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CONGRUENCES FOR ANDREWS’ SPT-FUNCTION
MODULO POWERS OF 5, 7 AND 13

F. G. GARVAN

ABSTRACT. Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts
partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences
modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for
spt(n) modulo £ for all primes ¢ > 5 which were conjectured earlier by the author. We extend
Ono’s method to handle the powers of 5, 7 and 13 congruences. We need the theory of weak Maass
forms as well as certain classical modular equations for the Dedekind eta-function.

1. INTRODUCTION

Andrews [2] defined the function spt(n) as the number of smallest parts in the partitions of n.
He related this function to the second rank moment. He also proved some surprising congruences
mod 5, 7 and 13. Namely, he showed that

(11) spt(n) = np(n) — 3 Nan),

where Na(n) is the second rank moment function [3] and p(n) is the number of partitions of n, and
he proved that

(1.2) spt(5n+4) =0 (mod 5),
(1.3) spt(Tn+5) =0 (mod 7),
(1.4) spt(13n+6) =0 (mod 13).

Bringmann [§] studied analytic, arithmetic and asymptotic properties of the generating function for
the second rank moment as a quasi-weak Maass form. Further congruence properties of Andrews’
spt-function were found by the author [I3], Folsom and Ono [I1] and Ono [I9]. In particular, Ono
[19] proved that if (1=242) =1 then

(1.5) spt(f®n — 55 (€> —1)) =0 (mod ¢),

for any prime ¢ > 5. This amazing result was originally conjectured by the autholC). Earlier special
cases were observed by Tina Garrett [14] and her students.
We prove some suprising congruences for spt(n) modulo powers of 5, 7 and 13. For a, b, ¢ > 3,

(1.6) spt(59n + 64) + 5spt(527%n + 6,_2) =0 (mod 52*73),
(L.7) spt(7°n 4 Ap) 4+ Tspt(7°2n + X\p_2) =0 (mod 715 (3b-2)] ),
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(1.8) spt(13°n +7.) — 13spt(13°2n + v, 2) =0 (mod 13°71),

where d,, A\, and 7. are the least nonnegative residues of the reciprocals of 24 mod 5%, 7° and 13¢
respectively. This together with (L2)—(T4]) implies that

(1.9) spt(5°n +06,) =0 (mod 5.7,
(1.10) Spt(7bn + M) =0 (mod 75 ),
(1.11) spt(13°n+v.) =0 (mod 13L#J),

for a, b, ¢ > 1. These congruences are reminiscent of Ramanujan’s partition congruences for powers
of 5, 7 and 11:

(1.12) p(5*n+4d,) =0 (mod 5%),
(1.13) p("’n+X) =0 (mod 71552 ),
(1.14) p(11°n 4+ ¢.) =0 (mod 11°),

for all a, b, ¢ > 1. Here ¢, is the reciprocal of 24 mod 11°. The congruences mod powers of 5

and 7 were proved by Watson [22], although many of the details had been worked out earlier by

Ramanujan in an unpublished manuscript. The powers of 11 congruence was proved by Atkin [6].
Following Ono [19], we define

(1.15) a(n) := 12spt(n) + (24n — 1)p(n),

for n > 0, and define
(1.16) a(z) =Y a(n)q" 21,

where as usual ¢ = exp(2miz) and I(z) > 0. We note that spt(0) = 0 and p(0) = 1. Bringmann [§]
showed that «(24z) is the holomorphic part of a weight % weak Maass form. Using this observation
and the idea of using the weight % Hecke operator T'(¢?) to annihilate the nonholomorphic part
enabled Ono [I9] to prove the general congruence (L3Hl). We use a similar idea. Instead of a Hecke
operator we use Atkin’s U () operator to annihilate the nonholomorphic part.

We show that

(1.17) a(5“n +6,) +5a(5“ 2n+6,_5) =0 (mod 5232~y
(1.18) a(™n+ X)) +7a(7"2n+ Xp_2) =0 (mod 7L2G30=2)),
(1.19) a(13n +v.) —13a(13“ ?n +v.2) =0 (mod 13°71),

for all a, b, ¢ > 3. We note that ([LI7)) is a stronger congruence than ([L6). The congruences
CO)-@1) follow from (LI7A)—(TI8) and Ramanujan’s partition congruences for powers of 5 and 7
that were first proved by Watson [22]. The congruence (L8] follows easily from (LI9).

Let £ > 5 be prime. In Section [2] we use results of Bringmann [8] to show how Atkin’s U(¥)
operator can be used to annihilate the nonholomorphic part of the weight % weak Maass form that
corresponds to the function «(24z), and prove that the function

o0

(1.20) az) =Y (altn — £ 1)~ xs(0)ta (5)) ¢ 5

n=0

is a weakly holomorphic weight % modular form on T'g(¢). Here x12 is the character given below in
22), and we note a(n) = 0 if n is not a nonnegative integer. We determine the multiplier of this
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form and exact information about the orders at cusps. See Theorem This enables us to prove
identities such as

120 st = 3 (son 5 (§) o = RSB (1L ),
=0

where Fs(z) is the usual quasimodular Eisenstein series of weight 2, and 7)(z) is the Dedekind eta-
function. We then use Watson’s [22] and Atkin’s [7] method of modular equations to prove the
congruences (LIT)-(I9). These details are carried out in Section[3l In Section [ we improve some
results in [I3] and [9] on spt(én — 2 (¢* — 1)) and Na(fn — 2 (¢* — 1)) modulo £.

2. THE ATKIN OPERATOR U}

In this section we prove that the function ay(z), which is defined in (I.20)) is a weakly holomorphic
weight 3 modular form on I'g(¢) when ¢ > 5 is prime. The proof uses results of Bringmann [§] and
the idea of using the Atkin operator U, to annihilate the nonholomorphic part of a certain weak
Maass form.

Following Bringmann [§] and Ono [19] we define

31 e n(247)dr
™2 )z (i1 2))3

(2.1) M(z) = a(242) —

)

1
where 7(z) 1= ¢24 [[7_,(1 — ¢™) is the Dedekind eta-function and a(z) is defined in (II6). Then
M(z) is a weight 2 harmonic Maass form on T'g(576) with Nebentypus x12 where
1 ifn=+1 (mod12),
(2.2) X12(n) = ¢ -1 ifn=45 (mod 12),
0  otherwise.

Let

3i [ n(24r)dr 3 [ n24(—x +it))dt
(2.3) N(z) = T2 (—z’(T—i—z))% - m/?/y (y+t)32

where z = x + iy, y > 0, so that

(2.4) M(2) = a(242) + N(2).
We define
z
(2.5) Alz) = M (ﬂ) .
The following theorem follows in a straightforward way from the work of Bringmann [g].
Theorem 2.1.
A az+b _ (cz + d)>/? 2),
cz+d vn(A)
where A = <CCL Z) € SLy(Z), and vy, (A) is the eta-multiplier.

Remark. When defining 23/ we use the principal branch; i.e. for z = re’?, r > 0, —7 < 6 < 7, we
take 23/2 = p3/2¢310/2
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Proof. We note that

o0

_ 1 E2 (Z)
(2.6) (24n — 1)p(n)g" 21 = — ,
,;) n(z)
where E5(z) =1—24% > o(n)q¢" is a quasi-modular form that satisfies
b .
(2.7) Es <Zj—_|—|—d) = (cz+d)?Ey(z) — %c(cz—kd}.

Using ([27) and Corollary 4.3 and Lemma 4.4 in [g],

(- L)

and hence
A <—%) = —(—iz)3 2 A(2) = €™/ 1232 A().
Therefore,
Asz) = 22 4
Z) = 2),
(Sz) ) (2)

where S = ((1) _01> From (LI6), (2.3) and ([2.4)

M(z+ &) = e ™2 M(2),
N(z+ &) = e ™/ 12N (2),
Az +1) = e ™12 A(2),
1
A(TZ) - I/n(T) "4(2)7
where T' = (é 1) Since S, T generate SLo(Z) the result follows. O

In what follows ¢ > 5 is prime. We let dy denote the least nonnegative residue of the reciprocal
of 24 mod ¢ so that 24dy =1 (mod ¢). We define

 24dg—1 L 24dp+ 07 -1 (=)
(28) Ty 1= T, Ty = T, Sy 1= o .
so that
(2.9)
n+r; n+ L = n -
a(z) = Z (a(ﬁn +de) — x12(£) La (TZ>) ¢"T2 = Zo (a(fn —s¢0) — x12(6) La (z)) q 24
nzfre n=

For a function G(z) we define the Atkin-type operator U} by

—1
(2.10) Ui (G) ;:%ZG(ZJ’Q%),
k=0

14

so that
ae(z) = Uj () — x12(€) L a(£2).
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The usual Atkin operator Uy is defined by

(2.11) _%ZX_: (z+k)

We need U since «(z) has fractional powers of ¢, and we note that
Ui (G) = Ue(G™)(2/24),

where G*(z) = G(24z). For a congruence subgroup I' we let My (T") denote the space of entire
modular forms of weight k with respect to the group I', and we let M (T, x) denote the space of
entire modular forms of weight k£ and character y with respect to the group I'. Then

Theorem 2.2. If ¢ > 5 is prime, then

(2.12) Go(z) := ay(2) € Mpi1(To(0)).

In other words, the function G¢(z) is an entire modular form of weight £+ 1 with respect to the group
To(¥).

Proof. We assume ¢ > 5 is prime. We divide the proof into four parts:

(1) U(A) —€x12(0) A(Lz) = ay(z) and G(z) is holomorphic for S(z) > 0.
(il) Ge(A2) = (cz + d)*+1Gy(z) for all A = (‘c‘ Z) € To(0).
(iii) G¢(z) is holomorphic at icc.
(iv) Gy(z) is holomorphic at the cusp 0.
Part (i). It is well-known (and an easy exercise) to show that
(2.13) Ua(n(242)) = xaalt) n(242).

Using (Z3) and (ZI3) we easily find that
Ue(N(2)) = £x12(O)N (2).
It follows that
Us(M) — £x1a(6) M(£2)
is holomorphic for (z) > 0. By replacing z by 5 we see that
Up(A) = £x12(0) Allz) = Uy () — £x12(0) a(lz) = ay(2)
and it is clear that G4(z) is holomorphic for &(z) > 0.

a b

Part (ii). Now let A = <c d> € I'p(¢). We must show that

Ge(Az) = (cz +d) T Ge(2).

Since it is well-known that

e 2
(22 € Mia(ra(o),
it suffices to show that
ar(Az)n(LA2) = (cz + d)?ay(2)n(£z).
We need to show that
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(2.14) fi(Az) = (cz +d)* fu(2),
(2.15) 9e(Az) = (cz + d)*gu(2),
where

fo(2) = Ui (A)n(€z),  ge(2) = A(lz) n(£z).

« [ a b
= (e 0):
Then A* € SLy(Z) and (ZI5)) follows from Theorem 2] and the fact that
A(lAz)n(LAz) = A(A*z)n(A*z).

Let

Now,

fe(z) = Uy (A)n(tz) = Up (A(z)n(£22)).
We define
(2.16) Fi(2) := A(2)n(£?2) = A(2)n(2) néij)

Using Theorem 2] and the fact that %;Z) is a modular function on T'g(¢?) we have

Fy(C2) = (e12 + d1)* Fy(2),

_ (a1 b 2
for C = (Cl dl) e To(¢?).

Now for 0 < k< /{¢—1, let

1 24k
m=(o %)

£—1
fi(z) = U (Fu(2) = 3 3 Fu(Be).
k=0

Since A € T'9(¢), (a,¢) =1 and we can choose unique 0 < k* < ¢ — 1 such that
24ak* = b+ 24kd (mod ¢).

so that

Then
ByA = A By,
where A} € To(¢%). We have
-1 -1 -1
1 1 . (cz + d)? 9
fo(Az) = ; kz:%Fg(BkAz) =3 k;o Fy(ALBy2) = — k;o Fy(Byz) = (cz + d)? fo(2),

which is 2.14).

Part (iii). First we note that 7} is a positive integer. We have

20 > 4t
Ge(z) = au(2) 7777(6(2)) = > (a(fn +dy) — x12(0) La (%)) e E(q

P—
n= Tf
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where

M-

n=1

We see that Gy(z) is holomorphic at ico.

Part (iv). We need to find Gy (72).

it = A () < A+ R A () < 4 G) ¢ S
k=0 k=1 k=1
For each 1 < k </ —1 choose 1 < k* < ¢ — 1 such that 576kk* = —1 (mod ¢). Then
ByS = Cy By,
where .
Cp = (2‘;’“ %) € To(0).
Then

A(BiS2) = A(Cr By ) = 22 (ﬁ) (B ),

—24k* ,
0 = (2,

by Theorem 2.1] since
by [I7, p.51]. Define

By Theorem 2.1],

S[Z) = ™/ (20%)32 A(£%2),

b

/—\ =

Sez) = e”i/423/2./4(z).

Hence, if we define

(2.17) Hg(z) = U;(A) — fxlg.A(fZ),
then
, 2 [—24k
Hy(Spz) = £2°/2¢7/* (A(f% N SRS ( ) 2+ ) - xlg<f>«4<z>> :
k=1

Replacing z by 24z gives

-1
. 1 —k
Hy(Si24z) = £(24z)°/ e/ (M(é?z) + a0 ) (7>M (=+%) - X12(€)M(Z)> :

k=1

since

24
0/ (3) = vl
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Here
)1 if£=1 (mod 4),
“TVi ifr=3 (mod 4).
By [21], p.451] we have
H(Se242) = £(242)* 2™/ * (M|T(£2) — x12(0)M(2) — Up2(M))
= £(242)*2e™/* (MIT () = x12(O) (1 + OOM(2)) = (Upz (M) = £xaa(O)M(2))) ,
3

where T'(¢2) is the Hecke operator which acts on harmonic Maass forms of weight 5, and was used

by Ono [19]. When the form is meromorphic it corresponds to the usual Hecke operator as described
by Shimura [2I]. Ono [19] showed that function

M(2) = MIT(€?) = x12(0)(1 + O M(2))
is a weakly holomorphic modular form. In fact, he showed that
(2.18) Fol(z) = n(2)" Mo(2/24)

is a weight (1% 4 3)/2 entire modular form on SLy(Z). See [19, Theorem 2.2]. We also note that the
function

Upz (M) = Ex12(OOM(2) = Up (Ue(M) = £xa2(0)M(£2))
is holomorphic for §(z) > 0 by the remarks in Part (i). Thus we find that

(2.19)
-1\ B [ & 1 —24n n+ s t2s
() =0 TG ( 22 (oo (5572) 1) on (25) o)
where sy = [;—Zl. It follows that Gy(z) is holomorphic at the cusp 0. O

Since Gy(z) € My41(To(£)), the function z=*~'Gy (72) € My41(To(¢)) by [4, Lemma 1]. Thus if
we define

oo

(2.20) Be(z):= 3 (m(z)a(n) ((1 _624”) - 1) +fa <%>) ",

n=-—=sg

then the proof of Part (iv) of Theorem 22 yields

Corollary 2.3. If { > 5 is prime, then

20
_ n>(tz)
(2.21) Jg(z) = ﬁg(z) 77(2) € Mg.i_l(f).
We illustrate the case ¢ = 5. For ¢ prime we define
1
(2.22) Ea(z) = (LE2(Lz) — Ea(2)) .

-1
It is well-known that & ¢(z) € M2(To(¢)). By [16, Theorem 3.8] dim Mg(I'y(5)) = 3, and it can be
shown that

77(52)10 0

s (n(52) () Ea(2) T

s o n(52)?

is a basis. We find that

G5(z) =5&5(2) (12577(52)477(2)4 B n(z)lz> 7
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and
a(e) = 50s) (B — ai5ay'n(a)).
Thus
c- M\ a2 E25(2) n(52)°
(2.23) HZ:;) (a(5n —1)+5a (g)) ¢""21 =5 772(‘;2> (125 o 1) ,
and

(2.24) n_f:l <—a(n) <<1 —524n> > +5a ( ;;1>) 3 =5 S;E;S) (1 _ 7;7((;);) .

3. THE CONGRUENCES

In this section we derive explicit formulas for the generating functions of
(3.1) a(ln +deq) — x12(9) Ca(t®2n + de,a—2),
when ¢ =5, 7, and 13. Here 24d;, =1 (mod ¢%). The presentation of the identities is analogous to
those of the partition function as given by Hirschhorn and Hunt [I5] and the author [12]. In each
case we start by using Theorem to find identities for ay(z). This basically gives the initial case

a = 1. Then we use Watson’s [22] and Atkin’s [7] method of modular equations to do the induction

step and study the arithmetic properties of the coefficients in these identities. The main congruences
(CO)-([C8) then follow in a straightforward way.

3.1. The SPT-function modulo powers of 5.
Theorem 3.1. If a > 1 then

o0

2 8
(3.2) D (@G ' —ta) +5a(5 P — te_1)) ¢" 2 2 5 sza na
n=0
> _ _ 1 52 5(2’) ;
3.3 (527 — t,) +5a(5%" %n —t, 1)) ¢" 21 = = T2q.iY ",
(33) Z ( ) ) Z ,
where (52)°
1 n(5z
te = —(5%% — 1), Y(z) = 522
fl - (xl,O; T1,1, " ) = (_55 547 Oa 07 Oa e )a
and for a > 1
- Z,A, a odd,
(3.4) Tat1l = {_,
TaB, a even.

Here A = (a;,;)i>0,j>0 and B = (a;;)i>0,;>0 are defined by
(3.5) Aij = Meiitj, bij = Meit1,i+j,
where the matriz M = (m; ;)i j>o s defined as follows: The first five rows of M are

1 0 0 0 0 0

0 53 0 0 0 0

0 4-5° 55 0 0 0

0 9-5 9-54 57 0 0

0 2.5 44-5% 14-55 59 0
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and for 1 > 5, m; o =0 and for j > 1,

(3.6) M =25Mi—1-1+23mi—2-1+15Mmi—3-1+dmi—aj-1+mMi—5;-1.
Lemma 3.2. Ifn is a positive integer then there are integers ¢y, (%] < m < n) such that

Us(E2,52") = Ea5 Z em Y™,
m=T2]

where
@) ()
(3.7) Z(z) = ) Y(z)= )

Proof. We need the following dimension formulas which follow from [10] and [16, Theorem 3.8]. For
k even,

dim My (To(5)) = 2 EJ +1,

amsins, (3 -1-s[2]
y

Let n be a positive integer. Then
s (52 () ot (52)) (22
77(52)5>”

When n is even the function
& z <
2,5( ) n (z)

belongs to the space May,2(T'g(5)), which has as a basis
{&5(2)n(2)°" " n(52)" "™, 0 <m < n}.
This follows from the dimension formula. We note that
ord (E2.5(2)n(2)°" 0 (52)5™ " ic0) = m.

The operator Us preserves the space May,12(I'0(5)). It follows that there are integers c,, ([%] <
m < n) such that

n

52 n n
Us(E252") = Ea5(2 Z Cm 1(2)°" M (52)° " (Ziz)g) =&5(2) D> emY™
m=12]

When n is odd the proof is similar except this time one needs to work in the space Mapn42(Io(5), (£))-

2
5

Corollary 3.3.

(3.8) Us(&a5) = Ea5

(3.9) Us(E252) = 5 Ea5Y

(3.10) Us(E257%) = 52 E2.5(4Y + 5°Y?)

(3.11) Us(Ea52°) = 5E5(9Y +9-5°Y? + 5573

(3.12) Us(E252"%) = 5E25(2Y +44-5°Y? 4+ 14 - 5573 4+ 5574,

Proof. Equation ([B.8)) is elementary. It also follows from the fact that dim M5(T'o(5)) = 1. Equations
BA)-@BI12) follow from Lemma and straightforward calculation. O
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We need the 5th order modular equation that was used by Watson to prove Ramanujan’s partition
congruences for powers of 5.

(3.13) 7% = (252" +25Z° + 152% + 52 + 1) Y (5z).
Lemma 3.4. Fori>0
Us(Ea52") = Ea5( Z m;; Y7,

3=l
where Z = Z(z), Y =Y (z) are defined in (3-7), and the m; ; are defined in Theorem [31].

Proof. The result holds for 0 < i < 4 by Corollary B3l By BI3) we have
Us(E2,52") = (25U5(E2,5 2" ) + 25U5(E0,52" %) + 15U5(E2,5 2" %) + 5Us(E2,5 2" *) + Us(E2,52" %)) Y (2),
for ¢ > 5. The result follows by induction on ¢ using the recurrence (B.6)). |

Lemma 3.5. Fori >0,

(314) U5((€2)5Y 525 Z aw ,
J=I£1
5141

(3.15) Us(E252Y") = Ea5(2) > biyY7,

J=15
where the a; j, b;; are defined in (37).
Proof. Suppose ¢ > 0. By Lemma [3.4
Us(Ea5Y") = Us (&, 5ZGiY(5z)—i) =Y 'U5(E252%)

=Y & 5(2 Z Me; ;Y

J=1%1
5
—525 ZmGzHJY —825 Zalj )
i>T#] 3>1£1
which is (BI4]). Similarly
U5((€2)5ZYi) = U5((€2)5Z6i+1Y(5z)_i) = Y_iU5(5215Z6i+1)
6141
= Y_i52)5(z) Z m6i+1yjY

J=[541]
5141 51+1
=&5( E Meit1,i45Y” = Ea5( E bi Y7,

J=T52] =[]
which is (B15). O

Proof of Theorem [31l We proceed by induction. The case a = 1 of (82) is ([2:23). We now suppose
a > 1 is fixed and (32 holds. Thus

oo

E(q5) Z (a(52a71n — ta) + 5a(52a73n — tafl) = 52 5 Z{Ega 1 z

n=0 >0
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We now apply the Us operator to both sides and use Lemma [3.51

oo

E(q) Z (3(52an —tq) +5a(5> ?n — tafl)) q" = Z T20-1,iUs(Ea5(2)Y")
n=0 >0
=&5(2 Zﬂfza 112&”3” Er5(2 Z Zl’m Liaij | Y7 = Ea5(2 Z@agyﬂ

>0 7=>0 72>0 \ >0 7>0

We obtain (3] by dividing both sides by n(z).
Now again suppose a is fixed and ([B.3]) holds. Multiplying both sides by 7(25z) gives

E(q25) Z (a(52“n — ta) +5 a(52a_2n — tafl)) ntl — 82 5 Z Z2a, 1ZY
n=0 >0

We apply the Us operator to both sides.

E(¢®) Y (a(3™(n—1) —ta) + 5a(5* 2 (5n — 1) —ta—1)) ¢" = > _ 224,:U5(E2,5(2) ZY").
n=0 i>0

Using Lemma [3.5] and the fact that ¢, = 52¢ + ¢, we have

E(¢®) Y (al5*™n —tap1) +5a(5 0 — ta)) ¢" = E25(2) Y w20 Y bi Y7
n=0 >0 3>0
= &a5( Z Z Taa,ibij | Y7 = Ea5( Z Toa41,;Y7.
7j>0 \i>0 7=>0

We obtain ([B2]) with a replaced by a + 1 after dividing both sides by n(5z). This completes the
proof of the theorem. g

Throughout this section we will make repeated use of the following lemma which we leave as an
exercise.

Lemma 3.6. Suppose x, y, n € Z and n > 0. Then

(3.16) HERE {L"HJ .

n n n

For any prime ¢ we let 7(n) = m;(n) denote the exact power of ¢ that divides n.
Then

Lemma 3.7.
ms(mij) > [5(55 —i+1)],

where the matriz M = (m; ;)i j>o s defined in Theorem [31]
Proof. First we verify the result for 0 < ¢ < 4. The result is easily proven for ¢ > 5 using the
recurrence (3.0). O
Corollary 3.8.

ms(aig) > [3(5) —i+ 1)), 7s(biy) > [5(55 — )],
where the a; ;, b; ; are defined by (3.7).
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Lemma 3.9. Forb>2, andj > 1,
(3.17) 5 (22p—1,5) = 5b— 6 + max(0, [ $(55 — 7)),
(3.18) m5(zap,;) > 5b— 4+ [5(55 — 5)].
Proof. A calculation gives
T3 = (23,0, 23,1, %32, ")
= (0,669303124 - 5*, 3328977476 - 5'*, 366098988268 - 5'*, 201318006648837 - 5'°, 1618593700646527 - 5%,
6370852555263938 - 521, 2900024541422883 - 52°, 4237895677971369 - 528, 21327793208615511 - 53,
15532659183030861 - 532, 8481639849706179 - 536, 3564573506915806 - 539, 1175454967692313 - 52,
1542192101361916 - 54, 325171329708596 - 517, 55431641829564 - 5°°, 1532152033009 - 5°4, 171561318777 - 5°7,
77490966671 - 559, 5598792206 - 5%2, 318906274 - 5%, 2799863 - 557,
91379-572,10439 - 57,149 - 577 580 0, .. .),
75 (#3) = (00,4,11,14, 15,18, 21,25, 28, 30, 33, 36, 39, 42, 44, 47, 50, 54, 57, 59, 62, 65, 69, 72, 74, 77, 80, 00, 00, - - - ),
and (BI1) holds for b = 2. Now suppose b > 2 is fixed and (8I7) holds. By (B4
L2p,5 = Zx%fl,iai,j-
i>1
Then using Corollary B.§
75 (22p,1) > min({5b — 4} U{5b— 6+ [3(5i — 7)) + [(2(6 —i)] : 2<i<b})=5b—14,
and ([BI8) holds for j = 1. Suppose j > 2. Then

75 (T2p,5) > 12;%j(775($2b71,i) + m5(ai,;))

> min (m5(z2p—1,1) + 7s5(a1,;), (75 (x2p—1,:) + m5(ai;))
2<i<5j

>min({sb— 6+ [2(55)]}U{Bb—6+ [$(5i — 7))+ [3(Bj —i+1)] : 2 <4 <5j}).
Now
5b— 6+ [3(54)] =5b—4+ [3(5j —4)].

If 2 < i < 57, then using Lemma 3.6 we have

5b—6+ [3(5i— 7))+ [5(5j—i+1)] >5b—6+ |2(5j +4i—T7)]

>5b—6+4 [3(5j+1)] =5b—4+ (55 —3)]
and (3I8) holds. Now suppose b > 2 is fixed and (BI]) holds. By (B4
L2b+1,j = Zl’%,ibi,j-
i>1

We observe that 75(b1,1) = 75(500) = 3. Then using Corollary 3.8

T5(2211,1) > min({5b— 1} U{Bb—4+ [1(5i —4)+ [(§(5—14)] : 2<i<4})=5b—1,
and (BI7) holds for j = 1 with b replaced by b+ 1. Suppose j > 2. Then

N> ; ) .
ms(t2p 1) 2| _min (75 (raq) + 76 (b))

> 2§?§1i51]1‘—1(7r5($2b’1) + m5(b1,5), (5 (22p,6) + 75(bi ;)

>min({sb—4+ [1(5j — 1)} U{sb—4+ [3(5i —4)]) + [1(5j — )] : 2<i<5j—1}).
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Now
Bb—4+4 [5(55 —1)] =5b—1+ (55 —7)].
If 2 <4 < 5j — 1, then again using Lemma [3.6] we have
5b— 4+ [4(5i — 4)]) + [3(55 — i) = 5b— 4+ | 3(55 + 4i - 5)]
>5b—4+ 2(5j+3)] =5b— 1+ [3(5j —3)]

and (3I7) holds with b replaced by b+ 1. Lemma [3.9] follows by induction. 0
Corollary 3.10. Forb > 2,

(3.19) a(5%  n + dopy1) + 525230 + 6g,_3) =0 (mod 5°076),

(3.20) a(5%n + 0op) + 5a(52° 20 + 6ap_2) =0 (mod 5°07%).

Fora>1,

(3.21) Spt(5a+2n + 5a+2) + 5Spt(5an + 5a) =0 (mod 52a+1),

(3.22) spt(5%n +d,) =0 (mod 5L ).

Proof. The congruences [B.I9)—B20) follow from Theorem Bl and Lemma Let
dp(n) = (24n — 1)p(n).

Then

(3.23) dp(5°n 4+ 6,) =0 (mod 52%),

by (LI2)). The congruence (2] follows from BI9)—320), and B23)). Andrews’ congruence (]]2[)
implies that (3222) holds for a = 1, 2. The general result follows by induction using B21]).

We note that when a = 0 there is a stronger congruence than (3.2I]). We prove that
(3.24) spt(25n — 1) + 5spt(n) =0 (mod 25).
We have calculated

Ty = (22,0, 22,1, 2,2, )

= (=5',63-5%104- 57,189 - 511 24 .5 517 0 ...),

Thus
(3.25)
Z (a(25n —1)+5a(n)) q"fﬁ
n=0
_ . &5(2) 51°(52) 1'% (52) 101" (52) 1317 (52) 161 (52)
—577(2) (1—|—635 ()+1045 ()+1895 7 ()+245 o ()—0—5 7 (2)
and
i (a(25n— 1) + 5a(n)) "~ 31 = 20225 (1n0d 25)
n=0 77(2)
But from (2.6) we see that
i (dp(25n — 1) + 5dp(n)) qn_ﬁ =20 Ea(2) (mod 25)

n=0 77(2)

).
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and

> 1
Z spt(25m — 1) 4 5spt(n)) ¢~ 24

o0 oo

Z (25n — 1) +5a(n)) ¢"~ 7 — ) (dp(25n — 1)+5dp(n))q"*% =0 (mod 25),
n=0

which gives (3.24)).
3.2. The SPT-function modulo powers of 7.
Theorem 3.11. Ifa > 1 then

o0

7
3.26 a(7?* 'n—u,)+ 7a(7?* 3n —ug_q)) ¢" 23 = 82 (2 Toq-1, Y
(3.26) > (al q
n=0
> 2a 2a—2 n—i 52 7 i
(3.27) Z (7**n — u,) + 7a(7°* " *n — ua—1)) q Z T2q,iY",
n=0 >0
where .
n(7z)
“ 72(1 _ Y — ,
W= g™ =D, Y =15
fl - (Il,Ov'rl,lv t ) = (_77 3- 737 757 Oa 07 e )7
and for a > 1

= | ZaA, a odd,
a+1l — =
ToB, a even.

Here A = (ai)j)izod‘zo and B = (aid‘)izo)jzo are deﬁned by
(3.28) i = Maiits,  bij = Mair1its,

where the matric M = (m; ;)i j>0 s defined as follows: The first seven rows of M are defined so
that

Ur(€27Z°) = > miY)  (0<i<6),

where

and for1>7, m;o =0, mj1 =0, and for j > 2,
(3.29)
miyj = 49 mi,Ljfl + 35 mi,27j71 + 7m1‘,37j,1 + 343 mi,17j72 + 343 mi,27j72 + 147 mi,'g,’j,Q
+49m;_qj 2 +21my_5 2+ Tmi_g ;-2 +mi_7 2.

The proof of the following lemma is analogous to that of Lemma

Lemma 3.12. If n is a positive integer then there are integers cp, ([ 2] < m < 2n) such that

2n

Ur(E2,7Z") = Ea7 Z emY™,

m=[3]
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where

(3.30) Z(2) =Zq(2) = , Y(z)=

Corollary 3.13.

(3.31) Uz(E27) = Ea7

(3.32) Ur(EanZ) = T2E27(3Y + T2 Y?)

(3.33)  Up(E972%) = TE27(10Y +27-72Y2 +10- 71 Y3 + 707V

(3.34)  Ur(E2723) =TE7(Y +190-7Y? +255-73Y3 +104-7°Y* +17-77Y® + 77 V)

(3.35)  Ug(Ea7Z%) = T%£27(82Y2 +352- 72 Y3 42535 - 73 Y4 41088 - 7°Y® +230- 77 Y'©

+24-77Y7 + 71 Y8

(3.36)  Uz(E972°) = 762 7(114Y2 +253 - 73Y3 + 4169 - 7' Y* +3699 - 70 Y5 + 11495 - 77 YO
+2852- 7Y T +405- 7 Y8 31 7B Y? 4 7P y10)

(3.37)  Up(E972%) = 7627(9Y? +736- 72 Y3 + 27970 - 73Y* 4+ 6808 - 70 Y® 4 3847577 Y'©
+17490- 72 Y7 + 33930 - 70 Y® + 5890 - 72 YO + 629 - 71 Y10
4 38. 716 Yll + 718 Y12)

We need the 7th order modular equation that was used by Watson to prove Ramanujan’s partition
congruences for powers of 7.

(3.38) Z" = (14+7Z+21 Z?449 Z3+147 Z*+-343 Z° + 343 Z) Y (72)*+(7 Z*+35 Z° +49 Z°) Y (72)
Lemma 3.14. Fori >0
Ur(E272") = Ea7(2 Z m; ;Y7

3=
where Z = Z(z), Y =Y (z) are defined in (F30), and the m; ; are defined in Theorem [F11]

Lemma 3.15. Fori >0,

(339) U7(52)7Y 527 Z aw ,
3=I%]
Ti+2

(3.40) Ur(£272Y7) = Ea7(2) Y bi Y7

J=[%2]
where the a; ;, b ; are defined in (3.28).
Let 77(n) denote the exact power of 7 dividing n. Then

Lemma 3.16.
mr(mig) > |3(7) — 20+ 3)),
where the matric M = (m; ;)i j>o0 s defined in Theorem [311]

Corollary 3.17.

mr(aig) > [3(77 —i+3)],  mr(biy) > [3(T5—i+ 1)),
where the a; ;, b; ; are defined by (3.28).
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Lemma 3.18. Forb> 2, and j > 1,

(3.41) Tr(zap—1,5) = 3b—3+ | 1(7j —4)].
(3.42) T7(zap,5) > 3b— 1+ [1(7j —6)].

Corollary 3.19. Forb > 2,

(3.43) a7 'n+ Aapy1) + 7 a7 P n+ Ayp_3) =0 (mod 779,
(3.44) a(7n 4+ Agp) +7-a(7* 20 + Agp_2) =0 (mod 73°71).
Fora>1,

(3.45) SPE(TF 20+ Aat2) + T spt(7%n+ Ag) =0 (mod 712 Ga+dl),
(3.46) spt(7*n+ Ag) =0 (mod 7“3”)'

We note that ([B.43]) also holds for a = 0. The proof of the congruence
(3.47) spt(49n — 2) + 7-spt(n) =0 (mod 49).

is analogous to the proof of ([B:24]).

3.3. The SPT-function modulo powers of 13.

Theorem 3.20. If a > 1 then

oo

(3.48) > (a(13%*'n — v,) — 13a(13% n — v,_1)) ¢ 24 3 = 52 13 Z Toa_1:Y",
n=0
(3.49) i (a(13%n — v,) — 13a(13%2n — v,_1)) ¢ = 52 13 Z Toa.i Y,
n=0
where
Vo = ;—4(132“ —1),  Y(2) = ’77(71(?;32

7 = (v1,0,71.1,--+) = (13,11 - 132,108 - 13,190 - 13*,140 - 135,54 - 13%, 11 - 137,13%,0,0,0, - - -

and for a > 1

o Z,A, a odd,
a+1l — -
ZoB, a even.

Here A = (a;,;)i>0,j>0 and B = (a;;)i>0,;>0 are defined by

(3.50) Qi ; = M2 itj, bij = M2it1,itj,
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where the matric M = (m; j)i>—12,j>—¢ s defined as follows: The first 18 rows of M are

0 0 0 0 0 0 135 0 0
0 82-13 456-13%2 360-13% 126-13* 18.13° 135 0 0
0 0 0 0 0 0 13> 0 0
0 0 18-13 —36-132 —40-13% —-14-13* —-13° 0 0
0 0 0 0 0 0 13 0 0
0 0 0 —14-13 -12-132 0 13 0 0
0 0 0 0 0 0 132 0 0
0 0 0 0 4-13 6132 132 0 0
0 0 0 0 0 0 132 0 0
0 0 0 0 0 0 —-132. 0 0
0 0 0 0 0 0 13 0 0
0 0 0 0 0 0 -13 0 0
0 0 0 0 0 0 1 0 0
and formpy =0 for k>1 and —6 < £ <0; and fori>1 and j > 1,

13 7
(351) mi; = Z Z wr,smifr,jfs;

r=ls=[1(r+2)]

where U = (r 5)1<r<13,1<s<7 1S the matriz

11-13 36-132  38-13%  20.13% 6-13° 136 136
0  —204-13 —346-132 —222-13% —74.13%  —130 —136
0 36-13  126-132  102-13%  38.13%  7.13%  7.13°
0 0 —346-13 —422-13% —184-13% —37.13% —3.13°
0 0 3813  102-132  56-133 135 15-13¢
0 0 0 ~9222-13 —184-132 —51-13% —5.134

(352) w=| o 0 0 2013 38 - 132 134 19133
0 0 0 0 —74.13 —37-132 —5.133
0 0 0 0 6-13 7-132 15132
0 0 0 0 0 —132  —3.132
0 0 0 0 0 13 7-13
0 0 0 0 0 0 ~13
0 0 0 0 0 0 1

The proof of the following lemma is analogous to that of Lemma

Lemma 3.21. If n is a positive integer then there are integers ¢y ([22] < m < 7n) such that

n
U13(€2,132") = E2,13 Z emY ™,
m=[1%
where
7(169z)
n(2)

We need a version for Lemma [3.2T] when n is negative.

(3.53) Z(2) = Zis(z) = L Y(z) = M2
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Lemma 3.22. Ifn is a nonnegative integer then there are integers c,, (—6n < m <n — [52]) such

13
that
n— ]’?—g

U13(E2,1327") = 213 Z Y M

m=—6n

Proof. The proof is analogous to Lemma .21l The main difference is that we write
Ui3(E2,1327") = Uss (52,13(2) (77(2)7711(132))n) (n™(z)n(132)) ",
and use the fact that &,13(2) (1(2)n'(132))" € Mayea(To(13), (13)")- |

Corollary 3.23.
U13(€2,13) = €213

Urs(E2,1327 ") = 13213

Ui3(821327 %) = 138213

Ui3(E2132 %) = =132 &2 13

Ui3(E21372 ) =132 &9 13

Ui3(E21327°) = 13E13(4Y 2 +6-13Y 1 +13%)

Ui3(8213275) =133 &9 13

Ut3(E2,1327") = 13E513(—14Y 2 —12-13Y 2 4+ 13)

Ui3(E2137278) = 134 & 13

Ui3(E21327%) = 138513(18Y 4 =36 - 13Y 3 —40- 132 Y 2 — 14-133Y ! — 13%)
U13(£2.132710) = 13° E913

U3(E213Z M) = 13813(82Y 75 +456 - 13V 4360 - 132 Y 2 +126 - 133 Y 2 + 18- 13* Y~ + 137)
U13(£2.132712) = 13% &913

We need the 13th order modular equation that was used by Atkin and O’Brien [5] to study
properties of p(n) modulo powers of 13. Lehner [I8] derived this equation earlier.

(3.54) 7%z Z Z Yrs Y (132) 2177 (2),

r=ls=|3(r+2)]

where the matrix ¥ = (v, ;) is given in (B52), and Y (2), Z(z) are given in (353). The modular
equation and the matrix ¥ are given explicitly in Appendix C in [5]

Lemma 3.24. Fori >0

Ui3(E2,132") = Ea13(2 Z m; Y7,
=1

where Z = Z(z), Y =Y (z) are defined in (3.53), and the m; ; are defined in Theorem [3200
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Lemma 3.25. Fori > 0,

137
(3.55) Ui3(E213Y") = E13(2 Z ai Y7,
J=l151
13i+7
(3.56) Ur3(E2.132Y") = Ex13( Z b”Yﬂ

1

where the a; ;, b ; are defined in (3.50).

Let m13(n) denote the exact power of 13 dividing n. Then
Lemma 3.26. Fori, j >0,
(3.57) mia(miy) 2> [17(13) = Ti+13)],
where the matriz M = (m; ;) is defined in Theorem [320.
Proof. As noted in [5] we observe that
(3.58) m13(¥rs) > [17(13s = 7r +13) ],

forall1 <t <13 and 1 < s < 13. We verify the result for 0 < ¢ < 12 by direct computation using
the recurrence [B51). We use [B58), the recurrence B51)) and Lemma to prove the general
result by induction. |

Corollary 3.27.
ma(aig) > 135 (135 —i+13)),  ma(biy) > £ (135 —i +6)],
where the a; j, b;; are defined by (3.50).

We provide more complete details for the proof of the following lemma since congruences for the
spt-function modulo 13 are stronger than those for the partition function.

Lemma 3.28.

(3.59) m13(x2,0) = 1,

(3.60) mi3(22,) > 3+ [37(137)]  forj>1

(3.61) mi3(zap—1,5) = 2b — 2+ [ (135 — 10)] forb>2 andj>1
(3.62) T13(wan,5) = 20— 1+ [ 15 (135)] forb>2, and j > 1.

Proof. We have calculated #2 and verified (3.59)-(B.60). We note that x5 ; = 0 for j > 91. Now,
T35 = Z$2,ibi,j7
>0

and we note that 239 = 0. We have

T13(w2,0b0,5) = 1+ m13(boj) > 2+ [ 15 (135 — 8)]
by Corollary B.27 For ¢ > 1

Ty (2.b1s) = Tra(@a,) + mra(big) = 3+ | £5(130)] + [ £ (13) — i+ 6))
>34 (135 + 12— 7)) > 24 (135 —9)],
again by Corollary 327 It follows that
mis(z3,5) = 2+ 35135 = 9)],
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and (6] holds for b = 2. Now supposed b > 2 is fixed and that [B:61]) holds. We have

XT2b,5 = E T2b—1,iAs5,5-

i>1
Now

T13(Tap—1,101,;) = T13(T2p—11) + ms(a1,;) > 2b — 2+ mg(ar;) > 2b— 1+ [ 5(135)],
by a direct calculation noting that a; ; = 0 for j > 13. For i > 2

ng(xgb,l,iaiyj) = 7T13(I2b711i) + ng(ai,j) >2b—2+ Lﬁ(l?ﬂ — IO)J + Lﬁ(l?)j — 1+ 13)J
>20—2+ \_1—14(13‘] + 127 — 10)J >20—1+ Lﬁ(l?)j)J,

again by Corollary 327 It follows that
ms(way ;) > 20— 1+ [£(134)],

and ([.62) holds. For i > 1
Again suppose b > 2 is fixed, and that (3.62) holds. We have

Tob41,j = E Zop,ibi ;.

i>1
Fori>1

T13(220,ibij) = miz(@ap) + mi3(biy) > 20— 1+ [£(130)] + [ (135 — i +6)]
>2b— 1+ [ (135 4+ 12i — 8)] > 2b+ [£(135 — 10)],

again by Corollary 327 It follows that
T13(T2p11,5) > 20+ | (135 — 10)],

and (61 holds with b replaced by b+ 1. Lemma follows by induction. O

Corollary 3.29. Forc > 2,

(3.63) a(13°n+7.) — 13- a(13° *n +7,-2) =0 (mod 13°71).
Fora>1,

(3.64) spt(13%72n 4+ v442) — 13 -spt(13°n4+7,) =0  (mod 13°T1),
(3.65) spt(13*n +v,) =0 (mod 13L77).

We note that (3.63) holds when ¢ = 2 by taking 79 = 1. Also when a = 0 the congruence (3:64)
has a stronger form. The proof of the congruence

(3.66) spt(169n — 7) — 13- spt(n) =0 (mod 169).

is analogous to the proof of ([B.24]).
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4. THE SPT-FUNCTION MODULO /

In this section we improve on results in [I3] and [9] for the spt-function and the second moment
rank function modulo ¢. We let

Te(z) = je(n)g",

n=sy

where Jy(z) is defined in (221]), and define

(4.1) Ko(z) 1= Go(z) + (12700 " j(tn)g™,
n=[%1
where Gy(z) is defined in (2I2). Then we have

Theorem 4.1. If ¢ > 5 is prime, then Ky(z) is an entire modular form of weight (¢4 1) on the full
modular group SLs(Z).

Proof. Suppose ¢ > 5 is prime. We utilize Serre’s |20, pp.223-224] results on the trace of a modular
form on I'g(¢). By Theorem [Z2] we know that G¢(z) is an entire modular form of weight (¢ 4+ 1) on
To(¢). By |20, Lemma 7],

(4.2) Tr(Ge) = Go+ 12V G, | W | U

is an entire modular form of weight (¢ + 1) on SLa(Z). See [20, pp.223-224] for definition of W, U
and the notation used. From (ZT9) we find that

(4.3) Gy | W= (=1)z0=D g2+ g,
From (L1]), (@2) and @3] we see that
K, =Tr(Gy)
is an entire modular form of weight (¢ 4+ 1) on SLy(Z). O
We observed special cases of the following Corollary in [13] Theorem 6.1].

Corollary 4.2. Suppose £ > 5 is prime. Then

(4.4) Z spt(¢n — Sg)q"_i =n(z)" Le(z) (mod ¢)
n=lm]

for some integral entire modular form L¢(z) on the full modular group of weight £ +1— 12[%] , and
where r¢ and sy are defined in (2.8).

Proof. Suppose ¢ > 5 is prime. Since
(24n—1)p(n) =0 (mod ¥),
for 24n =1 (mod ¢), and using Theorem 1] we have

n(2)*
n(lz) —
for some integral Py(z) € Myy1(I'(1)). We note that

spt(fn — s¢) #0

a(ln — SE)q"*% = Py(2) (mod ¢),

n=
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implies that fn — sy > 1 and n > [ﬁ]. It follows that

P 2¢ o e
77((2 ) > spt(tn — se)g"
nez r;

n=[571

A(2)°Li(z) (mod £),

where A(z) is Ramanujan’s function

(4.5) Alz) =nz)* =q ] -q¢"*,
n=1
¢ = [£4] and Lg(z) is some integral modular form in My 1—12.(I'(1)). Thus
Z spt(fn — Sg)qni% = A(2) " Ly(z) (mod ¢),
n=[31]

and the result follows since

rg =c— /.
|
We conclude the paper by improving a result in [9] for the second rank moment function. From
=)
(4.6) Na(n) = 2np(n) — 2spt(n).

We note that the analog of Corollary 4.2l holds for the partition function p(n) except the weight is
2 less. See either [I3] Theorem 3.4] or [I, Theorem3]. This together with Corollary and (4.6])
implies

Corollary 4.3. Suppose £ > 5 is prime. Then

(4.7) > Na(tn—s0)g" % = 5(2)" (Qu(=) + Li(2))  (mod 0)

n=l1
for some integral entire modular forms Qu(z) and L¢(z) on the full modular group of weights k and
k + 2 respectively where k =0 —1 — 12[%].

We illustrate Theorem [4.1] and Corollaries and in the case £ = 17. We find that

K17(Z) = G17(2) + 17 Zjn(l?n)q" = —17E6(Z)3 — 26148 A(Z) EG(Z),

n=1

> spt(17n +5)¢" % = 14n(2)" Eg(z) (mod 17),
n=0

and
o0

> N2(17n+5)q" 7 = (2)7 (2 Ea(z) + 6 Eg(2))  (mod 17).

n=0

Here FE4(z) and Eg(z) are the usual Eisenstein series

(4.8) Ei(z) :=1+240 Z os(n)q", Eg(z) :=1—504 Z o5(n)q",

n=1

where oi(n) =>4, q~.
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