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Abstract

We study arc spaces and jet schemes of generic determinantal varieties. Using the natural group

action, we decompose the arc spaces into orbits, and analyze their structure. This allows us to compute

the number of irreducible components of jet schemes, log canonical thresholds, and topological zeta

functions.

Introduction

Let M = Ar s denote the space of r × s matrices, and assume that r ≤ s. Let Dk ⊂ M be the generic deter-

minantal variety of rank k, that is, the subvariety of M whose points correspond to matrices of rank at

most k. The purpose of this paper is to analyze the structure of arc spaces and jet schemes of generic

determinantal varieties.

Arc spaces and jet schemes have attracted considerable attention in recent years. They were intro-

duced to the field by J. F. Nash [Nas95], who noticed for the fist time their connection with resolution

of singularities. A few years later, M. Kontsevich introduced motivic integration [Kon95, DL99], popu-

larizing the use of the arc space. And starting with the work of M. Mustaţă, arc and jets have become a

standard tool in birational geometry, mainly because of their role in formulas for controlling discrepan-

cies [Mus01, Mus02, EMY03, ELM04, EM06, dFEI08].

But despite their significance from a theoretical point of view, arc spaces are often hard to compute in

concrete examples. The interest in Nash’s conjecture led to the study of arcs in isolated surface singulari-

ties [LJ90, Nob91, LJR98, Plé05, PPP06, LJR08]. Quotient singularities are analyzed from the point of view

of motivic integration in [DL02]. We also understand the situation for monomial ideals [GS06, Yue07b]

and for toric varieties [Ish04]. But beyond these cases very little is known about the geometry of the arc

space of a singular algebraic variety. The purpose of this article is to analyze in detail the geometric struc-

ture of arc spaces and jet schemes of generic determinantal varieties, giving a new family of examples for

which the arc space is well understood.

Recall that arcs and jets are higher order analogues of tangent vectors. Given a variety X defined over

C, an arc of X is a C[[t ]]-valued point of X , and an n-jet is a C[t ]/(t n+1) -valued point. A 1-jet is the same

as a tangent vector. Just as in the case of the tangent space, arcs on X can be identified with the closed

points of a scheme X∞, which we call the arc space of X [Nas95, Voj07]. Similarly, n-jets give rise to the

n-th jet scheme of X , which we denote by Xn (see Section 1 for more details).
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For the space of matrices M , the arc space M∞ and the jet scheme Mn can be understood set-

theoretically as the spaces of matrices with entries in the rings C[[t ]] and C[t ]/(t n+1), respectively. Dk
∞

and Dk
n are contained in M∞ and Mn , and their equations are obtained by “differentiating” the k × k

minors of a matrix of independent variables. We approach the study of Dk
∞ and Dk

n with three goals

in mind: understand the topology of Dk
n , compute log canonical thresholds for the pairs (M ,Dk ), and

compute topological zeta functions for (M ,Dk ).

0.1 Irreducible components of jet schemes

The topology of the jet schemes Dk
n is intimately related to the generalized Nash problem.

Given an irreducible family of arcs C ⊂ M∞, we can consider νC , the order of vanishing along a

general element of C . The function νC is almost a discrete valuation, the only problem being that it

takes infinite value on those functions vanishing along all the arcs in C . If there are no such functions,

we call the family fat [Ish08], and we see that irreducible fat families of arcs give rise to discrete valuations.

Conversely, given a divisorial valuation ν over M , any isomorphism from C[[t ]] to the completion of

the valuation ring produces a non-closed point of M∞. The closure of any these points can be easily seen

to give an irreducible fat family of arcs inducing ν.

Among all closed irreducible fat families of arcs inducing a given divisorial valuation, there exist a

maximal one with respect to the order of containment, known as the maximal divisorial set (see Section 1

for details). In this way we get a bijection between divisorial valuations and maximal divisorial sets in the

arc space, and we can use the topology in the arc space to give structure to the set of divisorial valuations.

More concretely, the containment of maximal divisorial sets induces a partial order on valuations. The

understanding of this order is known as the generalized Nash problem [Ish08].

There are other ways to define orders in the set of divisorial valuations. For example, thinking of

valuations as functions on OM , we can partially order them by comparing their values. In dimension

two, the resolution process also gives an order. It can be shown that the order induced by the arc space

is different from any previously known order [Ish08], but beyond that, not much is known about the

generalized Nash problem. A notable exception is the case of of toric valuations on toric varieties, which

was studied in detail in [Ish04].

Determining the irreducible components for Dk
n is essentially equivalent to computing minimal el-

ements among those valuations over M that satisfy certain contact conditions with respect to Dk . In

Section 4 we solve the generalized Nash problem for invariant divisorial valuations, and use this to prove

the following theorem.

Theorem A. Let Dk be the determinantal variety of matrices of size r ×s and rank at most k, where k < r ≤

s. Let Dk
n be the n-th jet scheme of Dk . If k = 0 or k = r −1, the jet scheme Dk

n is irreducible. Otherwise the

number of irreducible components of Dk
n is

n+2−

⌈
n+1

k +1

⌉
.

Jet schemes for determinantal varieties were previously studied in [KS05a, KS05b, Yue07a]. Up to

now, the approach has always been to use techniques from commutative algebra, performing a careful

study of the defining equations. This has been quite successful for ranks 1 and r −1, especially for square

matrices, but the general case seems too complex for these methods.

Our approach is quite different in nature: we focus on the natural group action. This is a technique

that already plays a central role in Ishii’s study of the arc spaces of toric varieties [Ish04]. Consider the
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group G = GLr ×GLs , which acts on the space of matrices M via change of basis. The rank of a matrix

is the unique invariant for this action, the orbit closures being precisely the determinantal varieties Dk .

The assignments sending a variety X to its arc space X∞ and its jet schemes Xn are functorial. Since G

is an algebraic group and its action on M is rational, we see that G∞ and Gn are also groups, and that

they act on M∞ and Mn , respectively. Determinantal varieties are G-invariant, hence their arc spaces

are G∞-invariant and their jet schemes are Gn-invariant. The main observation is that most questions

regarding components and dimensions of jet schemes and arc spaces of determinantal varieties can be

reduced to the study of orbits in M∞ and Mn .

Orbits in the arc space M∞ are easy to classify. As a set, M∞ is just the space of matrices with co-

efficients in C[[t ]], and G∞ acts via change of basis over the ring C[[t ]]. Gaussian elimination allows

us to find representatives for the orbits: each of them contains a unique diagonal matrix of the form

diag(tλ1 , . . . , tλr ), where ∞≥ λ1 ≥ ·· · ≥ λr ≥ 0, and the sequence λ = (λ1, . . . ,λr ) determines the orbit. In

Section 3 we see how to decompose arc spaces and jet schemes of determinantal varieties as unions of

these orbits. Once this is done, the main difficulty to determine irreducible components is the under-

standing of the generalized Nash problem for orbits closures in M∞. This is the purpose of the following

theorem, which is proven in the article as Theorem 4.7.

Theorem B (Nash problem for invariant valuations). Consider two sequences λ = (λ1 ≥ ·· · ≥ λr ≥ 0) and

λ′ = (λ′
1 ≥ ·· · ≥ λ′

r ≥ 0), and let Cλ and Cλ′ be the corresponding orbits in the arc space M∞. Then the

closure of Cλ contains Cλ′ if and only if

λr +λr−1 +·· ·+λr−k ≤ λ′
r +λ′

r−1 +·· ·+λ′
r−k ∀k ∈ {0, . . . ,r }.

Sequences of the form (∞≥λ1 ≥λ2 ≥ ·· · ≥ λr ≥ 0) are closely related to partitions (the only difference

being the possible presence of infinite terms), and the order that appears in the above theorem is a mod-

ification of a well-known order on the set of partitions: the order of domination (see Section 2). Since the

poset of partitions is well understood, one has very explicit information about the structure of the poset

of orbits in the arc space. This allows us to compute minimal elements among some interesting families

of orbits, leading to the proof of Theorem A (see Section 4).

0.2 Log canonical thresholds

Mustaţă’s formula [Mus01, ELM04, dFEI08] allows us to compute log discrepancies for divisorial valua-

tions by computing codimensions of the appropriate sets in the arc space. In the case at hand, the most

natural valuations one can look at are the invariant divisorial valuations. In Section 5 we see that the

maximal divisorial sets corresponding to these valuations are precisely the orbit closures in M . Hence

computing log discrepancies gets reduced to computing codimensions of orbits. This explains the rele-

vance of the following result, which appears in Section 5 as Proposition 5.5.

Theorem C (Log discrepancies of invariant valuations). Consider a sequence λ = (λ1 ≥ ·· · ≥ λr ≥ 0) and

let Cλ be the corresponding orbit in the arc space M∞. Then the codimension of Cλ in M∞ is

codim(Cλ, M∞) =
r∑

i=1

λi (s − r +2i −1).

Once these codimensions are known, one can compute log canonical thresholds for pairs involving

determinantal varieties. The following result appears in Section 5 as Theorem 5.7.
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Theorem D. Let M be the space of matrices of size r × s, and Dk the subvariety of M containing matrices

of rank at most k. The log canonical threshold of the pair (M ,Dk ) is

lct(M ,Dk ) = min
i=0...k

(r − i )(s − i )

k +1− i
.

We should note that the previous result is not new. Log resolutions for generic determinantal varieties

are now classical objects. They are essentially spaces of complete collineations, obtained by blowing

up Dk along D0, D1, . . . , Dk−1, in this order [Sem51, Tyr56, Vai84, Lak87]. It is possible to use these

resolutions to compute log canonical thresholds, and this was done by A. Johnson in her Ph.D. thesis

[Joh03]. In fact she is able to compute all the multiplier ideals J (M ,c ·Dk ). Our method does not need

any knowledge about the structure of these log resolutions.

0.3 Topological zeta function

Using our techniques, we are able to understand orbits in M∞ quite explicitly. In Section 6 we compute

motivic volumes of orbits, and this allows us to determine topological zeta functions for determinantal

varieties (for square matrices).

Theorem E. Let M = Ar 2
be the space of square r × r matrices, and let Dk be the subvariety of matrices of

rank at most k. Then the topological zeta function of the pair (M ,Dk ) is given by

Z
top

Dk (s) =
∏

ζ∈Ω

1

1− s ζ−1

where Ω is the set of poles:

Ω=

{
−

r 2

k +1
, −

(r −1)2

k
, −

(r −2)2

k −1
, . . . , −(r −k)2

}
.
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1 Arc spaces and motivic integration

We briefly review in this section the basic theory of arc spaces and motivic integration, as these tools will

be used repeatedly. Most of these results are well-known. We have gathered them mainly from [DL98],

[DL99], [ELM04], [Ish08], [Vey06], and [dFEI08]. We direct the reader to those papers for more details and

proofs.

We will always work with varieties and schemes defined over the complex numbers. When we use the

word scheme, we do not necessarily assume that it is of finite type.
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1.1 Arcs and jets

Given a variety X , we consider the following functors from the category of C-algebras to the category of

sets:

F∞
X (A) = Hom

(
Spec A[[t ]], X

)
, F n

X (A)= Hom
(
Spec A[t ]/(t n+1), X

)
.

Both of these functors are representable by schemes, which we denote by X∞ and Xn respectively. X∞ is

known as the arc space of X and Xn as the n-th jet scheme of X . The natural projections ψn : X∞ → Xn

are known as truncation maps.

The assignment X 7→ X∞ is functorial: each morphism f : X ′ → X induces by composition a mor-

phism f∞ : X ′
∞ → X∞, and (g ◦ f )∞ = f∞ ◦ g∞. As a consequence, if G is a group scheme, so is G∞, and

if X has an action by G, the arc space X∞ has an action by G∞. Analogous statements hold for the jet

schemes.

1.2 Contact loci and valuations

A constructible subset C ⊂ X∞ is called thin if one can find a proper subscheme Y ⊂ X such that C ⊂ Y∞.

Constructible subsets which are not thin are called fat. A cylinder in X∞ is a set of the form ψ−1
n (C ), for

some constructible set C ⊂ Xn . On a smooth variety, cylinders are fat, but in general a cylinder might be

contained in S∞, where S = Sing(X ) ⊂ X is the singular locus.

An arc α ∈ X∞ induces a morphism α : Spec K [[t ]] → X , where K is the residue field of α. Given an

ideal I ⊂ OX , its pull-back α∗(I ) ⊂ K [[t ]] is of the form (t e ), where e is either a non-negative integer or

infinity (by convention t∞ = 0). We call e the order of contact of α along I and denote it by ordα(I ).

Given a collection of ideals I = (I1, . . . ,Ir ) and a multi-index µ = (m1, . . . ,mr ) ∈ Z≥0 we introduce the

contact locus:

Cont=µ(I ) = { α∈ X∞ : ordα(Ij ) = m j for all j },

Contµ(I ) = { α ∈ X∞ : ordα(Ij ) ≥ m j for all j }.

Notice that contact loci are cylinders.

Let C ⊂ X∞ be an irreducible fat set. Then C contains a generic point γ ∈ C which we interpret as a

morphism γ : Spec K [[t ]] → X , where K is the residue field of γ. Let η be the generic point of Spec K [[t ]].

Since C is fat, γ(η) is the generic point of X , and we get an inclusion of fields

C(X )→ K ((t)).

The composition of this inclusion with the canonical valuation on K ((t)) is a valuation on C(X ), which

we denote by νC . In this way we obtain a map from the set of fat irreducible subsets of X∞ to the set of

valuation of C(X ) defined over X :

{ C ⊆ X∞ : C irreducible fat } −→ { discrete valuations over X }.

This map is always surjective: for a discrete valuation ν of C(X ) defined over X , the completion of the

discrete valuation ring Oν is isomorphic to a power series ring kν[[t ]]. But it is far from being injective.

For example, different choices of uniformizing parameter in a discrete valuation ring give rise to different

arcs.

A valuation ν of C(X ) is called divisorial if it is of the form q ·valE , where q is a positive integer and E is

a prime divisor on a variety X ′ birational to X . An irreducible fat set C ⊂ X∞ is said to be divisorial if the
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corresponding valuation νC is divisorial. In [Ish08] it is shown that the union of all divisorial sets corre-

sponding to a given valuation ν is itself a divisorial set defining ν (in fact it is an irreducible component of

a contact locus). These unions are called maximal divisorial sets. There is a one to one correspondence

between divisorial valuations and maximal divisorial sets. This gives an inclusion

{ divisorial valuations over X } ,→ { C ⊆ X∞ : C irreducible fat }.

Through this inclusion, the topology on the arc space X∞ gives structure to the set of divisorial valuations.

For example, given two valuations ν and ν′ with corresponding maximal divisorial sets C and C ′, we say

that ν dominates ν′ if C ⊇ C ′. The generalized Nash problem consists in understanding the relation of

domination among divisorial valuations.

1.3 Discrepancies

Let X be a variety of dimension n. The Nash blowing-up of X , denoted X̂ , is defined as the closure of Xreg

in PX (Ωn
X

); it is equipped with a tautological line bundle OPX (Ωn
X

)(1)|X̂ , which we denote by K̂X and call

the Mather canonical line bundle of X . When X is smooth, X = X̂ and KX = K̂X .

When Y is a smooth variety and f : Y → X is a birational morphism that factors through the Nash

blowing-up, we define the relative Mather canonical divisor of f as the unique effective divisor supported

on the exceptional locus of f and linearly equivalent to KY − K̂X ; we denote it by K̂Y /X .

Let ν be a divisorial valuation of X . Then we can find a smooth variety Y and a birational map Y → X

factoring through the Nash blowing-up of X , such that ν = q · valE for some prime divisor E ⊂ Y . We

define the Mather discrepancy of X along ν as

k̂ν(X ) = q ·ordE (K̂Y /X ).

This definition is independent of the choice of resolution Y .

In the smooth case, Mustaţă showed that we can compute discrepancies using the arc space [Mus01,

ELM04]. This is generalized to arbitrary varieties in [dFEI08] via the use of Mather discrepancies. More

precisely, given a divisorial valuation ν with multiplicity q , let Cν ⊂ X∞ be the corresponding maximal

divisorial set. Then

codim(Cν, X∞) = k̂ν(X )+q.

1.4 Motivic integration

Let M0 be the Grothendieck ring of algebraic varieties over C. In [DL99], the authors introduce a certain

completion of a localization of M0, which we denote by M . Also, for each variety X over C, they define a

measure µX on X∞ with values in M . This measure is known as the motivic measure of X . The following

properties hold for M and the measures µX :

• There is a canonical ring homomorphism M0 → M . In particular, for each variety X one can as-

sociate an element [X ] ∈M , and the map X 7→ [X ] is additive (meaning that [X ] = [Y ]+ [U ], where

Y ⊂ X is a closed subvariety and U = X \ Y ).

• The element [A1] ∈M has a multiplicative inverse. We write L= [A1].

• Both the Euler characteristic and the Hodge-Deligne polynomial, considered as ring homomor-

phisms with domain M0, extend to homomorphisms

χ : M → R, E : M → Z((u, v)),

6



where χ(L)= 1 and E (L)= uv .

• Constructible sets in X∞ areµX -measurable. In particular, thin sets, fat sets, cylinders, and contact

loci are all measurable.

• If X is smooth, µX (X∞) = [X ].

• A thin set has measure zero.

• Let C ⊂ X∞ be a cylinder in X∞. Then the truncations ψn (C )⊂ Xn are of finite type, so they define

elements [ψn (C )]∈M . Then

µX (C )= lim
n→∞

[ψn (C )] ·L−nd

where d is the dimension of X . Furthermore, if C does not intersect (Xsing)∞, then [ψn (C )] ·L−nd

stabilizes for n large enough.

• Given an ideal I ⊂OX , we define a function |I | on X∞ with values on M via

|I |(α) = L−ordα(I ) α ∈ X∞.

Notice that ordβ(I ) =∞ if and only if β ∈ Zeroes(I )∞, so |I | is only defined up to a measure zero

set. Then |I | is µX -integrable and

∫

X∞

|I |dµX =

∞∑

p=0

[Cont=p (I )] ·L−p .

• Let f : Y → X be a birational map factoring through the Nash blowing-up of X , and assume Y

smooth. Let Jac( f ) be the ideal of the relative Mather canonical divisor K̂Y /X . Then ( f∞)∗(µX ) =

|Jac( f )| ·µY ; in other words, for a measurable set C ⊂ X∞, and a µX -integrable function ϕ,

∫

C
ϕ dµX =

∫

f −1
∞ (C )

(ϕ◦ f∞) |Jac( f )| dµY .

This is known as the change of variables formula for motivic integration.

• Given a subscheme Y ⊂ X with ideal I ⊂ OX , the motivic Igusa zeta function of the pair (X ,Y ) is

defined as

ZY (s)=

∫

X∞

|I |
s dµX =

∞∑

p=0

[Cont=p (I )] ·L−sp .

In this expression, L−s is to be understood as a formal variable, so ZY (s) ∈M [[L−s]]. It is shown in

[DL98] that ZY (s) is a rational function. More precisely, ZY (s) belongs to the subring of M [[L−s]]

generated by M and the elements of the form L−sa

Lb−L−sa , where a and b are positive integers.

• The motivic Igusa zeta function specializes to the topological zeta function in the following way.

Formally expanding L−s and the denominators in ZY (s) as power series in (L−1), one gets a well

defined element Z̃Y (s) ∈M (s)[[L−1]]. Using the Euler characteristic map χ : M → R and consider-

ing the quotient by the ideal generated by L−1 we obtain an element Z
top
Y

(s) ∈ R(s). The rational

function Z
top

Y
(s) is known as the topological zeta function for the pair (X ,Y ).
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2 Partitions

In order to enumerate orbits in the arc space of determinantal varieties, it will be convenient to use the

language of partitions. In fact, we will consider a slight generalization of the concept of partition, where

we allow terms of infinite size and an infinite number of terms (we call these objects pre-partitions). In

this section we recall some basic facts about partitions that will be needed in the rest of the article, and

extend them to the case of pre-partitions. Most of the results are well known. For a detailed account of

the theory of partitions we refer the reader to [dCEP80] and [Ful97].

2.1 Definitions

Let N denote the set of non-negative integers, and consider N = N∪ {∞}. We extend the natural order on

N to N by setting ∞> n for any n ∈ N. We also set ∞+n =∞ for any n ∈ N.

A pre-partition is an infinite non-increasing sequence of elements of N. Given a pre-partition λ =

(λ1,λ2, . . . ), the elements λi are known as the terms of λ. The first term λ1 is called the maximal term or

co-length of λ. If all the terms of λ are non-zero, we say that λ has infinite length; otherwise, the largest

integer i such that λi 6= 0 is called the length of λ. If a pre-partition λ has length no bigger than ℓ, we will

often denote λ by the finite sequence (λ1,λ2, . . . ,λℓ).

A partition is a finite non-increasing sequence of positive integers. A partition can be naturally iden-

tified with a pre-partition of finite length and finite co-length.

Given a pre-partition λ= (λ1,λ2, . . . ) we define

λ∗
i = sup

{
j : λ j ≥ i

}
∈ N.

Then λ∗
i
≥ λ∗

i+1
, and we obtain a new pre-partition λ∗, known as the conjugate pre-partition of λ. It

follows from the definition that λ∗∗ = λ, that the length of λ∗ is the co-length of λ, and that the co-length

of λ∗ is the length of λ. In particular, the conjugate of a partition is also a partition.

2.2 Diagrams

It will be helpful to visualize pre-partitions as Young diagrams (sometimes also known as Ferrers dia-

grams). A Young diagram is a graphical representation of a pre-partition; it is a collection of boxes, ar-

ranged in left-justified rows, with non-increasing row sizes. To each pre-partition λ= (λ1,λ2, . . . ) there is

a unique Young diagram whose i -th row has size λi . For example:

(5,4,3,3,2) = (∞,∞,4,2,1) = . . .
. . .

The length of a partition corresponds to the height of the associated diagram, whereas the co-length

corresponds to the width. The diagram of the conjugate pre-partition is obtained from the original di-

agram by switching rows with columns. More concretely, if T denotes the diagram associated to a pre-

partition λ, the terms λi of the pre-partition give the row sizes of T , and the terms λ∗
i

of the conjugate

pre-partition give the column sizes of T .
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2.3 Posets of partitions

Given two pre-partitions λ= (λ1,λ2, . . . ) and µ= (µ1,µ2, . . . ), we say that λ is contained in µ, and denote it

by λ⊆µ, if λi ≤µi for all i . Containment of pre-partitions corresponds to containment of the associated

diagrams. In particular, λ⊆µ if and only if λ∗ ⊆µ∗.

If λ and µ are pre-partitions with finite co-length, we say that µ dominates λ, denoted by λ≤µ, if

λ1 +λ2 +·· ·+λi ≤ µ1 +µ2 +·· ·+µi

for all positive integers i . If λ and µ have finite length, we say that µ co-dominates λ, denoted λ⊳µ, if

λi +λi+1 + . . . ≤ µi +µi+1 + . . .

for all positive integers i (notice that the sums above have only a finite number of terms because the pre-

partitions have finite length). It is shown in [dCEP80, Prop. 1.1] that the conditions of domination and

co-domination of pre-partitions can be expressed in terms of the conjugates. More precisely, we have:

λ≤µ ⇐⇒ λ∗
⊳µ∗ ⇐⇒ λ∗

i
+λ∗

i+1
+ . . . ≤ µ∗

i
+µ∗

i+1
+ . . . ∀i ,

λ⊳µ ⇐⇒ λ∗ ≤µ∗ ⇐⇒ λ∗
1 +λ∗

2 +·· ·+λ∗
i

≤ µ∗
1 +µ∗

2 +·· ·+µ∗
i

∀i .

The three relations (containment, domination and co-domination) define partial orders. We are

mostly interested in the order of co-domination. Given a positive integer r , we denote by Λr (respectively

Λr ) the poset of pre-partitions (resp. partitions) of length at most r with the order of co-domination. By

Λr,n we denote the poset of partitions of length at most r and co-length at most n. It can be shown that

Λr , Λr and Λr,n are all latices.

2.4 Adjacencies

In Section 4 we will need to have a good understanding of the structure of the posets Λr . For our pur-

poses, it will be enough to determine the adjacencies in Λr .

Let λ and µ be two different pre-partitions in Λr such that λ⊳µ. We say that λ and µ are adjacent (or

that µ covers λ) if there is no pre-partition ν in Λr , different from λ and µ, such that λ⊳ν⊳µ. Adjacencies

in Λr were determined in [dCEP80, Prop. 1.2]. They come in three different types, which we call single

removals, slips and falls.

• We say that a pre-partition λ is obtained from µ via a single removal if λi = µi for all i 6= j and

λ j = µ j − 1, where j is the smallest integer such that µ j is finite. At the level of diagrams, λ is

obtained from µ by removing one box in the lowest row of finite size. Notice that this removal can

only be done if µ j+1 <µ j .

• We say thatλ is obtained fromµ via a slip if there exists a positive integer j such thatλ j+1 =µ j+1−1,

λ j =µ j +1 and λi = µi for all i ∉ { j , j+1}. In this case, the diagram of λ is obtained from the diagram

of µ by moving a box from row j +1 to row j . A slip from row j +1 can only happen if µ j+2 < µ j+1,

and µ j <µ j−1.

• We say that λ is obtained from µ via a fall if µ∗ is obtained from λ∗ via a slip. In other words, there

exist positive integers j < k such that λk = µk −1, λ j = µ j +1, and λi = µi for all i ∉ { j ,k}. A fall

from row k to row j can only happen if µk+1 <µk , µ j <µ j−1, and µi = µi ′ for all i , i ′ ∈ { j , j +1, . . . ,k}.

During a fall, a box in the diagram of µ is moved from one column to the next.

9



Since we are dealing with pre-partitions, we will also need to consider infinite removals:

• We say that a pre-partition λ is obtained from µ via an infinite removal if λi = µi for all i 6= j and

λ j < µ j = ∞, where j is the largest integer such that µ j is infinite. At the level of diagrams, λ is

obtained from µ by removing infinitely many boxes in the highest row of infinite size.

. . .
. . .
. . .

. . .

Single removal Infinite removal

Slip Fall

In [dCEP80] the authors show that adjacencies in the set of partitions with respect to the order of

domination correspond to simple removals, slips and falls. The result for partitions with the order of

co-domination follows immediately from the fact that λ⊳µ⇔λ∗ ≤ µ∗. Now consider two pre-partitions

λ⊳µ with finite length, and assume they are adjacent. They must have the same number of infinite terms,

otherwise the pre-partition ν obtained from λ by adding one box in the lowest finite row verifies λ⊳ν⊳µ.

Let λ̂ and µ̂ be the partitions obtained from λ and µ by removing the infinite terms. Then λ̂ and µ̂ are

adjacent and we can apply the result of [dCEP80] to show that λ can be obtained from µ via a simple

removal, a slip, or a fall.

Theorem 2.1. Let λ and µ be two pre-partitions in Λr , and assume that λ⊳µ. Then there exists a finite

sequence of pre-partitions in Λr ,

λ= νm
⊳ · · · ⊳ ν1

⊳ ν0
=µ,

such that νi is obtained from νi−1 via a simple removal, an infinite removal, a slip, or a fall.

Proof. Assume first that there are more infinite terms in µ that in λ. To each infinite row j in µ which is

finite in λ we apply an infinite removal, leaving at least λ j boxes (depending on the particular µ we might

need to leave more boxes). This way we obtain a sequence

λ ⊳ νm0 ⊳ · · · ⊳ ν1
⊳ ν0

= µ,

where λ has the same number of infinite rows as νm0 and where each νi is obtained from νi−1 via an

infinite removal. Notice that m0 is the number of rows which are infinite in µ but finite in λ. Since µ has

finite length, m0 is finite.

Let k be the number of boxes in the finite rows of νm0 . Then any pre-partition with the same number

of infinite rows as νm0 and co-dominated by νm0 must use at most k boxes in its finite rows. In particular

there are only finitely many such pre-partitions. It follows that we can find a finite sequence

λ= νm
⊳ · · · ⊳ νm0+1

⊳ νm0

10



where consecutive terms are adjacent. From the discussion preceding the theorem, we see that νi can be

obtained from νi−1 by a simple removal, a slip, or a fall, and the result follows.

3 Orbit decomposition of the arc space

We start by recalling our basic setup from the introduction. M = Ar s is the space of r × s matrices with

coefficients in C, and we assume that r ≤ s. The ring of regular functions on M is a polynomial ring on

the entries of a generic matrix x:

OM = C[x11, . . . , xr s ], x =





x11 x12 . . . x1s

x21 x22 . . . x2s

...
...

. . .
...

xr 1 xr 2 . . . xr s




.

The generic determinantal variety of matrices of rank at most k is denoted by Dk . The ideal of Dk is

generated by the (k +1)× (k +1) minors of x. It can be shown that generic determinantal varieties are

irreducible, and that the singular locus of Dk is Dk−1 when 0 < k < r (D0 and Dr are smooth). They are

also Cohen-Macaulay, Gorenstein, and have rational singularities. For proofs of the previous statements,

and a comprehensive account of the theory of determinantal varieties we refer the reader to [BV88].

We denote by G the group GLr ×GLs . It acts naturally on M via change of basis:

(g ,h) · A = g A h−1, (g ,h) ∈G, A ∈ M .

The rank of a matrix is the only invariant for this action, and the determinantal varieties are the orbit

closures (their ideals being the only invariant prime ideals of OM ).

The group G is a reductive algebraic group. In particular it is an algebraic variety, and we can consider

its arc space G∞ and its jet schemes Gn . The action of G on M and Dk induces actions at the level of arc

spaces and jet schemes:

G∞×M∞ → M∞, G∞×Dk
∞ → Dk

∞,

Gn ×Mn → Mn , Gn ×Dk
n →Dk

n .

In this section we classify the orbits associated to all of these actions.

As a set, the arc space M∞ contains matrices of size r × s with entries in the power series ring C[[t ]].

Analogously, the group G∞ = (GLr )∞× (GLs)∞ is formed by pairs of square matrices with entries in C[[t ]]

which are invertible, that is, their determinant is a unit in C[[t ]]. Orbits in M∞ correspond to similar-

ity classes of matrices over the ring C[[t ]], and we can easily classify these using the fact that C[[t ]] is a

principal ideal domain.

Definition 3.1 (Orbit associated to a partition). Let λ= (λ1,λ2, . . . ,λr ) ∈Λr be a pre-partition with length

at most r . Consider the following diagonal matrix in M∞:

δλ =





0 · · · 0 tλ1 0 · · · 0

0 · · · 0 0 tλ2 · · · 0
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · tλr





(we use the convention that t∞ = 0). Then the G∞-orbit of the matrix δλ is called the orbit in M∞ associ-

ated to the pre-partition λ, and it is denoted by Cλ.

11



Proposition 3.2 (Orbits in M∞). Every G∞-orbit of M∞ is of the form Cλ for some pre-partition λ ∈ Λr .

An orbit Cλ is contained in Dk
∞ if and only if the associated pre-partition λ contains at least r −k leading

infinities, i.e. λ1 = ·· · = λr−k = ∞. In particular, M∞ \ Dr−1
∞ is the union of the orbits corresponding to

regular partitions, and the orbits in Dk
∞ \ Dk−1

∞ are in bijection with Λk . Moreover, the orbit corresponding

to the empty partition (0,0, . . . ) is the arc space
(
M \ Dr−1

)
∞

.

Proof. As mentioned above, M∞ is the set of r × s-matrices with coefficients in the ring C[[t ]], and the

group G∞ acts on M∞ via row and column operations, also with coefficients in C[[t ]]. Using Gaussian

elimination and the fact that C[[t ]] is a principal ideal domain, we see that each G∞-orbit in M∞ contains

a diagonal matrix, where the diagonal entries are powers of t or zeroes. Think of the diagonal zeroes as

powers t∞. After permuting columns and rows, we can assume that the exponents of these powers form

a weakly decreasing sequence when read from the upper-left corner to the lower-right corner. Moreover,

the usual structure theorems for finitely generated modules over principal ideal domains guarantee that

each orbit contains a unique diagonal matrix in this form. This shows that the set of G∞-orbits in M∞ is

in bijection with Λr .

The ideal defining Dk in M is generated by the minors of size (k +1)× (k +1). Let λ ∈ Λr be a pre-

partition of length at most r and consider δλ as in Definition 3.1. The (k +1)× (k +1) minors of δλ are

either zero or of the form
∏

i∈I tλi , where I is a subset of {1, . . . ,r } with k+1 elements. For all of the minors

to be zero, we need at least r −k infinities in the set {λ1, . . . ,λr } (recall that t∞ = 0). In other words, δλ is

contained in Dk
∞ if and only if λ contains r −k leading infinities.

The variety Dk is invariant under the action of G, so Dk
∞ is invariant under the action of G∞. In

particular the orbit Cλ is contained in Dk
∞ if and only if δλ is. The rest of the proposition follows imme-

diately.

Proposition 3.3 (Orbits and contact loci). The contact locus Contp (Dk ) is invariant under the action of

G∞, and the orbits contained in Contp (Dk ) correspond to those pre-partitions λ ∈Λr whose last k+1 terms

add up to at least p:

λr−k +·· ·+λr ≥ p.

Proof. The truncations maps from the arc space to the jet schemes are in fact natural transformations of

functors. This means that we have the following natural diagram:

G∞

��

× M∞

��

// M∞

��
Gn × Mn

// Mn

Since Dk is G-invariant, Dk
n is Gn-invariant, so Contp (Dk ) (the inverse image of Dk

p−1 under the trun-

cation map) is G∞-invariant. In particular, an orbit Cλ is contained in Contp (Dk ) if and only if its base

point δλ is. The order of vanishing of IDk along δλ is λr−k + ·· · +λr (recall that IDk is generated by

the minors of size (k +1)× (k +1) and that λ1 ≥ ·· · ≥ λr ). Hence δλ belongs to Contp (Dk ) if and only if

λr−k +·· ·+λr ≥ p, and the proposition follows.

Proposition 3.4 (Orbits are cylinders). Let λ ∈ Λr be an pre-partition, and let Cλ be the associated orbit

in M∞. If λ is a partition, Cλ is a cylinder of M∞. More generally, let r −k be the number of infinite terms

of λ. Then Cλ is a cylinder of Dk
∞.
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Proof. Assume that λ is an pre-partition with r −k leading infinities, and consider the following cylinders

in M∞:

Aλ = Contλr (D0)∩Contλr +λr−1 (D1)∩Contλr+···+λr−k (Dk ),

Bλ = Contλr +1(D0)∪Contλr+λr−1+1(D1)∪Contλr+···+λr−k+1(Dk ).

By Propositions 3.2 and 3.3, we know that

Cλ = (Aλ \ Bλ)∩Dk
∞.

Hence Cλ is a cylinder in Dk
∞, as required.

Remark 3.5. The proof of Proposition 3.4 tells us that we can express all orbits in M∞ with contact con-

ditions with respect to the determinantal varieties. In particular, if we know the order of contact of an arc

with respect to all determinantal varieties, we know which orbit it belongs to. Moreover, this is also true

not only for closed points, but for all schematic points of M∞. It follows that every point of M∞ (closed

or not) is contained in an orbit generated by a closed point.

We now study the jet schemes Gn and Mn . As in the case of the arc space, elements in Gn and Mn are

given by matrices, but now the coefficients lie in the ring C[t ]/(t n+1).

Definition 3.6. Let λ = (λ1, . . . ,λℓ) ∈ Λr,n+1 be a partition with length at most r and co-length at most

n +1. Then the diagonal matrix δλ considered in Definition 3.1 gives an element of the jet scheme Mn .

The Gn-orbit of δλ is called the orbit of Mn associated to λ and it is denoted by Cλ,n .

Proposition 3.7 (Orbits in Mn). Every Gn-orbit of Mn is of the form Cλ,n for some partition λ ∈Λr,n+1. An

orbit Cλ,n is contained in Dk
n if and only if the associated partition contains at least r −k terms equal to

n+1. In particular, the set of orbits in Dk
n \ Dk−1

n is in bijection with Λk ,n .

Proof. This can be proven in the same way as Proposition 3.2. The only difference is that we now work

with a principal ideal ring C[t ]/(t n+1), as opposed to with the principal ideal domain C[[t ]], but the

domain condition played no role in the proof of Proposition 3.2. Alternatively, one can notice that

C[t ]/(t n+1) is a quotient of C[[t ]], so modules over C[t ]/(t n+1) correspond to modules over C[[t ]] with

the appropriate annihilator, and one can reduce the problem of classifying Gn-orbits in Mn to classifying

G∞-orbits in M∞ with bounded exponents.

Definition 3.8. Let λ= (λ1,λ2, . . . ) be a pre-partition, and let n be a nonnegative integer. Then the trun-

cation of λ to level n is the partition λ= (λ1,λ2, . . . ) where

λi = min(λi ,n).

Proposition 3.9 (Truncation of orbits). Let λ ∈ Λr be a pre-partition, and let λ be its truncation to level

n +1. Then the image of Cλ under the natural truncation map M∞ → Mn is C
λ,n

. Conversely, fix a par-

tition λ ∈ Λr,n+1, and let Γ ⊂ Λr be the set of pre-partitions whose truncation to level n + 1 is λ. Then

the inverse image of C
λ,n

under the truncation map is the union of the orbits of M∞ corresponding to the

pre-partitions in Γ.

Proof. Notice that δ
λ
∈ Mn is the truncation of δλ ∈ M∞. Then the fact that the truncation of Cλ =G∞ ·δλ

equals C
λ,n

=Gn ·δ
λ

is an immediate consequence of the fact that the truncation map is a natural trans-

formation of functors (see the proof of Proposition 3.3). Conversely, ifλ and λ′ have different truncations,

the Gn-orbits C
λ,n

and C
λ
′
,n

are different, so Cλ′ is not in the fiber of C
λ,n

.
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4 Orbit poset and irreducible components of jet schemes

After obtaining a classification of the orbits of the action of G∞ = (GLr )∞× (GLs )∞ on M∞ and Dk
∞, we

start the study of their geometry. The first basic question is the following: how are these orbits positioned

with respect to each other inside the arc space M∞? We can make this precise by introducing the notion

of orbit poset.

Definition 4.1 (Orbit poset). Let C and C ′ be two G∞-orbits in M∞. We say that C dominates C ′, and

denote it by C ′ ≤ C , if C ′ is contained in the Zariski closure of C . The relation of dominance defines a

partial order on the set of G∞-orbits of M∞. The pair (M∞/G∞, ≤) is known as the orbit poset of M∞.

Our goal is to prove that the bijection that maps a pre-partition to its associated orbit in M∞ is in fact

an order-reversing isomorphism between Λr and the orbit poset. At this stage it is not hard to show that

one of the directions of this bijection reverses the order.

Proposition 4.2 (Domination of orbits implies co-domination of partitions). Let λ,λ′ ∈ Λr be two pre-

partitions of length at most r , and let Cλ and Cλ′ be the associated orbits in M∞. If Cλ dominates Cλ′ ,

then λ′ co-dominates λ:

Cλ ≥Cλ′ =⇒ λ⊳λ′.

Proof. From Proposition 3.3 we get that Cλ ⊂ Contp (Dk ), where p =λr +·· ·+λr−k . Since a contact locus

is always Zariski closed, if Cλ dominates Cλ′ we also know that Cλ′ ⊂ Contp (Dk ). Again by Proposition

3.3, this gives λ′
r +·· ·+λ′

r−k
≥ p, as required.

We now proceed to prove the converse to Proposition 4.2. Given two pre-partitions λ,λ′ ∈ Λr with

λ⊳λ′, we need to show that the closure of Cλ contains Cλ′ . We will exhibit this containment by producing

a “path” in the arc space M∞ whose general point is in Cλ but specializes to a point in Cλ′ . These types

of “paths” are known as wedges.

Definition 4.3 (Wedge). Let X be a scheme over C. A wedge w on X is a morphism of schemes w :

Spec C[[s, t ]] → X . Given a wedge w , one can consider the diagram

Spec C[[t ]]

s 7→0

++

w0

$$
Spec C[[s, t ]]

w // X .

Spec C((s))[[t ]]

33

ws

::

The map w0 is known as the special arc of w , and ws as the generic arc of w .

Lemma 4.4. Let w be a wedge on M and let C0 be the G∞-orbit in M∞ of the special arc w0 of w. Assume

that there is a G∞-orbit Cs in M∞ containing the generic arc ws of w. Then Cs dominates C0.

Proof. From the hypothesis, the closure of Cs contains w0 (because w0 is in the closure of ws). But the

closure of an orbit is invariant, so Cs must contain C0 =G∞ ·w0.
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Lemma 4.5. Let λ and µ be two pre-partitions in Λr and assume that λ is obtained from µ via a removal

(simple or infinite). Then Cλ dominates Cµ.

Proof. Let i be the index such that λi <µi , and consider the following wedge on M :

w =





0
. . .

0
stλi + tµi

tλi+1

. . .
tλr





.

The special arc of w is δµ. The generic arc ws only differs from δλ by the presence of the unit s+ tµi −λi on

row i . Therefore ws and δλ have the same contact with respect to all the determinantal varieties, and the

proof of Proposition 3.4 shows that ws is contained in Cλ. Now we can apply Lemma 4.4 with C0 = Cµ

and Cs =Cλ, and the result follows.

Lemma 4.6. Let λ and µ be two pre-partitions in Λr and assume that λ is obtained from µ via a slip or a

fall. Then Cλ dominates Cµ.

Proof. Let i < j be the indices such that λi = µi +1, λ j = µ j −1 and µk = λk for k 6= i , j . Consider the

following wedge:

w =





tλ1

. . .
tλi−1

α 0 · · · 0 β
0 tλi+1 · · · 0 0
...

...
. . .

...
...

0 0 · · · tλ j−1 0
γ 0 · · · 0 δ

tλ j+1

. . .
tλr





where (
α β

γ δ

)
=

(
stλi + tλi−1 tλi−1

stλ j stλ j + tλ j +1

)
.

Notice that

ordt

(
α β

γ δ

)
= λ j , ordt

(
α β

γ δ

)∣∣∣∣
s=0

=λ j +1, det

(
α β

γ δ

)
= tλi+λ j

(
1+ st + s2

)
.

From these equations, we see that w0 and δµ have the same order of contact with respect to all deter-

minantal varieties, and the proof of Proposition 3.4 tells us that w0 is contained in Cµ. Analogously, the

equations above show that ws is contained in Cλ. Lemma 4.4 gives the result.
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Theorem 4.7 (Orbit poset = Pre-partition poset). The map that sends a pre-partition λ ∈Λr of length at

most r to the associated orbit Cλ in M∞ is an order-reversing isomorphism between Λr and the orbit poset:

Cλ ≥Cµ ⇐⇒ λ⊳µ ⇐⇒ λr−i +·· ·+λr ≤ µr−i +·· ·+µr ∀i .

Proof. The theorem follows from Proposition 4.2, Lemma 4.5, Lemma 4.6, and Theorem 2.1.

In the remainder of the section we use Theorem 4.7 to compute the number of irreducible compo-

nents of the jet schemes of generic determinantal varieties.

Notation 4.8. As it is customary in the theory of partitions, we write λ = (d
a1

1 . . . d
a j

j
) to denote the pre-

partition that has ai copies of di . For example (∞,∞,5,3,3,3,2,1,1) = (∞2 51 33 21 12).

Proposition 4.9. Recall that Dk ⊂ M denotes the determinantal variety of matrices of size r × s and rank

at most k. Assume that 0 < k < r −1, and let C be an irreducible component of Contp (Dk ) ⊂ M∞. Then

C contains a unique dense G∞-orbit Cλ. Moreover, λ is a partition (contains no infinite terms) and λ =

(d a+r−k e1) where

p = (a +1)d +e, 0 ≤ e < d ,

and either e = 0 and 0 ≤ a ≤ k or e > 0 and 0 ≤ a < k. Conversely, for any partition as above, its associated

orbit is dense in an irreducible component of Contp (Dk ).

Example 4.10. When r = 8, k = 6, and p = 5, the partitions given by the proposition are

(5,5), (4,4,1), (3,3,2), (2,2,2,1), (1,1,1,1,1,1).

When r = 5, k = 3, and p = 5, we only get

(5,5), (4,4,1), (3,3,2), (2,2,2,1).

Proof. By Theorem 4.7 and Proposition 3.3, computing the irreducible components of Contp (Dk ) is

equivalent to computing the minimal elements (with respect to the order of co-domination) among all

pre-partitions λ ∈Λr such that

λr +λr−1 +·· ·+λr−k ≥ p.

Let Σ be the set of such partitions. To find minimal elements in Σ it will be useful to keep in mind the

structure of the adjacencies in Λr discussed in Section 2.4

First notice that all minimal elements in Σ must be partitions. Indeed, given an element λ ∈ Σ, trun-

cating all infinite terms of λ to a high enough number produces another element of Σ. Moreover, if λ∈Σ

is minimal, we must have λ1 = λ2 = ·· · = λr−k . If this were not the case, we could consider the partition

λ′ such that λ′
1 = ·· · =λ′

r−k
=λr−k , and λ′

i
=λi for i > r −k. Then λ′ would also be in Σ, but λ′

⊳λ, contra-

dicting the fact that λ is minimal. It is also clear that minimal elements of Σ must verify λr−k +·· ·+λr = p.

In fact, if a partition in Σ does not verify this, we can decrease the last terms of the partition an still remain

in Σ.

So far we know that the minimal elements in Σ are partitions that verify λ1 = ·· · = λr−k and λr−k +

·· ·+λr = p. Note that we assume 0< k < r −1, so for any two partitions λ, λ′ with the previous properties,

if λr−k 6=λ′
r−k

, then λ and λ′ are not comparable.

Pick a minimal element λ∈Σ, and write d =λr−k . Let ℓ be the length of λ. The proposition will follow

if we show that the sequence (λr−k ,λr−k+1, . . . ,λℓ) is of the form (d , . . . ,d ,e) for some 0 ≤ e < d . But this

is clear from the analysis of the adjacencies in Λr given in Section 2.4. Consider the Young diagram Γ
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associated to λ. The longest row of Γ has length d . If there are two rows, say i < j , with length less than

d , then we must have r −k < i and we can move one box from row j to row i (via a sequence of falls and

slips) and obtain a partition still in Σ but co-dominated by λ. This contradicts the fact that λ is minimal,

and we see that λ must have the form given in the proposition.

Proposition 4.11. Assume that k = 0 or k = r −1. Then Contp (Dk ) ⊂ M∞ is irreducible and contains a

unique dense orbit Cλ, where λ= (pr−k).

Proof. Form Proposition 3.3, the orbits Cλ contained in Contp (D0) are the ones that verify λr ≥ p. It

is clear that the minimal partition of this type is (pr ). Analogously, Contp (Dr−1) contains orbits whose

associated partitions verify λ1 +·· ·+λr ≥ p, and the minimal one among these is (p1).

Theorem 4.12. If k = 0 or k = r − 1, the contact locus Contp (Dk ) ⊂ M∞ is irreducible. Otherwise, the

number of irreducible components of Contp (Dk ) ⊂ M∞ is

p +1−
⌈ p

k +1

⌉
.

Proof. The first assertion follows directly from Proposition 4.11. For the second one, we need to count

the number of partitions that appear in Proposition 4.9. Recall that these were partitions of the form

λd = (d a+r−k ,e1) of length at most r such that p = (a + 1)d + e and 0 ≤ e < d . Since d ranges from 0

to p, we have at most p +1 such partitions. But as we decrease d , the length of λd increases, possibly

surpassing the limit r . Therefore the number of allowed partitions is p +1−d0, where d0 is the smallest

integer such that λd0 has length no greater than r .

If d divides p, the length of λd is (
p
d −1+r −k). Otherwise it is (

⌊ p
d

⌋
+r −k). In either case, the length

is no greater that r if and only if d ≥
⌈ p

k+1

⌉
. Hence d0 =

⌈ p
k+1

⌉
, and the theorem follows.

Corollary 4.13. It k = 0 or k = r −1, the jet scheme Dk
n is irreducible. Otherwise, the number of irreducible

components of Dk
n is

n+2−

⌈
n+1

k +1

⌉
.

Proof. The contact locus Contn+1(Dk ) is the inverse image of the jet scheme Dk
n under the truncation

map M∞ → Mn . Since M is smooth, this truncation map is surjective, so Dk
n has the same number of

components as Contn+1(Dk ). Now the result follows directly from Theorem 4.12.

5 Discrepancies and log canonical thresholds

In this section we compute discrepancies for all invariant divisorial valuations over M and over Dk , and

use it to give formulas for log canonical thresholds involving determinantal varieties. We start with a

proposition that determines all possible invariant maximal divisorial sets in terms of orbits in the arc

space.

Proposition 5.1 (Divisorial sets = Orbit closures, M). Let ν be a G-invariant divisorial valuation over M,

and let C be the associated maximal divisorial set in M∞. Then there exists a unique partition λ ∈ Λr

of length at most r whose associated orbit Cλ is dense in C . Conversely, the closure of Cλ, where λ is a

partition, is a maximal divisorial set associated to an invariant valuation.
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Proof. Recall from Section 1.2 (or see [Ish08]) that C is the union of the fat sets of M∞ that induce the

valuation ν. Therefore, since ν is G-invariant, C is G∞-invariant and can be written as a union of orbits.

Note that the thin orbits of M∞ are all contained in Dr−1
∞ , and that C is itself fat, so C must contain a fat

orbit. Let Σ⊂Λr be the set of partitions indexing fat orbits contained in C . For µ ∈Σ we denote by νµ the

valuation induced by Cµ. Then, for f ∈OM we have:

ν( f ) = min
γ∈C

{ordγ( f ) } = min
µ∈Σ

min
γ∈Cµ

{ordγ( f ) } = min
µ∈Σ

{νµ( f ) }.

As a consequence, since νµ is determined by its value on the ideals ID0 ,. . . ,IDr−1 , the same property

holds for ν. Let λ= (λ1, . . . ,λr ) be such that ν(IDk ) = λr +·· ·+λr−k . From the fact that IDk IDk−2 ⊂I 2
Dk−1

we deduce that λk ≥λk+1, and we get a partition λ∈Λr whose associated orbit Cλ induces the valuation

ν (so λ∈Σ). The proposition follows if we show that Cλ is dense in C .

Consider µ ∈Σ. Since Cµ ⊂C , we know that νµ ≥ ν, and we get that

µr +·· ·+µr−k = νµ(IDk ) ≥ ν(IDk ) = λr +·· ·+λr−k .

Hence λ⊳µ, and Theorem 4.7 tells us that Cµ is contained in the closure of Cλ, as required.

Notation 5.2. For the purpose of the next proposition it will be convenient to introduce the following

notation. Fix positive integers k < r . Given a partition λ= (λ1, . . . ,λℓ) ∈Λk of length at most k, denote by

λ+ = (∞, . . . ,∞,λ1, . . . ,λℓ) ∈Λr the pre-partition obtained by adjoining r −k infinities.

Proposition 5.3 (Divisorial sets = Orbit closures, Dk ). Let ν be a G-invariant divisorial valuation over Dk ,

and let C be the associated maximal divisorial set in Dk
∞. Then there exists a unique partition λ∈Λk such

that the orbit Cλ+ is dense in C . Conversely, the closure of Cλ+ , where λ ∈Λk , is a maximal divisorial set

in Dk
∞ associated to a G-invariant divisorial valuation.

Proof. Analogous to the proof of 5.1.

We now proceed to compute discrepancies for invariant divisorial valuations. These are closely re-

lated to the codimensions of the corresponding maximal divisorial sets, which by the previous propo-

sitions are just given by orbit closures. Since orbits are cylinders, their codimension can be computed

by looking at the corresponding orbit in a high enough jet scheme. But jet schemes are of finite type, so

orbits have a finite dimension that can be computed via the codimension of the corresponding stabilizer.

For this reason, we will try to understand the structure of the different stabilizers in the jet schemes Gn .

Recall from Definition 3.1 that Cλ is the orbit containing the following matrix:

δλ =





0 · · · 0 tλ1 0 · · · 0

0 · · · 0 0 tλ2 · · · 0
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · tλr




.

This matrix defines an element of the jet scheme Mn as long as n is greater than the co-length of λ; the

corresponding Gn-orbit in Mn is denoted by Cλ,n . The following proposition determines the codimen-

sion of the stabilizer of δλ in the jet group Gn .

Proposition 5.4. Let λ ∈Λr be a partition of length at most r , and let n be a positive integer greater than

the highest term of λ. Let Hλ,n denote the stabilizer of δλ in the group Gn . Then

codim(Hλ,n ,Gn ) = (n+1)r s −
r∑

i=1

λi (s − r +2i −1).
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Proof. Pick (g ,h) ∈Gn = (GLr )n × (GLs )n . Then:

(g ,h) ∈ Hλ,n ⇐⇒ g ·δλ ·h
−1

= δλ ⇐⇒ g ·δλ = δλ ·h ⇐⇒





0 · · · 0 tλ1∗ tλ2∗ ·· · tλr ∗

0 · · · 0 tλ1∗ tλ2∗ ·· · tλr ∗

...
...

...
...

. . .
...

0 · · · 0 tλ1∗ tλ2∗ ·· · tλr ∗




=





tλ1∗ ·· · tλ1∗ tλ1∗ tλ1∗ ·· · tλ1∗

tλ2∗ ·· · tλ2∗ tλ2∗ tλ2∗ ·· · tλ2∗

...
...

...
...

. . .
...

tλr ∗ ·· · tλr ∗ tλr ∗ tλr ∗ ·· · tλr ∗




.

This equality of matrices gives one equation of the form t a(i , j )∗ = t b(i , j )∗ for each entry (i , j ) in a r × s

matrix. We have a(i , j )=λ j−s+r and b(i , j )= λi (assume λ j =∞ for j < 0).

Each equation of the form t a∗ = t b∗ gives (n +1)−min{a,b} independent equations on the coeffi-

cients of the power series, so it reduces the dimension of the stabilizer by (n+1)−min{a,b}. The entries

(i , j ) for which min{a(i , j ),b(i , j )} = λk form an L-shaped region of the r × s matrix, as we illustrate in

the following diagram:

λ1

λ2

. . .

λr

r

s − r r

The region corresponding to λi contains (s − r +2i −1) entries, and the result follows.

Proposition 5.5. Let λ ∈ Λr be a pre-partition of length at most r , and consider its associated G∞-orbit

Cλ in M∞. If λ contains infinite terms, Cλ has infinite codimension. If λ is a partition, the codimension is

given by:

codim(Cλ, M∞) =
r∑

i=1

λi (s − r +2i −1).

Proof. If λ contains infinite terms, Cλ is thin, so it has infinite codimension. Otherwise Proposition 3.9

tells us that Cλ is the inverse image of Cλ,n under the truncation map M∞ → Mn for n large enough.

Since M is smooth, we see that the codimension of Cλ in M∞ is the same as the codimension of Cλ,n in

Mn . The dimension of Cλ,n is the codimension of the stabilizer of δλ in Gn . The result now follows from

Proposition 5.4 and the fact that Mn has dimension (n+1)r s.

Corollary 5.6. Let ν be a G-invariant valuation of M and let λ ∈Λr be the unique partition such that Cλ

induces ν. Let kν(M) be the discrepancy of M along ν, and let qν be the multiplicity of ν. Then

kν(M)+qν =

r∑

i=1

λi (s − r +2i −1).

Proof. From Proposition 5.1 we know that the closure of Cλ is the maximal divisorial set associated to

ν. Since M is smooth, the log discrepancy kν(M)+ qν agrees with the codimension of the associated

maximal divisorial set (see Section 1.3). The result now follows from Proposition 5.5.
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Theorem 5.7. Recall that M denotes the space of matrices of size r × s and Dk is the variety of matrices of

rank at most k. The log canonical threshold of the pair (M ,Dk ) is

lct(M ,Dk ) = min
i=0...k

(r − i )(s − i )

k +1− i
.

Proof. We will use Mustaţă’s formula (see [ELM04, Cor. 3.2]) to compute log canonical thresholds:

lct(M ,Dk ) = min
n

{
codim(Dk

n , Mn )

n+1

}

= min
p

{
codim(Contp (Dk ), M∞)

p

}

.

Let Σp ⊂Λr be the set of pre-partitions of length at most r such that λr +·· ·+λr−k = p. By Propositions

3.3 and 4.9, we have:

lct(M ,Dk ) = min
p

min
λ∈Σp

{
codim(Cλ, M∞)

p

}
.

Consider the following linear function

ψ(a1, . . . , ar ) =
r∑

i=1

ai (s − r +2i −1).

Then, by Proposition 5.5, we get:

lct(M ,Dk ) = min
p

min
λ∈Σp

{
ψ(λ)

p

}
= min

p
min
λ∈Σp

{
ψ

(
λ
p

)}
.

Let Σ⊂ Qr be the set of tuples (a1, . . . , ar ) such that a1 ≥ a2 ≥ ·· · ≥ ar ≥ 0 and ar +·· ·+ar−k = 1. Then:

lct(M ,Dk ) = min
a∈Σ

{
ψ(a)

}
.

The mapϕ(a1 , . . . , ar ) = (a1−a2, . . . , ar−1−ar , ar ) sendsΣ toΣ
′, whereΣ′ ⊂ Qr is the set of tuples (b1 , . . . ,br )

such that bi ≥ 0 and (k +1)br +kbr−1 · · ·+br−k = 1. Then

lct(M ,Dk ) = min
b∈Σ′

{ξ(b)} ,

where

ξ(b) =ψ(ϕ−1(b)) =
r∑

i=1

(br +br−1 +·· ·+bi )(s − r +2i −1) =
r∑

j=1

b j j (s − r + j ).

Note that in the definition of Σ′ the only restriction on the first r −k −1 coordinates b1,b2, . . . ,br−k−1 is

that they are nonnegative. Let Σ′′ be the subset of Σ′ obtained by setting b1 = ·· · = br−k−1 = 0. From the

formula for ξ(b) we see that the minimum minb∈Σ′ {ξ(b)} must be achieved in Σ
′′. But Σ′′ is a simplex and

ξ is linear, so the minimum is actually achieved in one of the extremal points ofΣ′′. These extremal points

are:

Pr−k = (0, . . . ,0,1,0, . . . ,0,0), Pr−k+1 = (0, . . . ,0,0, 1
2

, . . . ,0,0), . . .

. . . Pr−1 = (0, . . . ,0,0,0, . . . , 1
k ,0), Pr = (0, . . . ,0,0,0, . . . ,0, 1

k+1 ).

The value of ξ at these points is:

ξ(Pr−i )=
1

k +1− i
(r − i )(s − i ).

Therefore

lct(M ,Dk ) = min
i=0...k

(r − i )(s − i )

k +1− i
,

as required.
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6 Motivic integration

In the previous section we computed codimensions of orbits in the arc space M∞, as a mean to obtain

formulas for discrepancies and log canonical thresholds. But a careful look at the proofs shows that we

can understand more about the orbits than just their codimensions. As an example of this, in this section

we compute the motivic volume of the orbits in the arc space. This allows us to determine topological

zeta functions of determinantal varieties.

Throughout this section, we will restrict ourselves to the case of square matrices, i.e. we assume r = s.

6.1 Motivic volume of orbits

Before we state the main proposition, we need to recall some notions from the group theory of GLr :

parabolic subgroups, Levi factors, flag manifolds, and the natural way to obtain a parabolic subgroup

from a partition.

Definition 6.1. Let 0 < v1 < v2 < ·· · < v j < r be integers. A flag in Cr of signature (v1, . . . , v j ) is a nested

chain V1 ⊂ V2 ⊂ ·· · ⊂ V j ⊂ Cr of vector subspaces with dimVi = vi . The general linear group GLr acts

transitively on the set of all flags with a given signature. The stabilizer of a flag is known as a parabolic

subgroup of GLr . If P ⊂ GLr is a parabolic subgroup, the quotient GLr /P parametrizes flags of a given

signature and it is known as a flag variety.

Definition 6.2. Let {e1, . . . ,er } be the standard basis for Cr , and let λ = (d
a1

1 . . . d
a j

j
) ∈ Λr be a partition.

Write a j+1 = r −
∑ j

i=1
ai and vi = a1 +·· ·+ai , and consider the following vector subspaces of Cr :

Vi = span(e1, . . . ,evi
), Wi = span(evi−1+1, . . . ,evi

).

We denote by Pλ the stabilizer of the flag V1 ⊂ ·· · ⊂V j and call it the parabolic subgroup of GLr associated

to λ. The group Lλ = GLa1 ×·· ·×GLa j+1
embeds naturally in Pλ as the group endomorphisms of Wi , and

it is known as the Levi factor of the parabolic Pλ.

Example 6.3. Assume r = 6 and consider the partition λ = (4,4,4,1,1) = (4312). Then Pλ and Lλ are the

groups of invertible r × r matrices of the forms

Pλ :





∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 0 0 ∗





, Lλ :





∗ ∗ ∗ 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ 0 0 0

0 0 0 ∗ ∗ 0

0 0 0 ∗ ∗ 0

0 0 0 0 0 ∗





.

Proposition 6.4. Assume that r = s. Let λ∈Λr be a partition of length at most r and consider its associated

parabolic subgroup Pλ and Levi factor Lλ. Let µ be the motivic measure in M∞, and Cλ the orbit in M∞

associated to λ. If b is the log discrepancy of the valuation induced by Cλ, we have:

µ(Cλ) = L−b [GLr /Pλ]2 [Lλ].

Proof. Consider n, δλ and Hλ,n ⊂Gn as in Proposition 5.4. If Cλ,n is the truncation of Cλ to Mn , we know

that for n large enough

µ(Cλ) = L−r 2n [Cλ,n] = L−r 2n [Gn] [Hλ,n ]−1
= Lr 2n [GLr ]2 [Hλ,n ]−1.
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At the beginning of the proof of Proposition 5.4 we found the equations defining Hλ,n :

(g ,h) ∈ Hλ,n ⇔ g ·δλ ·h
−1

= δλ ⇔ g ·δλ = δλ ·h ⇔





tλ1∗ tλ2∗ ·· · tλr ∗

tλ1∗ tλ2∗ ·· · tλr ∗

...
...

. . .
...

tλ1∗ tλ2∗ ·· · tλr ∗




=





tλ1∗ tλ1∗ ·· · tλ1∗

tλ2∗ tλ2∗ ·· · tλ2∗

...
...

. . .
...

tλr ∗ tλr ∗ ·· · tλr ∗




. (1)

As a variety, Gn can be written as product G ×g2n , where g ≃ Ar 2
is the Lie algebra of GLr . Let g (k)

i , j

and h(k)
i , j

be the natural coordinates on Gn = (GLr ×g)2, where g (0)
i , j

= gi , j and h(0)
i , j

= hi , j are coordinates

for G = GLr ×GLr . Then, for n large enough, the equations in (1) can be expressed as:

tλ j

n∑

k=0

g (k)
i , j

t k
= tλi

n∑

k=0

h(k)
i , j

t k mod t n+1. (2)

Let H ⊂ G be the truncation of Hλ,n . Then H is the subgroup of G given by those equation in (2)

involving only the variables gi , j and hi , j ; these equations are:

gi , j = hi , j if λi =λ j , (3)

gi , j = 0 if λi 6=λ j and i < j , (4)

hi , j = 0 if λi 6=λ j and i > j . (5)

Form (4) and (5), we see that H is a subgroup of P
op

λ
×Pλ ⊂G, and (3) tells us that we can obtain H from

P
op

λ
×Pλ by identifying the two copies of the Levi Lλ. Hence [H ] = [Pλ]2 [Lλ]−1.

From (2) we also see that Hλ,n is a sub-bundle of H × g2n . More precisely, if h is the fiber of Hλ,n

over the identity in H , then h ⊂ g2n is an affine space and all the fibers of Hλ,n are isomorphic to h. The

codimension of h in g2n can be computed with the same method used in the proof of Proposition 5.4:

codim(h,g2n) = nr 2
−

r∑

i=1

λi (2i −1) = nr 2
−b,

where b is the log discrepancy of the valuation induced by Cλ. As a consequence

[h] = [g2n] L−nr 2+b
= Lnr 2+b ,

and

µ(Cλ) = Lr 2n [GLr ]2 [Hλ,n]−1
= Lr 2n [GLr ]2 [H ]−1 [h]−1

= L−b [GLr ]2 [H ]−1

= L−b [GLr ]2 [Pλ]−2 [Lλ] = L−b [GLr /Pλ]2 [Lλ].

6.2 Topological zeta function

Recall from Section 1.4 that the motivic Igusa zeta function for the pair (M ,Dk ) is defined as

ZDk (s) :=

∫

M∞

|IDk |
s dµ=

∞∑

p=0

µ
(
Cont=p Dk

)
L−sp ,
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where µ is the motivic measure on M∞ and L−s is considered as a formal variable. The topological zeta

function Z
top

Dk (s) can be obtained from the Igusa zeta function by formally expanding ZDk (s) as a power

series in (L−1) and then extracting the constant term (i.e. by specializing L to χ(A1) = 1).

Using Propositions 3.3 and 6.4 we can write ZDk (s) as

ZDk (s) =
∑

λ∈Λr

µ(Cλ)L−s(λr+···+λr−k )
=

∑

λ∈Λr

[GLr /Pλ]2[Lλ]L−bλ−s(λr+···+λr−k ), (6)

where bλ =
∑r

i=1
λi (2i −1) is the log discrepancy of the valuation induced by Cλ. There are only finitely

many possibilities for the value of [GLr /Pλ]2[Lλ], and it will be convenient to group the terms in the sum

above accordingly. In order to do so, consider the bijection between Λr and Nr given by

λ= (λ1,λ2, . . . ,λr ) ∈Λr 7−→ a(λ) = (λ1 −λ2,λ2 −λ3, . . . ,λr ) ∈ Nr ,

a = (a1, a2, . . . , ar ) ∈ Nr
7−→ λ(a) = (a1 +·· ·+ar , a2 +·· ·+ar , . . . , ar ) ∈Λr .

For a subset I ⊆ {1, . . . ,r −1}, consider I c = {1, . . . ,r −1} \ I and define

ΩI = { a ∈ Nr : (ai = 0 ∀i ∈ I ) and (a j 6= 0 ∀ j ∈ I c ) }.

Let λ and λ′ be two partitions such that both a(λ) and a(λ′) belong to ΩI for some I . From the definitions

of Pλ and Lλ (see Section 6.1) we see that [GLr /Pλ]2[Lλ] = [GLr /Pλ′ ]2[Lλ′ ]. Hence, given a subset I ⊆

{1, . . . ,r −1} we can consider η(I ) = [GLr /Pλ]2[Lλ], where λ is any partition with a(λ) ∈ΩI , and we obtain

a well-defined function on the subsets of {1, . . . ,r −1}.

Fix a subset I ⊆ {1, . . . ,r−1} and a partitionλ such that a(λ) ∈ΩI . Consider I c
r = {1, . . . ,r }\I = {i1, . . . , iℓ},

where i j < i j+1. Set i0 = 0. Then GLr /Pλ is the manifold of partial flags of signature (i1, . . . , iℓ), and its

class in the Grothendieck group of varieties is given by

[GLr /Pλ] =
ℓ∏

j=1

[G(i j−1, i j )] =
ℓ∏

j=1

[G(i j − i j−1, i j )],

where G(u, v) is the Grassmannian of u-dimensional vector subspaces of Cv . Analogously:

[Lλ]=
ℓ∏

j=1

[GLi j −i j−1
].

If we define d(I , i j ) = i j − i j−1 for i j ∈ I c
r , we can write:

η(I ) = [GLr /Pλ]2[Lλ] =
∏

i 6∈I

[G(d(I , i ), i )]2[GLd(I ,i)]. (7)

This shows more explicitly that η(I ) depends only on I , and not on the particular partition λ in ΩI . From

Equation (6) we obtain:

ZDk (s) =
∑

I⊆{1,...,r−1}

(

η(I )
∑

a(λ)∈ΩI

L−bλ−s(λr+···+λr−k )

)

. (8)

Consider

ψ(a) = bλ(a) + s(λ(a)r +·· ·+λ(a)r−k ) =ψ1a1 +·· ·+ψr ar ,
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where

ψi = i 2
+ s max{0,k +1+ i − r }. (9)

Then

∑

a(λ)∈ΩI

L−bλ−s(λr+···+λr−k )
=

∑

a∈ΩI

L−ψ1a1−···−ψr ar =
∑

a∈ΩI

L−
∑

i 6∈I ψi ai

=




∏

i 6∈I
i 6=r

∞∑

ai=1

L−ψi ai



 ·

(
∞∑

ar=0

L−ψr ar

)

= Lψr ·
∏

i 6∈I

L−ψi

1−L−ψi
= Lψr ·

∏

i 6∈I

1

Lψi −1
. (10)

Combining Equations (7), (8), and (10), we get:

ZDk (s)= Lψr
∑

I⊆{1,...,r−1}

∏

i 6∈I

1

Lψi −1
[G(d(I , i ), i )]2[GLd(I ,i)]. (11)

We will not try to simplify Equation (11) any further. Instead, we will use it to compute the topological

zeta function. For this, it is enough to expand each summand in (11) as a power series in (L−1). We have:

Lψi = 1+O(L−1), Lψi −1 =ψi · (L−1)+O((L−1)2),

[GL1] = L−1, [GLd ]=O((L−1)d ),

and

[G(1, i )]= [Pi−1]= 1+L+L2
+·· ·+Li−1

= i +O(L−1).

Hence
1

Lψi −1
[G(d , i )]2[GLd ]=O((L−1)d−1),

and
1

Lψi −1
[G(1, i )]2[GL1]=

i 2

ψi
+O(L−1).

In particular, the only summands in Equation (11) not divisible by (L−1) are those for which d(I , i ) = 1

for all i 6∈ I . Since d(I , i ) = 1 if and only if i −1 6∈ I , the only significant summand is the one corresponding

to I =;. Hence

ZDk (s) =
r∏

i=1

i 2

ψi
+O(L−1).

Combining this with Equation (9) we get the topological zeta function:

Z
top

Dk
(s) =

r∏

i=1

i 2

ψi
=

r−k−1∏

i=1

i 2

i 2

r∏

i=r−k

i 2

i 2 + s(k +1− i − r )

=

r∏

i=r−k

(
1+ s

k +1− i − r

i 2

)−1

=

k∏

j=0

(
1+ s

k +1− j

(r − j )2

)−1

.

The following theorem summarizes the results of this section.
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Theorem 6.5. Let M = Ar 2
be the space of square r ×r matrices, and let Dk be the subvariety of matrices of

rank at most k. Then the topological zeta function of the pair (M ,Dk ) is given by

Z
top

Dk
(s) =

∏

ζ∈Ω

1

1− s ζ−1

where Ω is the set of poles:

Ω=

{
−

r 2

k +1
, −

(r −1)2

k
, −

(r −2)2

k −1
, . . . , −(r −k)2

}
.
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