see [32].
In the dash notation, some letters corresponding to those from the pattern τ may be required to be

adjacent in the permutation π, in the following way. If there is a dash between two letters in τ , the
corresponding letters in π may occur at any distance from each other; if there is no dash, they must be
adjacent in π. For example, π = a1a2 . . . an avoids 2-14-3 if there are no 1 ≤ i < j < ℓ <m such that ℓ = j + 1
and aj < ai < am < aℓ.

In the bar notation, some letters of τ may have bars. A permutation π avoids a barred pattern τ if
every occurrence of the unbarred part of τ is a sub-occurrence of τ (with bars removed). For example,
π = a1a2 . . . an avoids 213̄54 if for any 1 ≤ i < j < ℓ < m such that aj < ai < am < aℓ, there exists k such that
j < k < ℓ and ai < ak < am (any occurrence of the pattern 2154 is a sub-occurrence of the pattern 21354).

A Baxter permutation, first defined in [6], is a permutation of [n] satisfying the following condition:

There are no i, j, ℓ,m ∈ [n] satisfying i < j < ℓ <m, ℓ = j + 1, such that
either π(j) < π(m) < π(i) < π(ℓ) and π(i) = π(m) + 1,
or π(ℓ) < π(i) < π(m) < π(j) and π(m) = π(i) + 1.

In the dash notation, Baxter permutations are those avoiding (2-41-3,3-14-2), and in the bar notation,
Baxter permutations are those avoiding (413̄52,253̄14) (see [20] or [32, Sec. 7]). As proved in [1], the
permutations that are obtained as R-permutations are precisely the Baxter permutations. It turns out that
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the permutations that are obtained as S-permutations may be defined by similar conditions, given below in
Proposition 3.5. As in the Baxter case, these conditions can be defined in three different ways.

Lemma 3.4. Let π be a permutation of [n]. The following conditions are equivalent:

1. There are no i, j, ℓ,m ∈ [n] such that i < j < ℓ <m, ℓ = j+1, π(j) < π(i) < π(m) < π(ℓ), π(m) = π(i)+1.
2. In the dash notation, π avoids 2-14-3.

3. In the bar notation, π avoids 213̄54.

Fig. 10 illustrates these three conditions. The rows (respectively, columns) marked by dots in parts (1)
and (2) denote adjacent rows (respectively, columns). The shaded area in part (3) does not contain points
of the graph.

m

1 2 3

i j l i ij jl lm m

Figure 10: Three ways to define permutations avoiding 2-14-3.

Proof. It is clear that 3⇒ 2⇒ 1: the four points displayed in Fig. 10(1) form an occurrence of the pattern
of Fig. 10(2), and the four points displayed in Fig. 10(2) form an occurrence of the pattern of Fig. 10(3).

Conversely, let us prove that if a permutation π contains the pattern 213̄54, then there exist i′, j′, ℓ′,m′

as in the first condition. Assume that there are 1 ≤ i < j < ℓ < m ≤ n such that π(j) < π(i) < π(m) < π(ℓ),
and there is no k such that j < k < ℓ, π(i) < π(k) < π(m). Let j′ be the maximal number for which j ≤ j′ < ℓ
and π(j′) < π(i). Let ℓ′ = j′ + 1. Then π(ℓ′) > π(m), and we have a pattern 2-14-3 with i, j′, ℓ′,m.

Furthermore, let i′ be the number satisfying i′ < j′ and π(i) ≤ π(i′) < π(m), for which π(i′) is the
maximal possible. Let m′ = π−1(π(i′) + 1). Then m′ > ℓ′ and π(m′) = π(i′) + 1, and, thus, the first condition
holds with i′, j′, ℓ′,m′.

A similar result holds for permutations that avoid 3-41-2. Therefore, the following proposition holds.

Proposition 3.5. Let σ be a permutation of [n]. The following statements are equivalent:

1. There are no i, j, ℓ,m ∈ [n] satisfying i < j < ℓ <m, ℓ = j + 1, such that
either σ(j) < σ(i) < σ(m) < σ(ℓ) and σ(m) = σ(i) + 1,
or σ(ℓ) < σ(m) < σ(i) < σ(j) and σ(i) = σ(m) + 1.

2. In the dash notation, σ avoids 2-14-3 and 3-41-2.

3. In the bar notation, σ avoids 213̄54 and 453̄12.

Corollary 3.6. The group of symmetries of the square leaves invariant the set of (2-14-3,3-41-2)-avoiding
permutations.
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Proof. The second description in Proposition 3.5 shows that the set of (2-14-3,3-41-2)-avoiding permutations
is closed under reading the permutations from right to left. The first (or third) description shows that it is
invariant under taking inverses, and these two transformations generate the symmetries of the square.

We shall also use the following fact.

Proposition 3.7. Let σ be a (2-14-3,3-41-2)-avoiding permutation of [n]. Let Ni = (i, σ(i)) be a point in
the graph of σ. Then each of the following situations is impossible:

• Ni has several NW-neighbors and several NE-neighbors;

• Ni has several NE-neighbors and several SE-neighbors;

• Ni has several SE-neighbors and several SW-neighbors;

• Ni has several SW-neighbors and several NW-neighbors.

Proof. Due to symmetry, it suffices to prove the impossibility of the first situation. Assume that Ni has
several NW-neighbors and several NE-neighbors.

Let i′ be the maximal number for which Ni′ is an NW-neighbor of Ni, and let Nj be another NW-neighbor
of Ni. Then we have j < i′ and σ(i) < σ(j) < σ(i′). We conclude that i′ = i − 1: otherwise σ(i′ + 1) < σ(i)
and, therefore, j, i′, i′ + 1, i form the forbidden pattern 3-41-2 (see Fig. 11 (1)), which is a contradiction.

Similarly, if i′′ is the minimal number for which Ni′′ is an NE-neighbor of Ni, then i′′ = i + 1. Let Nk be
another NE-neighbor of Ni. We have σ(i) < σ(k) < σ(i + 1).

Assume without loss of generality that σ(i − 1) < σ(i + 1). Now, if σ(j) < σ(k), then j, i, i + 1, k form
the forbidden pattern 2-14-3; and if σ(k) < σ(j), then j, i − 1, i, k form the forbidden pattern 3-41-2 (see
Fig. 11 (2)), which is, again, a contradiction.

1 1 1i’+
1 2

j ii’ ii− i+j k

Figure 11: Illustration for the proof of Proposition 3.7.

3.3 S-permutations coincide with (2-14-3,3-41-2)-avoiding permutations

We have already seen that the map S induces an injection from S-equivalence classes of partitions to per-
mutations (Corollary 3.3). Here, we characterize the image of S.

Theorem 3.8. The map S induces a bijection between S-equivalence classes of floorplan partitions of size
n + 1 and (2-14-3, 3-41-2)-avoiding permutations of size n.
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The proof involves two steps: In Proposition 3.10 we prove that all S-permutations are (2-14-3, 3-41-2)-
avoiding. Then, in Proposition 3.11, we show that for any (2-14-3, 3-41-2)-avoiding permutation σ of [n],
there exists a floorplan partition P with n segments such that S(P ) = σ.

Recall that a horizontal segment has at most one left-neighbor and at most one right-neighbor, and a
vertical segment has at most one below-neighbor and at most one above-neighbor. Therefore, we have the
following.

Observation 3.9. Let Ii be a segment in a floorplan partition P , and let Ni be the corresponding point in
the graph of S(P ). If Ii is a horizontal segment, then the point Ni has at most one NE-neighbor and at most
one SW-neighbor. Similarly, if Ii is a vertical segment, then Ni has at most one SE-neighbor and at most
one NW-neighbor.

Proposition 3.10. Let P be a floorplan partition. Then S(P ) avoids 2-14-3 and 3-41-2.

Proof. By Observation 3.1, the image of S is invariant by all symmetries of the square. Hence it suffices to
prove that σ = S(P ) avoids 2-14-3.

Assume that σ contains 2-14-3. By Lemma 3.4, there exist i < j < ℓ <m, ℓ = j + 1 such that σ(j) < σ(i) <
σ(m) < σ(ℓ) and σ(m) = σ(i)+1 (see Fig. 12(1)). We claim that the four segments Ii, Ij , Iℓ, Im are vertical.

Consider Ij . The pointNℓ is an NE-neighbor ofNj . Consider the set {x ∶ x > ℓ, σ(j) < σ(x) < σ(ℓ)}. This
set is not empty since it contains m. Let p be the smallest element in this set. Then Np is an NE-neighbor
of Nj. Thus, Nj has at least two NE-neighbors, Nℓ and Np. Therefore, Ij is vertical by Observation 3.9. In
a similar way one can show that Ii, Iℓ, Im are also vertical.

k’

j

Im

I i

I l

Ik

1 2

i j l m

I

I

Figure 12: The pattern 2-14-3 never occurs in an S-permutation.

By Observation 3.2 we have that: Ij ↓ Ii, Im ↓ Iℓ; Ii ← Iℓ, Ij ← Im, Ii ← Im, Ij ← Iℓ. Moreover, the
last two relations are neighborhood relations. Let Ik be the below-neighbor of Ii, and let Ik′ be the below-
neighbor of Iℓ (see Fig. 12 (2)). The segments Ik and Ik′ are horizontal. If the line supporting Ik is (weakly)
lower than the line supporting Ik′ , then Ij cannot be a left-neighbor of Iℓ since the interiors of their vertical
projections do not intersect. Similarly, if the line supporting Ik is (weakly) higher than the line supporting
Ik′ , then Ii cannot be a left-neighbor of Im. We have thus reached a contradiction, and σ cannot contain
2-14-3.

Proposition 3.11. For each (2-14-3,3-41-2)-avoiding permutation σ of [n], there exists a floorplan partition
P with n segments such that S(P ) = σ.
Proof. Consider the graph of σ. We construct P on this graph. The boundary of the graph is also the
boundary of P . For each point Ni = (i, σ(i)) of the graph, we draw a segment Ki passing through Ni

according to certain rules. We first determine the direction of the segments Ki (Point 1 below), and then
the coordinates of their endpoints (Point 2). We prove that we indeed obtain a floorplan partition (Point 3),
and that its S-permutation is σ (Point 4).
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1. The directions of the segments Ki

Let Ni = (i, σ(i)) be a point in the graph of σ. Our first two rules are forced by Observation 3.9. They are
illustrated in Fig. 13 (no point of the graph lies in the shaded areas):

• If Ni has several NW-neighbors or several SE-neighbors, then Ki is horizontal.

• If Ni has several SW-neighbors or several NE-neighbors, then Ki is vertical.

By Proposition 3.7, these two rules never apply simultaneously to the same point. If one of them applies to
Ni, we say that Ni is a strong point. Otherwise, we say that Ni is a weak point. This means that Ni has at
most one neighbor in each direction.

3

i i i i

2 41

Figure 13: Rules for determining the direction of the segment Ki passing through a strong point.

We claim that if Ni and Nj are weak points, then they are in adjacent rows if and only if they are in
adjacent columns. Due to symmetry, it suffices to show the if direction. Let Ni and Ni+1 be weak points,
and assume without loss of generality that σ(i) < σ(i + 1). If σ(i + 1) − σ(i) > 1, then there are points of
the graph of σ in the rows between the rows that contain Ni and Ni+1; thus, either Ni has at least two
NE-neighbors or Ni+1 has at least two SW-neighbors. Therefore, it is impossible to have both Ni and Ni+1
weak.

Thus, weak points appear as ascending or descending sequences of adjacent neighbors: Ni,Ni+1, . . . ,Ni+ℓ
with σ(i) = σ(i + 1) − 1 = ⋯ = σ(i + ℓ) − ℓ or σ(i) = σ(i + 1) + 1 = ⋯ = σ(i + ℓ) + ℓ. Note that a weak point Ni

can be isolated.
For weak points, the direction of the corresponding segments is determined as follows:

• IfNi,Ni+1, . . . ,Ni+ℓ is a maximal ascending sequence of weak points, then the directions ofKi,Ki+1, . . . ,Ki+ℓ
are chosen in such a way that Kj and Kj+1 are never both horizontal, for i ≤ j < i + ℓ. Hence several
choices are possible.

• IfNi,Ni+1, . . . ,Ni+ℓ is a maximal descending sequence of weak points, then the directions ofKi,Ki+1, . . . ,Ki+ℓ
are chosen in such a way that Kj and Kj+1 are never both vertical, for i ≤ j < i + ℓ.

In particular, for an isolated weak point Ni, the direction of Ki can be chosen arbitrarily.

2. The endpoints of the segments Ki

Once the directions of all Ki’s are chosen, their endpoints are set as follows (see Fig. 14 for an illustration):

• If Ki is vertical (which implies that it has at most one NW-neighbor and at most one SE-neighbor):

If Ni has an NW-neighbor Nj , then the upper endpoint of Ki is set to be the point (i, σ(j)). We say
that Nj bounds Ki from above.

Otherwise (if Ni has no NW-neighbor), Ki reaches the upper side of the boundary.
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If Ni has an SE-neighbor Nk, then the lower endpoint of Ki is set to be the point (i, σ(k)). We say
that Nk bounds Ki from below.

Otherwise (if Ni has no SW-neighbor), Ki reaches the lower side of the boundary.

• If Ki is horizontal (which implies that it has at most one SW-neighbor and at most one NE-neighbor):

If Ni has an SW-neighbor Nj , then the left endpoint of Ki is set to be the point (j, σ(i)). We say that
Nj bounds Ki from the left.

Otherwise (if Ni has no SW-neighbor), Ki reaches the left side of the boundary.

If Ni has an NE-neighbor Nk, then the right endpoint of Ki is set to be the point (k,σ(i)). We say
that Nk bounds Ki from the right.

Otherwise (if Ni has no NE-neighbor), Ki reaches the right side of the boundary.

Nk

Nk

Ni

Nj

i k i kj

N

j

j

Ni

Figure 14: Determining the endpoints of the segment Ki: the points Nj and Nk bound the segment Ki.

Fig. 15 presents an example of the whole construction: in Part 1, the directions are determined for strong
(black) points, and chosen for weak (gray) points; in Part 2, the endpoints are determined and a floorplan
partition is obtained. Notice that σ is the S-permutation associated with the floorplan partition P in Fig. 9,
but here we have obtained a different floorplan partition, P ′. However, we could have also obtained P

had we chosen the appropriate directions of segments passing through weak points. The question of when
S(P ) = S(P ′) will be studied in Section 4.2.
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Figure 15: Constructing a floorplan partition from a (2-14-3,3-41-2)-avoiding permutation.

3. The construction above indeed determines a floorplan partition
In order to prove this, we need to show that two segments never cross, and that the endpoints of any
segment Ki are contained in segments perpendicular to Ki (unless they lie on the boundary). The following
observation will simplify some of our proofs.

15



Observation 3.12. Let σ be a (2-14-3,3-41-2)-avoiding permutation, and let σ′ be obtained by applying a
rotation ρ (a quarter turn or a half-turn) to (the graph of) σ. If P is a configuration of segments obtained
from σ by applying the rules of Points 1 and 2 above, then ρ(P ) can be obtained from σ′ using those rules.

To prove this, it suffices to check that the rules are invariant by a 90○ rotation, which is immediate. That
the construction has the other symmetries of Observation 3.1 is also true, but less obvious.

3.1 Let Ki be a vertical (respectively, horizontal) segment, and let Nj and Nk be the points
that bound it. Then the segments Kj and Kk are horizontal (respectively, vertical).
Due to symmetry, it suffices to prove this claim for a vertical segment Ki and for the point Nj that bounds
it from above. We need to prove that Kj is a horizontal segment.

We have j < i and σ(i) < σ(j), and, since Nj is an NW-neighbor of Ni, there is no ℓ such that j < ℓ < i
and σ(i) < σ(ℓ) < σ(j). Furthermore, there is no ℓ such that j < ℓ < i, σ(j) < σ(ℓ), or such that ℓ < j,
σ(i) < σ(ℓ) < σ(j): otherwise Ni would have several NW-neighbors and, therefore, Ki would be horizontal.
Now, if i − j > 1, then there exists ℓ such that j < ℓ < i, σ(ℓ) < σ(i); and if σ(j) − σ(i) > 1, then there exists
m such that i < m, σ(i) < σ(m) < σ(j). In both cases Nj has several SE-neighbors, and, therefore, Kj is
horizontal as claimed.

It remains to consider the case j = i − 1, σ(j) = σ(i) + 1. If the point Ni is strong, then (since Ki is
vertical) it has several NE-neighbors or several SW-neighbors. Assume without loss of generality that Ni

has several NE-neighbors. Let ℓ be the minimal number such that Nℓ is an NE-neighbor of Ni, and let Nm

be another NE-neighbor of Ni. Then we have σ(i − 1) < σ(m) < σ(ℓ) and σ(ℓ − 1) ≤ σ(i). However, then
i− 1, ℓ− 1, ℓ,m form a forbidden pattern 2-14-3. Therefore, Ni is a weak point. Clearly, Ni−1 as a unique SE
neighbor (which is Ni). Its NE and SW neighbors coincide with those of Ni, so that there is at most one of
each type. Thus if Ni−1 is strong, it has several NW-neighbors, and Ki−1 is horizontal, as claimed. If Ni−1 is
weak, then the rules that determine the direction of the segments passing through weak points implies that
Ki−1 and Ki cannot be both vertical. Therefore, Kj =Ki−1 is horizontal, as claimed.

3.2. If Nj and Nk are the points that bound the segment Ki, then the segments Kj and Kk

contain the endpoints of Ki

It suffices to show that if Ki is a vertical segment and Nj bounds it from above, then Kj (which is horizontal
as shown in Point 3.1 above) contains the point (i, σ(j)). We saw in Point 3.1 that in this situation there is
no ℓ such that j < ℓ < i, σ(j) < σ(ℓ). This means that there is no point Nℓ that could bound Kj from the
right before it reaches (i, σ(j)).
3.3. Two segments Ki and Kj cannot cross
Assume that Ki and Kj cross. Assume without loss of generality that Ki is vertical and Kj is horizontal, so
that their crossing point is (i, σ(j)). We have either i < j or j < i, and σ(i) < σ(j) or σ(j) < σ(i). Assume
without loss of generality j < i and σ(i) < σ(j). Then Nj is to the NW of Ni. The ordinate of the (unique)
NE-neighbor of Ni is hence at most σ(j). By construction, the upper point of Ki has ordinate at most σ(j),
while Kj lies at ordinate σ(j), and thus Ki and Kj cannot cross.

Let us finish with an observation on joins of segments, which follows from Point 3.2.

Observation 3.13. Suppose that a vertical segment Ki and a horizontal segment Kj join at the point(i, σ(j)). Then the rules that determine the endpoints of segments imply the following:

• If the join of Ki and Kj is of the type ⊤, then i > j.

• If the join of Ki and Kj is of the type ⊥, then i < j.

• If the join of Ki and Kj is of the type ⊢, then σ(i) < σ(j).
• If the join of Ki and Kj is of the type ⊣, then σ(i) > σ(j).
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4. For any floorplan partition P obtained by the construction described above, S(P ) = σ
In order to prove this claim, we will show that for all 1 ≤ i < n, the segment Ki+1 is the immediate successor
of Ki in the� order, and that Kσ−1(i+1) is the immediate successor ofKσ−1(i) in the� order. The properties
of our construction imply that both statements are equivalent. Assume we have proved the first one, and
let us prove the second. Let σ′ be obtained by applying a quarter-turn rotation ρ to σ in counterclockwise
direction. By Observation 3.12, the partition P ′ = ρ(P ) is associated with σ′ by our construction. Let us
denote by K ′i the segment of P ′ containing the point (i, σ′(i)). Then ρ(Kσ−1(i)) = K ′n+1−i. By assumption,
K ′n+1−i is the successor of K ′n−i for the � order in P ′. By the second remark following Observation 2.12,
this means that Kσ−1(i+1) is the successor of Kσ−1(i) for the � order in P .

Thus we only need to prove that Ki+1 is the immediate successor of Ki in the � order. Recall that, by
Observation 2.11, the immediate successor of a horizontal (respectively, vertical) segment I in the � order
is R(I), LVB(I), or LHB(I) (respectively, B(I), UHR(I), or UVR(I))4, depending on the existence of these
segments and the type of joins between them.

There are 8 cases to consider, depending on whether σ(i) < σ(i+1) or σ(i) > σ(i+1), and on the directions
of Ki and Ki+i.

Case 1: σ(i) < σ(i + 1), Ki and Ki+1 are vertical.
Assume that Nj is the point that bounds Ki from above. Then, as shown in Point 3.1 above, Kj is

horizontal; furthermore, Ki and Kj have a ⊤ join at the point (i, σ(j)). In particular, the rightmost point
of Kj has abscissa at least i + 1.

If σ(j) < σ(i + 1), then Ni+1 bounds Kj from the right. There is a ⊣ join of Kj and Ki+1 at the point(i + 1, σ(j)).
If σ(j) > σ(i + 1), then Nj also bounds Ki+1 from above.
If Nj does not exist and Ki reaches the upper side of the boundary, then no point can bound Ki+1 from

above, and, thus, Ki+1 reaches the boundary as well.
In all these cases, it is readily seen that Ki+1 is UVR(Ki).
By Observation 2.11, UVR(Ki) is the successor of Ki, unless UHR(Ki) does not exist, B(Ki) ∶= Kp

exists and its join with UVR(Ki) is of type ⊣. But this would mean that p < i, and the positions of Ni and
Np would then contradict Observation 3.13.

i+1i+1ij i+1ij ip

impossible

Case 2: σ(i) < σ(i + 1), Ki is vertical and Ki+1 is horizontal.
The point Ni bounds Ki+1 from the left. Therefore, there is a ⊢ join of Ki and Ki+1 at the point(i, σ(i+1)), andKi+1 is a horizontal right-neighbor ofKi. Moreover, ifKk is another horizontal right-neighbor

of Ki, then σ(k) < σ(i + 1): otherwise Ni cannot be an SW-neighbor of Nk. Therefore, Ki+1 = UHR(Ki).
4This notation is defined before Observation 2.11.
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By Observation 2.11, UHR(Ki) is the successor of Ki, unless UVR(Ki) ∶= Kp exists. If this were the
case, Kp and Ki+1 would have a ⊥ join, and the position of Ni+1 and Np would then be incompatible with
Observation 3.13.

i+1i k i+1

impossible

i p

Case 3: σ(i) < σ(i + 1), Ki is horizontal and Ki+1 is vertical.
We claim that this case follows from the previous one. Let σ′ be obtained by applying a half-turn rotation

ρ to (the graph of) σ. By Observation 3.12, the partition P ′ = ρ(P ) is associated with σ′. The points and
segments ρ(Ni), ρ(Ni+1), ρ(Ki), ρ(Ki+1) in P ′ are in the configuration described by Case 2, with ρ(Ni+1)
to the left of ρ(Ni). Consequently, ρ(Ni) is the successor of ρ(Ni+1) in the � order in P ′. By the remark
that follows Observation 2.12, Ni+1 is the successor of Ni in the � order in P .

Case 4: σ(i) < σ(i + 1), Ki and Ki+1 are horizontal.
If this case, Ni bounds Ki+1 from the left. Therefore, Ki must be vertical (see Point 3.1 above). So, this

case is impossible.

Case 5: σ(i) > σ(i + 1), Ki and Ki+1 are vertical.
Since Ki+1 is vertical, Ni+1 has at most one NW-neighbor, which is then Ni. By Point 3.1 above, Ki is

then horizontal. Thus this case is impossible.

Case 6: σ(i) > σ(i + 1), Ki is vertical and Ki+1 is horizontal
Since the segmentKi is vertical, the point Ni has at most one SE-neighbor, which is then Ni+1. Therefore,

Ni+1 bounds Ki from below, and there is a ⊥ join of Ki and Ki+1 at the point (i, σ(i + 1)). In particular,
Ki+1 = B(Ki).

By Observation 2.11, B(Ki) is the successor of Ki, unless UHR(Ki) ∶=Kk exists, or UHR(Ki) does not
exist, but UVR(Ki) ∶=Kp does and forms with B(Ki) a ⊥ join. In the former case, Ni+1 or another point to
its right would bound Kk from the left, and, thus, Kk would not reach Ki. In the latter case, Kp and Ki+1
would form a ⊥ join, and the positions of Np and Ni+1 would contradict Observation 3.13.

Case 7: σ(i) > σ(i + 1), Ki is horizontal and Ki+1 is vertical.
This case follows from Case 6 by the symmetry argument already used in Case 3.

Case 8: σ(i) > σ(i + 1), Ki and Ki+1 are horizontal.
The point that bounds Ki from the right, if it exists, lies to the NE of Ni+1. Thus the abscissa of the

rightmost point of Ki is greater than or equal to the abscissa of the rightmost point of Ki+1. Similarly, the
abscissa of the leftmost point of Ki+1 is less than or equal to the abscissa of the leftmost point of Ki.

We will show that Ki+1 = LHB(Ki). Once this is proved, Observation 2.11 implies that LHB(Ki) is the
successor of Ki, unless LVB(Ki) does not exist, but R(Ki) exists and forms with Ki+1 a ⊥ join. But this
would mean that Ki+1 ends further to the right than Ki, which we have just proved to be impossible.

So let us prove that Ki+1 = LHB(Ki). We assume that Ki does not reach the left side of the boundary,
and that Ki+1 does not reach the right side of the boundary (the other cases are proven similarly). Let Nk

be the point that bounds Ki from the left, and let Nm be the point that bounds Ki+1 from the right.
Consider A, the leftmost rectangle whose upper side is contained in Ki. The left side of A is clearly

contained in Kk. We claim that the lower side of A is contained in Ki+1, and that the right side of A is
contained in Km. Note that this implies Ki+1 = LHB(Ki).

18



Let Kp (respectively, Kq) be the segment that contains the lower (respectively, right) side of A. Clearly,
q > k. If q < i, then Kq is a vertical below-neighbor of Ki, and the positions of Nq and Ni contradict
Observation 3.13. Therefore, q > i + 1.

Consider now the segment Kp. Clearly, σ(p) ≥ σ(i + 1). One cannot have p > i + 1: otherwise Ni+1 (or a
point located to the right of Ni+1) would bound Kp from the left, and Kp would not reach Kk. One cannot
have either p < i: otherwise Ni (or a point located to the left of Ni) would bound Kp from the right, and Kp

would not reach Kq. Since p /= i, we have proved that p = i + 1.
Finally, Kq coincides with Km: otherwise, q <m, and Kq is a vertical above-neighbor of Ki+1; however,

in this case Nq would bound Ki+1 from the right, and Ki+1 would not reach Km.
We have thus proved that Ki+1 = LHB(Ki), and this concludes the study of this final case, and the proof

of Proposition 3.11.

i+1 i+1k+1

impossible

i i i

or

mi

or

i+1i

4 Relations between the R- and S-permutations

In this section we first prove that two R-equivalent partitions have the same S-permutation, and give a simple
graphical way to construct S(P ) from R(P ). Then, we explain how the R-permutations of two S-equivalent
partitions are related.

4.1 Constructing S(P ) from R(P )

Let P be a floorplan partition of size n + 1. We draw the graphs of ρ = R(P ) and σ = S(P ) on the same
diagram in the following way. For the graph of ρ we use an (n+ 1) × (n+ 1) square whose columns and rows
are numbered by 1,2, . . . , n + 1. The points of the graph of ρ are placed at the centers of these squares, and
these points are black. The point (i, ρ(i)) is denoted by Mi. For the graph of σ we use the grid lines of the
same drawing, when the ith vertical (respectively, horizontal) line is the grid line between the ith and the(i + 1)st columns (respectively, rows). The point (i, σ(i)), denoted by Ni, is placed at the intersection of
the ith vertical grid line and the jth horizontal grid line, where j = σ(i). Such points are white. The whole
drawing is called the combined diagram of P . See Fig. 21 for an example. Note that the extreme (rightmost,
leftmost, etc.) grid lines are not used.

We start with the following fact about Baxter permutations, which is closely related to the three possible
definitions of these permutations described in Section 3.2.

Observation 4.1. Let ρ be a Baxter permutation of [n + 1]. For each i, 1 ≤ i ≤ n there exists a unique ji,
1 ≤ ji ≤ n, such that:

• if ρ(i) < ρ(i + 1), then ρ(i) ≤ ji < ρ(i + 1) and ρ−1(ji) ≤ i < ρ−1(ji + 1);

19



• if ρ(i) > ρ(i + 1), then ρ(i + 1) ≤ ji < ρ(i) and ρ−1(ji + 1) ≤ i < ρ−1(ji).
In the graph of ρ, Observation 4.1 has the following interpretation. For each segment MiMi+1, there

exists a unique segment Mρ−1(j)Mρ−1(j+1) such that the segment MiMi+1 intersects the jth horizontal grid
line and the segment Mρ−1(j)Mρ−1(j+1) intersects the ith vertical grid line, and the slopes of these segments
have the same sign. See Fig. 16 for an example: the segments MiMi+1 are depicted by solid lines, and the
segments Mρ−1(j)Mρ−1(j+1) by dashed lines.
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Figure 16: Illustration for Observation 4.1.

Proof of Observation 4.1. Assume without loss of generality ρ(i) < ρ(i + 1).
Let X1 = {x ∶ x ≤ i, ρ(i) ≤ ρ(x) < ρ(i + 1)}, X2 = {x ∶ x ≥ i + 1, ρ(i) < ρ(x) ≤ ρ(i + 1)}. These sets are

nonempty since i ∈ X1 and i + 1 ∈ X2. For each x1 ∈ X1, x2 ∈ X2, we have ρ(x1) < ρ(x2): otherwise we have
x1 < i, i + 1 < x2 and ρ(i) < ρ(x2) < ρ(x1) < ρ(i + 1), and then x1, i, i + 1, x2 form a forbidden pattern 3-14-2.
Let k be the element of X1 with the maximal ρ(k), and let m be the element of X2 with the minimal ρ(m).
Then we have ρ(m) = ρ(k) + 1, k ≤ i and m ≥ i + 1, and the statement holds with ji = ρ(k). See Fig. 17.
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Figure 17: Illustration of the proof of Observation 4.1.

Such ji is unique since if ρ(i) ≤ j′ < ji, then ρ−1(j), ρ−1(j +1) ∈X1, and therefore, we have ρ−1(j) ≤ i and
ρ−1(j + 1) ≤ i; similarly, if ji < j

′ < ρ(i + 1), then ρ−1(j) ≥ i + 1 and ρ−1(j + 1) ≥ i + 1.
Theorem 4.2. Let P be a floorplan partition of size n + 1, and let ρ = R(P ). For 1 ≤ i ≤ n, let ji be
as defined in Observation 4.1. Then S(P ) = (j1, j2, . . . , jn). In particular, R-equivalent partitions are also
S-equivalent.

We refer to Fig. 21 for an example.
In order to prove Theorem 4.2, we shall use two observations, which involve the orders defined on

rectangles in the introduction. We use the following notation: Ai is the rectangle labeled i in the � order,
and Bj is the rectangle labeled j in the � order.
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Observation 4.3. Let P be a floorplan partition of size n + 1. For each k, 1 ≤ k ≤ n, the following holds:

• If the segments forming the SE-corner of Ak have a ⊥ join, let Jk be the segment containing the right
side of Ak. Then Ak+1 is the topmost among the rectangles whose left side is contained in Jk.

• If the segments forming the SE-corner of Ak have a ⊣ join, let Jk be the segment containing the lower
side of Ak. Then Ak+1 is the leftmost among the rectangles whose upper side is contained in Jk.

Proof. By definition of the� order, Ak+1 is either a right-neighbor or a below-neighbor of Ak. If there is a ⊥
join in the SE-corner of Ak, then all the right-neighbors of Ak are above all its below-neighbors. Therefore,
Ak+1 is the topmost among them. If there is a ⊣ join in the SE-corner of Ak, then all the below-neighbors
of Ak are to the left of all its right-neighbors. Therefore, Ak+1 is the leftmost among them. See Fig. 18.
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Figure 18: The rectangle Ak+1 is the immediate successor of Ak in the � order.

Observation 4.4. Consider the rectangles Ak, Ak+1 in a floorplan partition P . The segment denoted by Jk
in Observation 4.3 is the kth segment in the � order of segments, denoted so far by Ik.

Proof. Observe this directly for k = 1, and proceed by induction. One has to examine several cases, depending
on whether the segments in the SE-corners of Ak and of Ak+1 have ⊥ or ⊣ joins. In all cases, Jk+1 is found
to be the immediate successor of Jk in the � order, as described in Observation 2.11. See Fig. 19 for several
typical situations.
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Figure 19: Successors of segments and rectangles for the � orders.

Proof of Theorem 4.2. Let i ∈ [n]. Denote σ = S(P ) and j = σ(i). Then the segment Ii labeled i in the
� order, is labeled j in the � order. We wish to prove that j = ji.

Assume first that Ii is horizontal. By Observations 4.3 and 4.4, the rightmost among the rectangles whose
lower side is contained in Ii is Ai, and the leftmost among the rectangles whose upper side is contained in
Ii is Ai+1.

By symmetry, since Ii is the jth segment in the � order, the rightmost among the rectangles whose
upper side is contained in Ii is B

j , and the leftmost among the rectangles whose lower side is contained in Ii
is Bj+1. There holds Ai+1 � Bj ↲ Bj+1 � Ai and Bj+1 � Ai ↰ Ai+1 � Bj (see Fig. 20). By definition of
R(P ), this means ρ(i+ 1) ≤ j < j + 1 ≤ ρ(i) and ρ−1(j + 1) ≤ i < i+ 1 ≤ ρ−1(j). Thus, j satisfies the conditions
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that define ji in Observation 4.1 (for the case ρ(i) > ρ(i + 1)). Since ji is defined uniquely, we have j = ji,
and therefore, σ(i) = ji, as claimed.

The case where Ii is vertical is similar, and corresponds to an ascent in ρ.
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Figure 20: Illustration of the proof of Theorem 4.2.

Theorem 4.2 and Observation 4.1 give a simple graphical way to obtain S(P ) from R(P ). Draw R(P )
as explained in the beginning of Section 4.1. By Observation 4.1, for each 1 ≤ i ≤ n there exists 1 ≤ j ≤ n
such that the segment MiMi+1 intersects the jth horizontal grid line and the segment Mρ−1(j)Mρ−1(j+1)
intersects the ith vertical grid line, and these segments have slopes of the same sign. Put a white point in
the intersection of the ith vertical grid line and the jth horizontal grid line. Then the white points form the
graph of σ = S(P ). An example is shown in Fig. 21: in Part 1, rectangles are labeled (i, j) where i is the
label in the � order and j is the label in the � order; in Part 2, segments are labeled in a similar way; in
Part 3, the graphs of R(P ) and of S(P ) are shown together forming the combined diagram: the graph of
R(P ) with black points in the squares of the grid, the graph of S(P ) with white points on the nodes of the
grid.

Combined diagram
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Figure 21: The floorplan partition P from Fig. 9: (1) The labeling of rectangles; (2) The labeling of
segments; (3) The combined diagram: R(P ) = 8 7 9 1 6 13 10 3 2 5 4 12 11 (black points) together with
S(P ) = 7 8 6 1 9 12 5 2 3 4 10 11 (white points).

Observation 4.5. Let P be a floorplan partition and let ρ = R(P ) be the corresponding Baxter permutation.
Let us abuse notation by denoting S(ρ) ∶= S(P ). If ρ′ is obtained by applying to ρ a symmetry of the square,
then the same symmetry, applied to S(ρ), gives S(ρ′).
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Remark. The combined diagram is actually the R-permutation of a floorplan partition of size 2n+1. Indeed,
let P be a floorplan partition of size n + 1. If we inflate segments of P into narrow rectangles, we obtain
a new floorplan partition of size 2n + 1, which we denote by P̃ (Fig. 22). Observe that a rectangle of P̃
corresponding to a rectangle A of P has a unique above (respectively, right, below, left) neighbor, which
corresponds to the segment of P that contains the above (respectively, right, below, left) side of A.

Figure 22: Inflating the segments of a floorplan partition.

It follows from Observation 4.4 and Fig. 18 that the � order in P̃ is A1I1A2I2 . . . AnInAn+1. It is thus
obtained by shuffling the � orders for rectangles and segments of P . Symmetrically, the � order in P̃

is Aρ−1(1)Iσ−1(1)⋯Aρ−1(n)Iσ−1(n)Aρ−1(n+1). Thus the combined diagram of R(P ) and S(P ), as in Fig. 21,

coincides with the graph of R(P̃ ).
Now, according to the Remark that follows Observation 3.2, the order/neighborhood relations between

rectangles of P̃ can be read from the combined diagram. As observed above, the segments that bound a
rectangle Ai in P , become, once inflated, the neighbors of the rectangle corresponding to Ai in P̃ . Therefore
these segments can be determined from the combined diagram: the segment Ij that bounds Ai from above
(respectively, right, below, left), corresponds in the combined diagram to the white point Nj that is the NW-
(respectively, NE-, SE-, SW-) neighbor of the black point Mi. Consider, for instance, the floorplan partition
P in Fig. 21. In order to read from the combined diagram what segments contain the sides of the rectangle
A7, we look for the white neighbors of the black point M7 = (7,10). These neighbors are N6 = (6,12),
N11 = (11,10), N7 = (7,5), N5 = (5,9). Therefore the sought-for segments are I6, I11, I7, I5.

4.2 Which partitions produce the same S-permutation

In this section we characterize in terms of their R-permutations the floorplan partitions that have the same
S-permutation.

We first describe the floorplan partitions whose S-permutation is 123 . . . n. Such partitions will be called
ascending F-blocks5. It is easy to see that in an ascending F-block, all vertical segments extend from the
lower to the upper side of the boundary, and there is at most one horizontal segment between a pair of
adjacent vertical segments (this can be shown inductively, by noticing that at most one horizontal segment
starts from the left side of the bounding rectangle). Conversely, every floorplan partition of this type has
S-permutation 123 . . . n. Therefore, an ascending F-block consists of several rectangles that extend from the
lower to the upper side of the boundary, some of them being split into two sub-rectangles by a horizontal
segment. The corresponding R-permutations are those that can be obtained from 123 . . . (n + 1) by several
disjoint transpositions of adjacent elements; they can also be characterized as the permutations ρ that satisfy∣ρ(i)− i∣ ≤ 1 for all 1 ≤ i ≤ n+1. The number of ascending F-blocks of size n+1 (and, therefore, the number of
such permutations) is the Fibonacci number Fn+1 (where F0 = F1 = 1). Fig. 23 shows all ascending F-blocks
and the corresponding R-permutations for n = 4.

A similar observation holds for the floorplan partitions whose S-permutation is n . . . 321. Such partitions
are called descending F-blocks. In descending F-blocks, all horizontal segments extend from the left side

5The letter F refers to Fibonacci, for reasons that will be explained further down.
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Figure 23: The 8 ascending F-blocks for n = 4, and their R-permutations.

to the right side of the boundary, and there is at most one vertical segment between a pair of adjacent
horizontal segments. In other words, descending F-blocks consist of several rectangles that extend from the
left to the right side of the boundary, some of them being split into two sub-rectangles by a vertical segment.
The corresponding R-permutations are those that can be obtained from (n + 1) . . . 321 by several disjoint
transpositions of adjacent elements, and they are characterized by the condition ∣ρ(i)− (n+ 2− i)∣ ≤ 1 for all
1 ≤ i ≤ n + 1.

For an F-block F , the size of F (that is, the number of rectangles) will be denoted by ∣F ∣. If ∣F ∣ = 1,
we say that F is a trivial F-block. Note that if ∣F ∣ ≤ 2, then F is both ascending and descending, while if∣F ∣ ≥ 3, then its type (ascending or descending) is uniquely determined.

Let P be a floorplan partition. We define an F-block in P as a set of rectangles of P whose union is an
F-block, as defined above. In other words, their union is a rectangle, and the S-permutation of the induced
subpartition is either 123 . . . or . . . 321. F-blocks in P are partially ordered by inclusion. Since segments of
P do not cross, a rectangle in P belongs precisely to one maximal F-block (which may be of size 1). So there
is a uniquely determined partition of P into maximal F-blocks (Fig. 24, left).

A block in a permutation ρ is an interval [i, j] such that the values {ρ(i), . . . , ρ(j)} also form an interval [3].
By extension, we also call a block the corresponding set of points in the graph of ρ. Consider ℓ rectangles in P

that form an ascending (respectively, descending) F-block. By Observation 4.3 and the analogous statement
for the � order, these ℓ rectangles form an interval in the � and � orders. Hence the corresponding ℓ

points of the graph of R(P ) form a block, and their inner order is isomorphic to a permutation τ of [ℓ] that
satisfies ∣τ(i) − i∣ ≤ 1 (respectively, ∣τ(i) − (ℓ + 1 − i)∣ ≤ 1) for all 1 ≤ i ≤ ℓ.

The converse is also true: If ℓ points of the graph of R(P ) form an ℓ × ℓ block, and their inner order
is isomorphic to a permutation τ of [ℓ] that satisfies ∣τ(i) − i∣ ≤ 1 (respectively, ∣τ(i) − (ℓ + 1 − i)∣ ≤ 1) for
all 1 ≤ i ≤ ℓ, then the corresponding rectangles in P form an ascending (respectively, descending) F-block.
Indeed, let H be such an ascending block in the graph of R(P ). Let us partition the points of H in singletons
(formed of points that lie on the diagonal) and pairs (formed of transposed points at adjacent positions). Let
Q1,Q2, . . . be the list of parts of this partition, read from the SW to the NE corner ofH . For each i = 1,2, . . . ,
the point(s) of Qi+1 are the only NE-neighbors of the point(s) of Qi, and, conversely, the point(s) of Qi are
the only SW-neighbors of the point(s) of Qi+1. Therefore, by the remark that follows Observation 3.2, the left
side of the rectangle(s) corresponding to the point(s) of Qi+1 coincides with the right side of the rectangle(s)
corresponding to the point(s) of Qi. If Qi consists of two points then we have two rectangles whose union is
a rectangle split by a horizontal segment. The argument is similar for a descending block.

Therefore, such blocks in the graph of ρ will be also called ascending (respectively, descending) F-blocks.
Fig. 24 shows a floorplan partition with maximal F-blocks denoted by bold lines, and the F-blocks in the
corresponding permutation R(P ) (the graph of S(P ) is also shown).

Let F1, F2, . . . be all the maximal F-blocks in the graph of ρ (ordered from left to right). For i ≥ 1,
let [yi, y′i] be the interval of values ρ(j) occurring in Fi, and define di ∶= + if Fi is descending, di ∶= −
otherwise (di is left undefined if Fi has size 1 or 2). The F-structure of ρ is the sequence F̂1, F̂2, . . . , where
F̂i = ([yi, y′i], di). For example, the F-structure of the permutation in Fig. 24 is

([7,9],+) , ([1]) , ([6]) , ([13]) , ([10]) , ([2,5],+) , ([11,12]) .
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Figure 24: Maximal F-blocks in floorplan partitions and in permutations.

Theorem 4.6. Let P1 and P2 be two floorplan partitions with n segments. Then S(P1) = S(P2) if and only
if R(P1) and R(P2) have the same F-structure.

In other words, S(P1) = S(P2) if and only if R(P1) and R(P2) may be obtained from each other by
replacing some F-blocks F1, F2, . . . with, respectively, F-blocks F ′

1
, F ′

2
, . . . , where Fi is S-equivalent to F ′i for

all i.
The “if” direction is easy to prove. Assume R(P1) and R(P2) have the same F-structure. In view of the

way one obtains S(P ) from R(P ) (Theorem 4.2), there holds S(P1) = S(P2). Observe in particular that
inside a maximal F-block of R(P ), the points of S(P ) are organized on the diagonal (in the ascending case)
or the anti-diagonal (in the descending case).

In order to prove the “only if” direction, we will first relate, for a point of S(P ), the fact of being inside
a maximal F-block to the property of being weak. (Recall that a point Ni in the graph of S(P ) is weak if it
has at most one neighbor in each of the directions NW, NE, SE, SW, and strong otherwise.) If a maximal
F-block of R(P ) occupies the area [x,x′] × [y, y′], then the point Ni = (i, j) is inside this block if x ≤ i < x′

and y ≤ j < y′. For example, in Fig. 24 six points in the graph of S(P ) (the white points in the combined
diagram) are inside a maximal F-block: (1,7), (2,8), (8,2), (9,3), (10,4) and (12,11). Observe that the
notion of “being inside” a maximal F-block is a priori relative to R(P ). However, the following proposition
shows that it is an intrinsic notion, depending on S(P ) only.
Proposition 4.7. Let Ni be a point in the graph of σ = S(P ). Then Ni is inside a maximal F-block of R(P )
if and only if it is a weak point of S(P ).
Proof. Let Ni = (i, j) be inside a maximal F-block of R(P ). Assume for the sake of contradiction that Ni

is strong, and for instance, has several NE-neighbors. Let Nk be the leftmost NE-neighbor of Ni, and let
Nℓ be the lowest NE-neighbor of Ni. If k > i + 1, then σ(k − 1) < σ(i), and, therefore, i, k − 1, k, ℓ form a
forbidden pattern 2-14-3. Similarly, if σ(ℓ) > j+1, then we have a forbidden pattern. Therefore, k = i+1 and
σ(ℓ) = j +1 (Fig. 25). Note also that σ(i+1) > j +1 and σ−1(j +1) > i+1. Since the points of S(P ) inside an
F-block are either on the diagonal or the anti-diagonal of this block, Ni is the highest (and rightmost) point
of S(P ) inside the maximal F-block that contains it, and this F-block is of ascending type. In particular,
either ρ(i + 1) = j + 1, or ρ(i) = j + 1 and ρ(i + 1) = j.

Since ρ(i + 1) ≤ j + 1 and σ(i + 1) ≥ j + 2, then ρ(i + 2) ≥ j + 3. Symmetrically, ρ−1(j + 2) ≥ i + 3. But
then the position of the point (ρ−1(j +2), j+2) is not compatible with the position of Ni+1: by Theorem 4.2,
there cannot be a point of ρ located to the right of ρ(i + 2) and in the rows between those of ρ(i + 1) and
Ni+1. Hence Ni cannot have several NE-neighbors. Symmetric statements hold for the other directions, and
Ni is a weak point.
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Figure 25: Some points of the combined diagram of ρ and σ. The grey points represent the two possibilities
ρ(i + 1) = j + 1, or ρ(i) = j + 1 and ρ(i + 1) = j.

Now let Ni = (i, j) be a point of the graph of σ, not inside a maximal F-block. Assume without loss of
generality that ρ has an ascent at i: ρ(i) ≤ j < ρ(i + 1) and (see Theorem 4.2) ρ−1(j) ≤ i < ρ−1(j + 1). We
shall show that Ni has several SW-neighbors or several NE-neighbors.

First, if ρ(i) = j and ρ(i + 1) = j + 1, then Mi and Mi+1 form an F-block, and Ni is inside this block.
Therefore, we may assume without loss of generality that ρ(i) ≠ j; hence ρ(i) < j and ρ−1(j) < i. Then
it follows from the definition of Baxter permutations that ρ(i − 1) ≤ j (otherwise, there is an occurrence
of 2-41-3 at positions ρ−1(j), i − 1, i, ρ−1(j + 1)). Consequently, we have σ(i − 1) ≤ j − 1. Symmetrically,
ρ−1(j − 1) ≤ i and σ−1(j − 1) ≤ i − 1. There are two possibilities: either σ(i − 1) < j − 1 and σ−1(j − 1) < i − 1,
or σ(i − 1) = j − 1. In the former case, Ni−1 and Nσ−1(j−1) are two SW-neighbors of Ni. In the latter case,
we have ρ(i − 1) = j and ρ(i) = j − 1. By a similar argument we obtain that either Ni+1 and Nσ−1(j+1) are
two NW-neighbors of Ni, or ρ(i + 1) = j + 2 and ρ(i + 2) = j + 1. Thus, Ni has at least two SW-neighbors or
at least two NE-neighbors, unless ρ(i − 1) = j, ρ(i) = j − 1, ρ(i + 1) = j + 2, and ρ(i + 2) = j + 1. However, in
the latter case Mi−1, Mi, Mi+1 and Mi+2 form an F-block, and Ni is inside this block, which contradicts our
initial assumption.

Now we can prove the “only if” direction in Theorem 4.6. Recall that the “if” direction is easy.

Proof of Theorem 4.6 (the “only if” direction). Let σ be a (2-14-3,3-41-2)-avoiding permutation of size
n. Let B be the set of Baxter permutations whose S-permutation (described by Theorem 4.2) is σ. By
Proposition 4.7, for each point Ni of the graph of σ it is determined uniquely whether it is inside an F-
block, or not. Moreover, points that lie inside an F-block are organized along its diagonal or anti-diagonal,
depending on whether the block is ascending or descending. It follows that the location of all non-trivial
F-blocks in the graph of ρ, for ρ ∈ B, and their type (ascending or descending, for blocks of size at least 3),
are also determined uniquely. It remains to show that the location of the trivial F-blocks (that is, F-blocks
of size 1) is also determined uniquely by σ.

Assume for the sake of contradiction that there are ρ1, ρ2 ∈ B with trivial F-blocks in the ith column such
that ρ1(i) ≠ ρ2(i). Let i be the minimal number for which this happens. This means that the F-structures
of ρ1 and ρ2 coincide to the left of the ith column. Denote j = σ(i). By symmetry, there are, essentially, two
cases: (1) ρ1(i) < ρ2(i) ≤ j; (2) ρ1(i) ≤ j < ρ2(i).

In the first case (illustrated below), denote k = ρ2(i). Consider ρ−11 (k). By assumption, ρ−1
1
(k) ≠ i. Since

ρ1(i) < k and σ(i) = j ≥ k, we have ρ−1
1
(k) < i by Theorem 4.2. However, this is impossible since ρ−1

2
(k) = i,

and the F-structures of ρ1 and ρ2 coincide to the left of the ith column.
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Consider the second case. Since ρ1(i) ≤ j and σ(i) = j, the areas [1, i] × {j + 1} and [i + 1, n] × {j} are
empty in the graph of ρ1. Similarly, since ρ2(i) ≥ j+1, the areas [1, i]×{j} and [i+1, n]×{j+1} are empty in
the graph of ρ2. Since the F-structures of ρ1 and ρ2 coincide in [1, i−1]× [1, n] the areas [1, i−1]×{j, j +1}
are empty in the graphs of both permutations. Given that rows cannot be empty, this forces ρ1(i) = j and
ρ2(i) = j + 1.
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Assume without loss of generality that σ(i+1) < j. Since ρ1(i) = j and σ(i) = j, we have, by Theorem 4.2,
ρ1(i + 1) ≥ j + 1. It is impossible that ρ1(i + 1) = j + 1 since otherwise the point (i, ρ1(i)) would not form a
trivial F-block. Thus, ρ1(i + 1) > j + 1. Now, since σ(i + 1) < j, the area [i + 2, n] × {j + 1} is empty in the
graph of ρ1. The area [1, i−1]×{j+1} is empty in the graph of ρ2, since ρ2(i) = j+1. Since the F-structures
of ρ1 and ρ2 coincide in [1, i − 1] × [1, n], the area [1, i − 1] × {j + 1} is also empty in the graph of ρ1. Since
ρ1(i) = j and ρ1(i + 1) > j + 1, we have a contradiction: the whole row j + 1 is empty in the graph of ρ1.

j

i

j
j +1

+1i

1 2
ρ ρ

j
j +1j

i
i i +1 i

Thus, we have proved that all ρ ∈ P have the same F-structure.
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5 Enumeration of (2-14-3, 3-41-2)-avoiding permutations

In this section we enumerate (2-14-3,3-41-2)-avoiding permutations and, thus, S-equivalence classes of floor-
plan partitions. We first describe the shape of the generating tree of (2-14-3,3-41-2)-avoiding permutations
obtained by adding/deleting their rightmost value. This tree gives functional equations defining the gener-
ating function of these permutations, which we solve in Section 5.2. The solution involves the generating
function of Baxter permutations (Theorem 5.3), and suggests that another connection between the two
classes, different from the one described in Section 4, exists.

5.1 A generating tree

Let us first observe that deleting the rightmost value of a (2-14-3,3-41-2)-avoiding permutation τ , and
normalizing the resulting sequence so as to obtain a permutation σ, gives another (2-14-3,3-41-2)-avoiding
permutation. This allows us to display (2-14-3,3-41-2)-avoiding permutations as the nodes of a generating
tree, rooted at the permutation 1, and in which the father of a permutation is obtained by deleting its
rightmost value (and normalizing).

Conversely, let σ be a (2-14-3,3-41-2)-avoiding permutation of [n]. We wish to construct a (2-14-3,3-41-2)-
avoiding permutation τ of [n + 1], taking τ(j) = σ(j) for 1 ≤ j ≤ n, choosing τ(n + 1) ∈ {0.5,1.5, . . . , n + 0.5},
and then normalizing τ so that it becomes a permutation of [n + 1]. A value i ∈ {0.5,1.5,2.5, . . . , n + 0.5} is
admissible if choosing τ(n + 1) = i results in a (2-14-3,3-41-2)-avoiding permutation.

Observation 5.1. A value i ∈ {0.5,1.5,2.5, . . . , n + 0.5} is not admissible if and only if there exist 1 ≤ a < b < n
such that σ(b) < σ(a) = i − 0.5 < σ(b + 1) or σ(b) > σ(a) = i + 0.5 > σ(b + 1).

Graphically, this means the following. Consider the graph of σ and add the point (n + 1, i). Consider
two segments: the first, connecting (n + 1, i) to (σ−1(i − 0.5), i − 0.5); the second, connecting (n + 1, i) to(σ−1(i + 0.5), i + 0.5). The value i is not admissible if and only if at least one of these segments intersects
a segment with the same sign of the slope that connects (b, σ(b)) and (b + 1, σ(b + 1)) (for some 1 < b < n).
Fig. 26 demonstrates this for σ = 24135: the values i = 1.5,2.5,4.5, denoted by ×, are not admissible (the
forbidden configurations are indicated); the values i = 0.5,3.5,5.5, denoted by ○, are admissible, resulting in
τ = 352461, τ = 251364, τ = 241356, respectively.

Figure 26: Admissible and inadmissible values.

Observe also that 0.5 and n + 0.5 are always admissible.
We are interested in how the number of admissible values changes as we add a new value to the right of

σ. As we shall see, this depends on whether or not ∣σ(n)−σ(n−1)∣ equals 1; moreover, if ∣σ(n)−σ(n−1)∣ > 1,
it also depends on whether σ(n)−σ(n−1) is positive or negative. Assign to σ a type, which is either a triple(k,m;S) or a quadruple (k,m;L,±), as follows:

• k is the number of admissible values that are smaller than σ(n);
• m is the number of admissible values that are larger than σ(n);
• if ∣σ(n) − σ(n − 1)∣ = 1, then the type is (k,m;S) (where S stands for small);

• if ∣σ(n)−σ(n−1)∣ > 1, then the type is (k,m;L,−) if σ(n) < σ(n−1), and (k,m;L,+) otherwise (where
L stands for large).
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For example, σ = 24135 (the permutation form Fig. 26) is of the type (2,1;L,+).
For the only permutation of {1}, there holds (k,m) = (1,1), and it will be convenient to assign to this

permutation the type (1,1;S).
Proposition 5.2. The generating tree for (2-14-3,3-41-2)-avoiding permutations is isomorphic to the tree
that has root (1,1;S) and for which the labels of the children of a node are given by the following rewriting
rule:

• (k,m;S)↝(1,m + 1;L,−), (2,m + 1;L,−), . . . , (k − 2,m + 1;L,−), (k − 1,m + 1;L,−), (k,m + 1;S);(k + 1,m;S), (k + 1,m − 1;L,+), (k + 1,m − 2;L,+), . . . , (k + 1,2;L,+), (k + 1,1;L,+).
• (k,m;L,−)↝(1,m + 1;L,−), (2,m + 1;L,−), . . . , (k − 2,m + 1;L,−), (k − 1,m + 1;L,−), (k,m + 1;S);(k,m;L,+), (k,m − 1;L,+), . . . , (k,2;L,+), (k,1;L,+).
• (k,m;L,+)↝(1,m;L,−), (2,m;L,−), . . . , (k − 1,m;L,−), (k,m;L,−);(k + 1,m;S), (k + 1,m − 1;L,+), (k + 1,m − 2;L,+), . . . , (k + 1,2;L,+), (k + 1,1;L,+).

Proof. The root is (1,1;S) by convention, and it is easily checked that its children are (1,2;S) and (2,1;S).
Observe also that taking the complement6 of a permutation replaces the type (k,m;S) by (m,k;S), and the
type (k,m;L,±) by (m,k;L,∓). Due to this symmetry, and the symmetry of the rewriting rules, it suffices
to prove them when σ ends with a descent.

Case 1: σ is of the type (k,m;S).
First, note that the values σ(n) − 0.5 and σ(n) + 0.5 are admissible. For σ(n) + 0.5 this is clear in view

of Observation 5.1 (recall that, by assumption, σ(n − 1) = σ(n) + 1). If σ(n) − 0.5 were not admissible, then(n+1, σ(n)−0.5) would form a forbidden configuration with some three points, the rightmost of these being(n−1, σ(n−1)), and it is easy to see that the point (n,σ(n)) would also form a forbidden configuration with
the same three points.

Let i1, i2, . . . , ik be the admissible values below σ(n), ordered from below; let j1, j2, . . . , jm be the admis-
sible values above σ(n), ordered from above. We have just seen that ik = σ(n) − 0.5 and jm = σ(n) + 0.5.
Choosing τ(n + 1) = ik or jm results in a permutation of type (k′,m′;S); Choosing τ(n + 1) = iα with α < k
gives a permutation of type (k′,m′;L,−), and finally, choosing τ(n+ 1) = jβ with β <m gives a permutation
of type (k′,m′;L,+).

Let us now discuss the values of k′ and m′. We claim that if τ is obtained by adding iα, with α ≤ k,
then (k′,m′) = (α,m + 1), while if τ is obtained by adding jβ , with β ≤ m, then (k′,m′) = (k + 1, β). The
argument is illustrated in Fig. 27(2) (a point denoted by an asterisk � may be admissible or not).

In the former case (τn+1 = iα) all the admissible values of σ below iα, and iα itself, remain admissible in
τ , while the forbidden values remain forbidden (since they would give in τ the same forbidden configuration
as they give in σ). Therefore, we have α admissible values below the rightmost point in τ , and k′ = α. The
values above σ(n) are admissible in τ if and only if they are admissible in σ. Among the values between
iα + 1 and τ(n) − 0.5, only τ(n) − 0.5 is admissible in τ : as we saw above, σ(n) − 0.5 is admissible in σ, and
it is not hard to see that (once incremented by 1) it remains admissible in τ ; however, all other values in
this interval form a forbidden configuration with (n, τ(n)), (n + 1, τ(n + 1)) and some fourth point. Since
τ(n) − 0.5 is above τ(n + 1), there are m′ ∶=m + 1 admissible values above the rightmost point in τ .

The case where τ(n + 1) = jβ is similar; see Fig. 27(3).

Case 2: σ is of the type (k,m;L,−).
If a point below σ(n) is added, the situation is similar to that from the first case. In particular, the

value just below τ(n) is admissible. If a point above σ(n) is added, no value between τ(n) and τ(n + 1) is
admissible (the lowest of them is not admissible because it was not admissible in σ). Note also that since
the value just above σ(n) is not admissible, no “small” permutation is obtained here. See Fig. 28.

6The complement of a permutation σ = σ(1), . . . , σ(n) is the permutation n + 1 − σ(1), . . . , n + 1 − σ(n).

29



2 3

*
*

*
*

*
*

*
*

*
*

*
*

( is an admissible point

permutation τ

(a point below σ(n)

was added)

permutation τ

(a point above σ(n)

was added)

m
admis.
values

k
admis.
values

m + 1
admis.
values

k + 1
admis.
values

1 permutation σ

to be added)

Figure 27: Proof of the rewriting rule for (k,m;S).
5.2 Enumeration

We introduce for (2-14-3,3-41-2)-avoiding permutations three generating functions corresponding to the
three kinds of types occurring in Proposition 5.2. These series involve three variables: t keeps track of the
size of the permutation, while x and y respectively keep track of the number of admissible values below
and above the rightmost value (the numbers k and m of Proposition 5.2). Let S(t;x, y) be the generating
function of permutations of type (∗,∗;S). Let L+(t;x, y) (respectively, L−(t;x, y)) be the generating function
of permutations of type (∗,∗;L,+) (respectively, (∗,∗;L,−)). The rules of Proposition 5.2 translate into the
following equations:

S(x, y) = txy + t(x + y)S(x, y) + txL+(x, y) + tyL−(x, y),
L+(x, y) = tx

1 − y (yS(x,1) + yL+(x,1) − S(x, y) −L+(x, y)) +
ty

1 − y (L−(x,1) −L−(x, y)),
L−(x, y) = ty

1 − x(xS(1, y) + xL+(1, y) − S(x, y) −L−(x, y)) +
tx

1 − x(L+(1, y) −L+(x, y)).
The form of these equations suggests to introduce

L(x, y) ∶= xL+(x, y) + yL−(x, y).
This reduces the size of the system to two equations:

S(x, y) = txy + t(x + y)S(x, y) + tL(x, y), (1)

L(x, y) = t

1 − y (x2yS(x,1) + xyL(x,1) − x2S(x, y) − xL(x, y)) (2)

+ t

1 − x(xy2S(1, y) + xyL(1, y) − y2S(x, y) − yL(x, y)).
We will derive from these equations that (2-14-3,3-41-2)-avoiding permutations are related to Baxter per-
mutations as follows.
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Figure 28: Proof of the rewriting rule for (k,m;L,−).
Theorem 5.3. The generating function of (2-14-3,3-41-2)-avoiding permutations is

∑
n≥1

tn−1(1 − t)nbn, (3)

where

bn =
n

∑
m=0

2

n(n + 1)2 (
n + 1
m
)(n + 1

m + 1)(
n + 1
m + 2)

is the number of Baxter permutations of size n. Therefore, the number of (2-14-3,3-41-2)-avoiding permu-
tations of size n is

⌊(n+1)/2⌋
∑
i=0

(−1)i(n + 1 − i
i
)bn+1−i.

More precisely, let B(s;x, y) be the generating function of (non-empty) Baxter permutations, counted by
the size, the number of left-to-right maxima and the number of right-to-left maxima. It is known [25] that

B(s;x, y) = ∑
n,i,j≥1,m≥0

snxiyj
ij

n(n + 1)(
n + 1
m + 1)((

n − i − 1
m − 1 )(

n − j − 1
n −m − 2) − (

n − i − 1
m

)( n − j − 1
n −m − 1)) .

Then the series S(t;x, y) and L(t;x, y) defined above satisfy

(1 − t)S(t;x, y) = B(t(1 − t);x, y),
t(1 − t)L(t;x, y) = (1 − t(x + y))B(t(1 − t);x, y) − xyt(1 − t).

In particular,

xy + S(t;x, y) +L(t;x, y) = 1 − t(x + y − 1)
t(1 − t) B(t(1 − t);x, y),

which gives (3) for x = y = 1.
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Remarks
1. Let C(s) = 1−

√
1−4s
2s

be the generating function of Catalan numbers. Since t(1 − t) = s if t = sC(s), the
above identities can be rewritten in terms of C(s). For instance,

B(s; 1,1) = sC(s) (1 + S(sC(s); 1,1) +L(sC(s); 1,1)) .
This suggests that a connection between S- and R-permutations, different from the one described in Section 4,
exists. It is all the more natural to look for a combinatorial interpretation of these identities that C(s) counts
τ -avoiding permutations, for any pattern τ of size 3.

2. In the above expression of B(s;x, y), the variable m counts the number of descents. We do not know if
this parameter has a natural counterpart in terms of (2-14-3,3-41-2)-avoiding permutations.

3. The number bn of Baxter permutations of size n satisfies bn ∼ 8n/n4 as n → ∞ (up to a multiplicative
constant) [28]. Equivalently, the dominant singularity of B(s; 1,1) is at s = 1/8, and the singular part of this
series is (1−8t)3 log(1−8t). By (3), the number of (2-14-3,3-41-2)-avoiding permutations is thus equivalent
to (4 + 2√2)n/n4.

Proof. Thanks to (1), one can express L(x, y) in terms of S(x, y). By specializing x or y to 1, this gives ex-
pressions of L(x,1) and L(1, y) in terms of S(x,1) and S(1, y), respectively. Replacing in (2) all occurrences
of the series L by their expressions in terms of S gives an equation that only involves the series S:

((1 − x)(1 − y) − xyt(1 − t)(x + y − 2))S(x, y) =
txy(1 − x)(1 − y) + txy(1 − t)(1 − x)S(x,1) + txy(1 − t)(1 − y)S(1, y).

The generating function B(s;x, y) ≡ B(x, y) of Baxter permutations is known [10] to be characterized by

((1 − x)(1 − y) − sxy(x + y − 2))B(x, y) = sxy(1 − x)(1 − y) + sxy(1 − x)B(x,1) + sxy(1 − y)B(1, y).
Comparing both equations shows that (1 − t)S(t;x, y) = B(t(1 − t);x, y).

The proof of the identity that relates L(t;x, y) to B(t(1 − t);x, y) is similar.

For 1 ≤ n ≤ 30, the number of (2-14-3,3-41-2)-avoiding permutations of [n] is given in the following table.

1 374 929480 4023875702 23320440656376 161762725797343554
2 1668 4803018 22346542912 135126739754922 963907399885885724
6 7744 25274088 125368768090 788061492048436 5769548815574513550
22 37182 135132886 709852110576 4623591001082002 34679563373252224012
88 183666 732779504 4053103780006 27277772831911348 209275178482957838142

6 The case of guillotine partitions

6.1 Guillotine partitions and separable-by-point permutations

In this section we study the restriction of the map S to an important family of partitions called guillotine
partitions [12, 15, 21, 33].

Definition 6.1. A floorplan partition P is a guillotine partition (also called slicing floorplan [23]) if either
it consists of just one rectangle, or there is a segment in P that extends from one side of the boundary to
the opposite side, and splits P into two sub-partitions that are also guillotine.

The restriction of the map R to guillotine partitions induces a bijection between R-equivalence classes of
guillotine partitions and separable permutations [1]. Here, we characterize permutations that are obtained
as S-permutations of guillotine partitions.
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A nonempty permutation σ is separable if it has size 1, or its graph can be split into two nonempty blocks
H1 and H2, which are themselves separable. In this case, either all the points in H1 are to the SW of all the
points of H2 (then σ, as a separable permutation, has an ascending structure), or all the points in H1 are to
the NW of all the points of H2 (then σ, as a separable permutation, has a descending structure). Separable
permutations are known to coincide with (2-4-1-3,3-1-4-2)-avoiding permutations [9]. In particular, they
form a subclass of Baxter permutations. The number of separable permutations of [n] is the nth Schröder
number [29, A006318].

Definition 6.2. A permutation σ of [n] is separable-by-point if it is empty, or its graph can be split into
three blocks H1, H2, H3 such that

– H2 consists of one point N ,

– H1 and H3 are themselves separable-by-point (thus, they may be empty), and

– either all the points of H1 are to the SW of N , and all the points of H3 are to the NE of N (then σ

has an ascending structure),

or all the points of H1 are to the NW of N and all the points of H3 are to the SE of N (then σ has a
descending structure).

The letter N for the central block refers to the fact that we have denoted by Ni the point (i, σ(i)) of an
S-permutation σ. Observe also that N necessarily corresponds to a fixed point of σ if σ is ascending, and to
a point such that σ(i) = n + 1 − i is σ is descending and has size n.

Figure 29: Separable-by-point permutations.

See Fig. 29 for a schematic description and an example of separable-by-point permutations. For n ≤ 3, all
permutations are separable-by-point. It is clear that if a nonempty permutation σ is separable-by-point, then
it is separable. The permutations 2143 and 3412 are separable, but not separable-by-point. The following
result characterizes separable-by-point permutations in terms of forbidden patterns. In particular, it implies
that these permutations are S-permutations.

Proposition 6.3. Let σ be a permutation of [n]. Then σ is separable-by-point if and only if it is(2-14-3, 3-41-2, 2-4-1-3, 3-1-4-2)-avoiding.
Proof. Assume that σ is separable-by-point. In particular, σ is separable, and, therefore, it avoids 2-4-1-3
and 3-1-4-2. Assume for the sake of contradiction that σ contains an occurrence of 2-14-3, corresponding
to the points Ni,Nj ,Nj+1 and Nk, and has a minimal size for this property. Then the points forming the
pattern must be spread in at least two of the three blocks. This forces σ to have an ascending structure,
with Ni and Nj in one block, Nj+1 and Nk in the following one (because Nj and Nj+1 are adjacent). But
this is impossible as the central block of σ contains a unique point. Similarly one shows that σ avoids 3-41-2.

Conversely, we argue by induction on the size of σ. Let σ be a (2-14-3, 3-41-2, 2-4-1-3, 3-1-4-2)-avoiding
permutation of [n]. For n ≤ 3 there is nothing to prove. Let n ≥ 4. Since σ is (2-4-1-3, 3-1-4-2)-avoiding,
it is separable. Assume without loss of generality that σ (as a separable permutation) has an ascending

33



structure: the first block is [1, i]×[1, i], the second block is [i+1, n]×[i+1, n] where 1 ≤ i < n. If σ(i) ≠ i and
σ(i+1) ≠ i+1, then σ−1(i), i, i+1, σ−1(i+1) form a forbidden pattern 2-14-3. Thus, σ(i) = i or σ(i+1) = i+1,
and one obtains a three-block decomposition of σ by choosing for the central block N one of these two fixed
points. The remaining two blocks avoid all four patterns, and, therefore are separable-by-point themselves
by the induction hypothesis. It follows that σ is separable-by-point.

Theorem 6.4. A partition P is a guillotine partition if and only if S(P ) is separable-by-point.

Proof. Let P be a guillotine partition. We argue by induction on the size of P . If P consists of a single
rectangle, then S(P ) is the empty permutation, and is separable-by-point. Otherwise, consider a segment
that splits P into two rectangles. Assume that this segment is Ii (that is, the ith segment in the � order)
and that it is vertical. All the segments in the left (respectively, right) part of P are to the left (respectively,
right) of Ii, and thus come before (respectively, after) Ii in the � and � orders. Consequently:

– Ii is also the ith segment in the � order, so that Ni = (i, i),
– by Observation 3.2, all the points of the graph of σ that correspond to segments located to the left

(respectively, right) of Ii are to the SW (respectively, NE) of Ni.

Thus, we have three blocks with an ascending structure. The blocks H1 and H3 are the S-permutations of
the two parts of P , which are themselves guillotine: by the induction hypothesis, H1 and H3 are separable-
by-point. Thus S(P ) is separable-by-point with an ascending structure.

Similarly, if Ii is horizontal, we obtain a separable-by-point permutation with a descending structure.

Conversely, assume that σ ∶= S(P ) is separable-by-point. We will prove by induction on n that P is a
guillotine partition.

The claim is clear for n = 1. For n > 1, assume without loss of generality that σ has an ascending
structure. Let H2 = {(i, i)} be the second block in a decomposition of σ. Then for all j < i, we have Ij ← Ii,
and for all j > i, we have Ii ← Ij . Therefore, if Ii is vertical, it has no below- or above-neighbors, and,
thus, Ii extends from the lower to the upper side of the boundary. The two sub-partitions of P correspond
respectively to the blocks H1 and H3: hence they are guillotine by the induction hypothesis. Suppose now
that Ii is horizontal. Then we have σ(i−1) = i−1 (if i > 1) and σ(i+1) = i+1 (if i < n), since otherwise Ii has
at least two left-neighbors or at least two right-neighbors, which is never the case for a horizontal segment.
Assume without loss of generality that i > 1. Then another block decomposition of σ is obtained with the
central block H ′

2
= {(i − 1, i − 1)}, corresponding to the vertical segment Ii−1. The previous argument then

shows that P is guillotine.

6.2 Enumeration and multidimensional generalization

In this section we enumerate S-equivalence classes of guillotine partitions. The reasoning actually applies
for higher dimensional guillotine partitions, and we therefore study the problem in this generality. We first
need to define d-dimensional guillotine partitions, and the counterpart of S-equivalence.

Definition 6.5. Let B be a d-dimensional axes-aligned box. A guillotine partition of B is either the trivial
partition (whose only part is B itself), or a partition obtained by cutting B by a hyperplane which is
perpendicular to an axis xi, 1 ≤ i ≤ d, into two sub-boxes whose partitions are also guillotine.

Fig. 30 shows a guillotine partition of a 3-dimensional box. The intersection of B with a hyperplane that
splits B into two sub-boxes is a primary cut (like c and c3 in Fig. 30). We often denote by B the partition
as well as the box. We hope this will not cause any confusion.

A cut in a guillotine partition is either a primary cut, or (in a recursive manner) a cut in the partition of
one of the sub-boxes. Similarly to the planar case, we assume that parallel cuts do not meet. Therefore, a
guillotine partition B with n cuts consists of n+1 boxes. We say that it has size n+1, and denote ∣B∣ = n+1.

A guillotine partition B may have several primary cuts. In this case, these cuts are perpendicular to the
same axis xi. The lowest primary cut (with respect to xi) is called the principal cut of B. The sub-boxes
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Figure 30: A guillotine partition of a 3-dimensional box.

obtained by cutting B along the principal cut are denoted by B− (the part of B below the principal cut)
and B+ (the part of B above the principal cut). In Fig. 30, the principal cut of B is c, the principal cut of
B− is c1 and the principal cut of B+ is c3. Notice that the principal cut of B− is never parallel to that of B.

We now define d order relations between boxes and between cuts, which generalize ↞ and ↡ from the
planar case. Their definitions do not involve any notion of neighborhood, but instead, generalize the following
characterization of the ↞ order in planar guillotine partitions.

Observation 6.6. Consider a non-trivial 2-dimensional guillotine partition B, with principal cut c.

1. Let K and L be two distinct rectangles in the partition. Then K ← L if and only if

– c is vertical, K is in B−, L is in B+; or

– K and L are in B−, and K ← L in the partition of B−; or

– K and L are in B+, and K ← L in the partition of B+.

2. Let u and v be two distinct segments in the partition. Then u← v if and only if

– c is vertical, u is in B−, v is in B+; or

– c is vertical, u is in B−, v = c; or

– c is vertical, u = c, v is in B+; or

– u and v are in B−, and u← v in the partition of B−; or

– u and v are in B+, and u← v in the partition of B+.

A similar observation holds for the ↡ order.

Definition 6.7. Consider a non-trivial d-dimensional guillotine partition B with principal cut c.

• Let K and L be two distinct boxes in the partition. We say that K is below L (equivalently, L is above
K) with respect to the axis xi (1 ≤ i ≤ d), to be denoted by K ←

i
L, if

– c is perpendicular to xi, K is in B−, L is in B+; or

– K and L are in B−, and K ←
i
L in the partition of B−; or

– K and L are in B+, and K ←
i
L in the partition of B+.

• Let u and v be two distinct cuts in the partition. We say that u is below v (equivalently, v is above u)
with respect to the axis xi (1 ≤ i ≤ d), to be denoted by u←

i
v, if
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– c is perpendicular to xi, u is in B−, v is in B+; or

– c is perpendicular to xi, u is in B−, v = c; or

– c is perpendicular to xi, u = c, v is in B+; or

– u and v are in B−, and u←
i
v in the partition of B−; or

– u and v are in B+, and u←
i
v in the partition of B+.

If two distinct cuts u and v lie respectively in B− and B+ (or if one of them is the principal cut c), they
are comparable for the order ←

i
, where xi is perpendicular to c, but for no other order ←

j
. By induction, it

follows that each pair (u, v) of distinct cuts stands in exactly one of the order relations u ←
i
v or v ←

i
u (to

be denoted by u⇆
i
v) for a unique i, 1 ≤ i ≤ d.

We now define B-equivalence and C-equivalence of guillotine partitions7 which generalize the R- and S-
equivalences studied in the planar case. Two guillotine partitions B and D, both of size n+1, are C-equivalent
if it is possible to label the cuts of B by u1, . . . , un and the cuts of D by v1, . . . , vn in such a way that for
all 1 ≤ j, k ≤ n we have uj ←

i
uk if and only if vj ←

i
vk. Two such labelings are said to be C-compatible.

We define B-equivalence in a similar way. Lemma 2.6 implies that for 2-dimensional boxes, S-equivalence is
indeed equivalent to C-equivalence (and similarly for R- and B-equivalences).

Ackerman et al. [2] proved that the number of B-equivalence classes of d-dimensional guillotine partitions
of size n + 1 is

1

n

n−1
∑
k=0
(n
k
)( n

k + 1)(d − 1)kdn−k.
Moreover, B-equivalence classes may be described by separable multidimensional permutations [4].

Here, we count C-equivalence classes of guillotine partitions (Theorem 6.11). The counting will be based
on the following three lemmas.

Lemma 6.8. Let n ≥ 2. Two C-equivalent guillotine partitions B and D of size n + 1 have their principal
cuts in parallel directions.

Proof. Assume that the principal cut u of B is perpendicular to xi. Then u is comparable, for the ←
i
order,

to any other cut. For any j /= i however, there exists no cut v that is ←
j
comparable to all other cuts (v would

have to be ←
j
comparable to u, which is impossible). Since B and D are C-equivalent, these two properties

hold as well for the cuts of D, so that the principal cut of D is perpendicular to xi as well.

Lemma 6.9. Let n ≥ 2. Let B be a d-dimensional guillotine partition of size n + 1 such that ∣B−∣ = 2.
Then there exists a d-dimensional guillotine partition D of size n+1 which is C-equivalent to B and satisfies∣D−∣ = 1.
Proof. Let u be the principal cut of B, and assume that it is perpendicular to xi. Let v be the only cut of
B−. Then v is perpendicular to xj for some j ≠ i. Replace v by a cut w perpendicular to xi. This gives a
new guillotine partition D which is easily seen to be C-equivalent to B. Furthermore, w is the principal cut
of D; therefore, ∣D−∣ = 1.
Lemma 6.10. Let n ≥ 2. Let B and D be two d-dimensional guillotine partitions of size n + 1 such that∣B−∣ ≠ 2 and ∣D−∣ ≠ 2. These partitions are C-equivalent if and only if

– the principal cuts of B and C are parallel,

– the partition B− is C-equivalent to the partition D−, and

7B for boxes, C for cuts.
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– the partition B+ is C-equivalent to the partition D+.

In this case, B− and D− have the same size.

Proof. The “if” direction is easily seen by induction on n.
Conversely, assume that B and D are C-equivalent, with C-compatible labelings u1, . . . , un and v1, . . . , vn.

Let uℓ be the principal cut of B and vm the principal cut of D. By Lemma 6.8, uℓ and vm are perpendicular
to the same axis xi. Let us prove that ℓ =m. Assume for the sake of contradiction that ℓ ≠m. Since vm is
the principal cut of D, we have vℓ ⇆

i
vm.

Assume first vℓ ←
i
vm. Then vℓ is in D−, and the partition D− is not trivial. We shall prove that vℓ is

the principal cut of D−. Indeed, let vk be the principal cut of D−. It is perpendicular to xj where j ≠ i.
Therefore, if ℓ ≠ k, then we have vℓ ⇆

j
vk. Since the two labelings are C-equivalent, uℓ ⇆

j
uk. However, since

uℓ is the principal cut of B, we also have uℓ ⇆
i
uk, which is a contradiction since i /= j. Hence vℓ is the

principal cut of D−. By assumption, ∣D−∣ ≠ 2. Therefore there exists vp in D− such that p ≠ ℓ. We then have
vℓ ⇆

j
vp, so that uℓ ⇆

j
up. But there also holds uℓ ⇆

i
up, which gives a contradiction.

Assume now vm ←
i
vℓ. Then um ←

i
uℓ, and we can repeat the above argument in B rather than D. This

concludes the proof that m = ℓ. That is, the principal cut of D is vℓ.

Clearly, up is in B− if and only if vp is in D−. In particular, ∣B−∣ = ∣D−∣ and ∣B+∣ = ∣D+∣. Moreover, any
two cuts in B−, up and uq, stand in the same order as vp and vq do in D−. Therefore, the partition B− is
C-equivalent D−. Similarly, the partition B+ is C-equivalent to D+.

Theorem 6.11. Fix d ≥ 2. Let An be the number of C-equivalence classes of d-dimensional guillotine
partitions of size n + 1 (that is, having n cuts). Let A(t) = ∑n≥0Ant

n be the associated generating function.
Then

A(t) = 1 − t + (d − 1)t2 −√(1 − t + (d − 1)t2)2 − 4(d − 1)t(1 − (d − 1)t)
2(d − 1)t .

Equivalently, A0 = A1 = 1, and for n ≥ 2,

An = dA0An−1 + (d − 1)n−1∑
k=2

AkAn−1−k. (4)

Proof. That A0 = A1 = 1 is clear. Let n ≥ 2. Lemma 6.8 shows that two partitions of size n + 1 with their

principal cuts in distinct directions cannot be C-equivalent. Therefore, An = dA
(1)
n , where A

(1)
n is the number

of C-equivalence classes of partitions with n cuts where the principal cut is perpendicular to x1.
By Lemma 6.10, a partition B such that ∣B−∣ > 2 is only equivalent to partitions D such that ∣D−∣ = ∣B−∣.

By Lemma 6.9, a partition B such that ∣B−∣ = 2 is equivalent to a partition D such that ∣D−∣ = 1. In turn,
D is only equivalent to partitions E such that ∣E′∣ = 1 or 2 (by Lemma 6.10). Consequently,

A(1)n = ∑
0≤k≤n−1

k/=1

A
(1)
n,k

,

where A
(1)
n,k

is the number of classes containing a partition B such that ∣B−∣ = k + 1 (and ∣B∣ = n + 1, and the

principal cut is perpendicular to x1, as in the definition of the numbers A
(1)
n ).

By Lemma 6.10, these classes are in one-to-one correspondence with ordered pairs (C1,C2) of classes,
of respective size k + 1 and n − k, such that the principal cut of C1 (if it exists, that is, if k ≥ 2) is not
perpendicular to x1. By Lemma 6.8, the number of choices for C1 is then d−1

d
Ak (for k ≥ 2). Therefore

A
(1)
n,k
= { A0An−1, if k = 0;

d−1
d
AkAn−k−1, otherwise.
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This yields, for n ≥ 2,

An = d ⋅ (A0An−1 +
d − 1

d

n−1∑
k=2

AkAn−1−k) ,
which can be rewritten as in the proposition. Equivalently,

An = dAn−1 + (d − 1)n−1∑
k=0

AkAn−1−k − (d − 1)(An−1 +An−2), (5)

so that
A(t) − 1 − t = dt(A(t) − 1) + (d − 1)t(A2(t) − 1) − (d − 1)t(A(t) − 1) − (d − 1)t2A(t).

The expression of A(t) follows.
Remarks
1. Let us return to the planar case, d = 2. The numbers An then count S-equivalence classes of planar guillo-
tine partitions of size n+1. By Theorem 6.4 and Proposition 6.3, they also count (2-14-3, 3-41-2, 2-4-1-3, 3-1-4-2)-
avoiding permutations of [n]. The first values are 1,2,6,20,70,254,948,3618,14058,55432. This sequence [29,
A078482] also enumerates irreducible stack sortable permutations, or (2-4-3-1,3-2-4-1,2-4-1-3,3-1-4-2)-avoiding
permutations, as found by Atkinson and Stitt [5, Theorem 17]. The associated generating function is

A(t) = 1 − t + t2 −
√
1 − 6t + 7t2 − 2t3 + t4

2t
.

Using the methods from [17, Sec. VI.4], we can determine the asymptotic behavior of this sequence:

An ∼ κµ
nn−3/2,

where κ is a constant, and

µ =
2

1 −
√
8
√
2 − 11

≈ 4.5465.

2. One can express the numbers An as a double sum. We have

A(t) = 1 − (d − 1)t
1 − t(1 − (d − 1)t)C (

(d − 1)t(1 − (d − 1)t)
(1 − t(1 − (d − 1)t))2 ) ,

where C(t) = 1−
√
1−4t
2t

=∑n≥0Cnt
n is the generating function for the Catalan numbers Cn =

1

n+1(2nn ). Thus,
A(t) = ∑

k≥0
Ck

(d − 1)ktk(1 − (d − 1)t)k+1
(1 − t(1 − (d − 1)t))2k+1

= ∑
k≥0
∑
j≥0

Ck(2k + j
j
)(d − 1)ktk+j(1 − (d − 1)t)k+1+j .

Hence, the coefficient of tn in A(t) is
An =

n∑
k=0

n−k∑
j=0
(−1)n−k−jCk(2k + j

j
)(k + 1 + j

n − k − j
)(d − 1)n−j.
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7 Summary

We conclude by a summary of the results obtained in [1] for R-equivalence classes and in the present paper
for S-equivalence classes.

All floorplan partitions Planar guillotine partitions

R-equivalence
classes

Forbidden patterns:
2-41-3, 3-14-2

Enumerating sequence:
1,2,6,22,92,422,2074,10754,
58202,326240, . . .
(Baxter numbers [29, A001181])

Growth rate: 8.

Forbidden patterns:
2-4-1-3, 3-1-4-2

Enumerating sequence:
1,2,6,22,90,394,1806,8558,
41586,206098, . . .
(Schröder numbers [29, A006318])

Growth rate: 3 + 2
√
2 ≈ 5.8284.

S-equivalence
classes

Forbidden patterns:
2-14-3, 3-41-2

Enumerating sequence:
1,2,6,22,88,374,1668,7744,
37182,183666, . . .

Growth rate: 4 + 2
√
2 ≈ 6.8284.

Forbidden patterns:
2-14-3, 3-41-2, 2-4-1-3, 3-1-4-2

Enumerating sequence:
1,2,6,20,70,254,948,3618,
14058,55432, . . .
([29, A078482])

Growth rate: 2

1−
√

8
√
2−11

≈ 4.5465.
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