CONGRUENCES FOR ANDREWS' SPT-FUNCTION MODULO 32760 AND EXTENSION OF ATKIN'S HECKE-TYPE PARTITION CONGRUENCES

F. G. GARVAN

Dedicated to the memory of A.J. (Alf) van der Poorten, my former teacher

ABSTRACT. New congruences are found for Andrews' smallest parts partition function $spt(n)$. The generating function for spt(n) is related to the holomorphic part $\alpha(24z)$ of a certain weak Maass form $\mathcal{M}(z)$ of weight $\frac{3}{2}$. We show that a normalized form of the generating function for spt(n) is an eigenform modulo 72 for the Hecke operators $T(\ell^2)$ for primes $\ell > 3$, and an eigenform modulo p for $p = 5, 7$ or 13 provided that $(\ell, 6p) = 1$. The result for the modulus 3 was observed earlier by the author and considered by Ono and Folsom. Similar congruences for higher powers of p (namely 5⁶, 7⁴ and 13²) occur for the coefficients of the function $\alpha(z)$. Analogous results for the partition function were found by Atkin in 1966. Our results depend on the recent result of Ono that $\mathcal{M}_{\ell}(z/24)$ is a weakly holomorphic modular form of weight $\frac{3}{2}$ for the full modular group where

$$
\mathcal{M}_{\ell}(z) = \mathcal{M}(z)|T(\ell^2) - \left(\frac{3}{\ell}\right)(1+\ell)\mathcal{M}(z).
$$

1. INTRODUCTION

Andrews [\[1\]](#page-14-0) defined the function $spt(n)$ as the number of smallest parts in the partitions of n. He related this function to the second rank moment and proved some surprising congruences mod 5, 7 and 13. Rank and crank moments were introduced by A. O. L. Atkin and the author [\[2\]](#page-14-1). Bringmann [\[6\]](#page-14-2) studied analytic, asymptotic and congruence properties of the generating function for the second rank moment as a quasi-weak Maass form. Further congruence properties of Andrews' spt-function were found by the author [\[10\]](#page-14-3), [\[11\]](#page-14-4), Folsom and Ono [\[8\]](#page-14-5) and Ono [\[12\]](#page-14-6). In particular, Ono [\[12\]](#page-14-6) proved that if $\left(\frac{1-24n}{\ell}\right) = 1$ then

(1.1)
$$
\mathrm{spt}(\ell^2 n - \frac{1}{24}(\ell^2 - 1)) \equiv 0 \pmod{\ell},
$$

for any prime $\ell \geq 5$. This amazing result was originally conjectured by the author^{[\(i\)](#page-0-0)}. Earlier special cases were observed by Tina Garrett [\[9\]](#page-14-7) and her students. Recently the author [\[11\]](#page-14-4) has proved the following congruences for powers of 5, 7 and 13. For a, b, $c \geq 3$,

(1.2)
$$
\operatorname{spt}(5^a n + \delta_a) + 5 \operatorname{spt}(5^{a-2} n + \delta_{a-2}) \equiv 0 \pmod{5^{2a-3}},
$$

(1.3)
$$
\mathrm{spt}(7^b n + \lambda_b) + 7 \mathrm{spt}(7^{b-2} n + \lambda_{b-2}) \equiv 0 \pmod{7^{\lfloor \frac{1}{2}(3b-2) \rfloor}},
$$

Date: November 10, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 11P83, 11F33, 11F37; Secondary 11P82, 05A15, 05A17.

Key words and phrases. Andrews's spt-function, weak Maass forms, congruences, partitions, modular forms.

The author was supported in part by NSA Grant H98230-09-1-0051. The first draft of this paper was written October 25, 2010.

 (i) The congruence [\(1.1\)](#page-0-1) was first conjectured by the author in a Colloquium given at the University of Newcastle, Australia on July 17, 2008.

(1.4)
$$
\mathrm{spt}(13^cn + \gamma_c) - 13 \mathrm{spt}(13^{c-2}n + \gamma_{c-2}) \equiv 0 \pmod{13^{c-1}},
$$

where δ_a , λ_b and γ_c are the least nonnegative residues of the reciprocals of 24 mod 5^a , 7^b and 13^c respectively.

As in $[12]$, $[11]$ we define

(1.5)
$$
\mathbf{a}(n) := 12\mathrm{spt}(n) + (24n - 1)p(n),
$$

for $n \geq 0$, and define

(1.6)
$$
\alpha(z) := \sum_{n\geq 0} \mathbf{a}(n) q^{n - \frac{1}{24}},
$$

where as usual $q = \exp(2\pi i z)$ and $\Im(z) > 0$. We note that $\text{spt}(0) = 0$ and $p(0) = 1$. Bringmann [\[6\]](#page-14-2) showed that $\alpha(24z)$ is the holomorphic part of the weight $\frac{3}{2}$ weak Maass form $\mathcal{M}(z)$ on $\Gamma_0(576)$ with Nebentypus χ_{12} where

(1.7)
$$
\mathcal{M}(z) := \alpha(24z) - \frac{3i}{\pi\sqrt{2}} \int_{-\overline{z}}^{i\infty} \frac{\eta(24\tau) d\tau}{(-i(\tau + z))^{\frac{3}{2}}},
$$

 $\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n)$ is the Dedekind eta-function, the function $\alpha(z)$ is defined in [\(1.6\)](#page-1-0), and $\sqrt{ }$

(1.8)
$$
\chi_{12}(n) = \begin{cases} 1 & \text{if } n \equiv \pm 1 \pmod{12}, \\ -1 & \text{if } n \equiv \pm 5 \pmod{12}, \\ 0 & \text{otherwise.} \end{cases}
$$

Ono [\[12\]](#page-14-6) showed that for $\ell \geq 5$ prime, the operator

(1.9)
$$
T(\ell^2) - \chi_{12}(\ell)\ell(1+\ell)
$$

annihilates the nonholomorphic part of $\mathcal{M}(z)$, and the function $\mathcal{M}_{\ell}(z/24)$ is a weakly holomorphic modular form of weight $\frac{3}{2}$ for the full modular group where

$$
(1.10) \qquad \mathcal{M}_{\ell}(z) = \mathcal{M}(z)|T(\ell^2) - \chi_{12}(\ell)(1+\ell)\mathcal{M}(z) = \alpha(24z)|T(\ell^2) - \chi_{12}(\ell)(1+\ell)\alpha(24z).
$$

In fact he obtained

Theorem 1.1 (Ono [\[12\]](#page-14-6)). If $\ell \geq 5$ is prime then the function

$$
\mathcal{M}_{\ell}(z/24)\,\eta(z)^{\ell^2}
$$

is an entire modular form of weight $\frac{1}{2}(\ell^2+3)$ for the full modular group $\Gamma(1)$.

Applying this theorem Ono obtained

(1.12)
$$
\mathcal{M}_{\ell}(z) \equiv 0 \pmod{\ell}.
$$

The congruence [\(1.1\)](#page-0-1) then follows easily.

Folsom and Ono [\[8\]](#page-14-5) sketched the proof of the following

Theorem 1.2 (Folsom and Ono). If $\ell \geq 5$ is prime then

$$
(1.13) \ \ \mathrm{spt}(\ell^2 n - s_\ell) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell} \right) \mathrm{spt}(n) + \ell \, \mathrm{spt} \left(\frac{n + s_\ell}{\ell^2} \right) \equiv \chi_{12}(\ell) \left(1 + \ell \right) \mathrm{spt}(n) \pmod{3},
$$

where

(1.14)
$$
s_{\ell} = \frac{1}{24}(\ell^2 - 1).
$$

This result was observed earlier by the author. In this paper we prove a much stronger result.

Theorem 1.3. (i) If $\ell > 5$ is prime then

$$
(1.15) \operatorname{spt}(\ell^2 n - s_\ell) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell} \right) \operatorname{spt}(n) + \ell \operatorname{spt} \left(\frac{n + s_\ell}{\ell^2} \right) \equiv \chi_{12}(\ell) \left(1 + \ell \right) \operatorname{spt}(n) \pmod{72}.
$$

(ii) If $\ell \ge 5$ is prime, $t = 5$, 7 or 13 and $\ell \ne t$ then

$$
(1.16)\ \ \operatorname{spt}(\ell^2 n - s_\ell) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \operatorname{spt}(n) + \ell \operatorname{spt}\left(\frac{n + s_\ell}{\ell^2}\right) \equiv \chi_{12}(\ell) \left(1 + \ell\right) \operatorname{spt}(n) \pmod{t}.
$$

Of course this implies the

Corollary 1.4. If ℓ is prime and $\ell \notin \{2,3,5,7,13\}$ then

$$
(1.17) \ \ \mathrm{spt}(\ell^2 n - s_\ell) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell} \right) \mathrm{spt}(n) + \ell \, \mathrm{spt} \left(\frac{n + s_\ell}{\ell^2} \right) \equiv \chi_{12}(\ell) \, (1 + \ell) \, \mathrm{spt}(n) \pmod{32760}.
$$

This congruence modulo $32760 = 2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$ is the congruence referred in the title of this paper.

In 1966, Atkin [\[4\]](#page-14-8) found a similar congruence for the partition function.

Theorem 1.5 (Atkin). Let $t = 5, 7, or 13, and $c = 6, 4, or 2$ respectively. Suppose $\ell \geq 5$ is prime$ and $\ell \neq t$. If $\left(\frac{1-24n}{t}\right) = -1$, then

$$
(1.18) \qquad \ell^3 p(\ell^2 n - s_\ell) + \ell \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) p(n) + p\left(\frac{n + s_\ell}{\ell^2}\right) \equiv \gamma_t p(n) \pmod{t^c},
$$

where γ_t is an integral constant independent of n.

We find that there is a corresponding result for the function $a(n)$ defined in [\(1.5\)](#page-1-1).

Theorem 1.6. Let $t = 5, 7, or 13, and $c = 6, 4, or 2$ respectively. Suppose $\ell \geq 5$ is prime and$ $\ell \neq t$. If $\left(\frac{1-24n}{t}\right) = -1$, then

$$
(1.19) \qquad \mathbf{a}(\ell^2 n - s_\ell) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \mathbf{a}(n) + \ell \mathbf{a} \left(\frac{n + s_\ell}{\ell^2}\right) \equiv \chi_{12}(\ell) \left(1 + \ell\right) \mathbf{a}(n) \pmod{t^c}.
$$

In Section [2](#page-2-0) we prove Theorem 1.3. The method involves reviewing the action of weight $-\frac{1}{2}$ Hecke operators $T(\ell^2)$ on the function $\eta(z)^{-1}$ and doing a careful study of the action of weight $\frac{3}{2}$ Hecke operators on the function $\frac{d}{dz}\eta(z)^{-1}$ modulo 5, 7, 13, 27 and [3](#page-6-0)2. In Section 3 we prove Theorem [1.6.](#page-2-1) The method involves extending Atkin's [\[4\]](#page-14-8) on modular functions to weight two modular forms on $\Gamma_0(t)$ for $t = 5, 7$ and 13. The proof of both Theorems 1.3 and [1.6](#page-2-1) depend on Ono's Theorem [1.1.](#page-1-2)

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Atkin [\[3\]](#page-14-9) showed essentially that applying certain weight $-\frac{1}{2}$ Hecke operators $T(\ell^2)$ to the function $\eta(z)^{-1}$ produces a function with the same multiplier system as $\eta(z)^{-1}$ and thus $\eta(z)$ times this function is a certain polynomial (depending on ℓ) of Klein's modular invariant $j(z)$. We review Ono's [\[13\]](#page-14-10) recent explicit form for these polynomials. Although our proof does not depend on Ono's result it is quite useful for computational purposes. The action of the corresponding weight $\frac{3}{2}$ Hecke operators on $\frac{d}{dz}\eta(z)^{-1}$ can be given in terms of the same polynomials. See Theorem [2.3](#page-4-0) below. To finish the proof of the theorem we need to make a careful study of the action of these operators modulo 5, 7, 13, 27 and 32.

For $\ell > 5$ prime we define

(2.1)
$$
Z_{\ell}(z) = \sum_{n=-s_{\ell}}^{\infty} \left(\ell^3 p(\ell^2 n - s_{\ell}) + \ell \chi_{12}(\ell) \left(\frac{1-24n}{\ell} \right) p(n) + p \left(\frac{n+s_{\ell}}{\ell^2} \right) \right) q^{n-\frac{1}{24}}.
$$

Proposition 2.1 (Atkin [\[4\]](#page-14-8)). The function $Z_{\ell}(z) \eta(z)$ is a modular function on the full modular group $\Gamma(1)$.

It follows that $Z_{\ell}(z) \eta(z)$ is a polynomial in $j(z)$, where $j(z)$ is Klein's modular invariant

(2.2)
$$
j(z) := \frac{E_4(z)^2}{\Delta(z)} = q^{-1} + 744 + 196884q + \cdots,
$$

 $E_2(z)$, $E_4(z)$, $E_6(z)$ are the usual Eisenstein series (2.3)

$$
E_2(z) := 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n, \qquad E_4(z) := 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n, \qquad E_6(z) := 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n,
$$

 $\sigma_k(n) = \sum_{d|n} q^k$, and $\Delta(z)$ is Ramanujan's function

(2.4)
$$
\Delta(z) := \eta(z)^{24} = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.
$$

In a recent paper, Ono [\[13\]](#page-14-10) has found a nice formula for this polynomial. We define

(2.5)
$$
E(q) := \prod_{n=1}^{\infty} (1 - q^n) = q^{-\frac{1}{24}} \eta(z),
$$

and a sequence of polynomials $A_m(x) \in \mathbb{Z}[x]$ by

(2.6)
$$
\sum_{m=0}^{\infty} A_m(x)q^m = E(q) \frac{E_4(z)^2 E_6(z)}{\Delta(z)} \frac{1}{j(z) - x}
$$

$$
= 1 + (x - 745)q + (x^2 - 1489x + 160511)q^2 + \cdots
$$

Theorem 2.2 (Ono [\[13\]](#page-14-10)). For $\ell \geq 5$ prime

(2.7)
$$
Z_{\ell}(z)\,\eta(z) = \ell\,\chi_{12}(\ell) + A_{s_{\ell}}(j(z)),
$$

where $Z_{\ell}(z)$ is given in (2.1) , and s_{ℓ} is given in (1.14) .

We define a sequence of polynomials $C_{\ell}(x) \in \mathbb{Z}[x]$ by

(2.8)
$$
C_{\ell}(x) := \ell \chi_{12}(\ell) + A_{s_{\ell}}(x),
$$

$$
= \sum_{n=0}^{s_{\ell}} c_{n,\ell} x^{n},
$$

so that

$$
(2.9) \t\t Z_{\ell}(z)\,\eta(z) = C_{\ell}(j(z)).
$$

We define

(2.10)
$$
d(n) := (24n - 1) p(n),
$$

so that

(2.11)
$$
\sum_{n=0}^{\infty} d(n)q^{24n-1} = q \frac{d}{dq} \frac{1}{\eta(24z)} = -\frac{E_2(24z)}{\eta(24z)},
$$

and

$$
\mathbf{a}(n) = 12\mathrm{spt}(n) + d(n).
$$

For $\ell \geq 5$ prime we define

$$
(2.13) \quad \Xi_{\ell}(z) = \sum_{n=-s_{\ell}}^{\infty} \left(d(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\left(\frac{1 - 24n}{\ell} \right) - 1 - \ell \right) d(n) + \ell \, d \left(\frac{n + s_{\ell}}{\ell^2} \right) \right) q^{n - \frac{1}{24}}.
$$

We then have the following analogue of Theorem [2.2.](#page-3-0)

Theorem 2.3. For $\ell \geq 5$ prime we have

(2.14)
$$
\ell \Xi_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}} = -\sum_{n=0}^{s_{\ell}} c_{n,\ell} E_4(z)^{3n-1} \Delta(z)^{s_{\ell}-n} (24nE_6(z) + E_4(z)E_2(z)) + \chi_{12}(\ell)\ell(1+\ell)E_2(z) \Delta(z)^{s_{\ell}},
$$

where the coefficients $c_{n,\ell}$ are defined by [\(2.6\)](#page-3-1) and [\(2.8\)](#page-3-2).

Proof. Suppose $\ell \geq 5$ is prime. In equation [\(2.9\)](#page-3-3) we replace z by 24z, apply the operator $q \frac{d}{dq}$ and replace z by $\frac{1}{24}z$ to obtain

(2.15)
$$
\ell \Xi_{\ell}(z) \eta(z) = 24 C'_{\ell}(j(z)) q \frac{d}{dq}(j(z)) + (\chi_{12}(\ell)\ell(1+\ell) - C_{\ell}(j(z)) E_{2}(z)
$$

The result then follows easily from the identities (2.16)

$$
j(z)\,\Delta(z) = E_4(z)^3, \qquad q\frac{d}{dq}(\Delta(z)) = \Delta(z) \, E_2(z), \quad \text{and} \qquad q\frac{d}{dq}(j(z))\,\Delta(z) = -E_4(z)^2 E_6(z),
$$

which we leave as an easy exercise.

We are now ready to prove Theorem 1.3. A standard calculation gives the following congruences. (2.17) $E_4(z)^3 - 720 \Delta(z) \equiv 1 \pmod{65520}$, and $E_2(z) \equiv E_4(z)^2 E_6(z) \pmod{65520}$.

We now use [\(2.17\)](#page-4-1) to reduce [\(2.15\)](#page-4-2) modulo 65520.

(2.18)

$$
\ell \Xi_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}}
$$
\n
$$
\equiv -\sum_{n=0}^{s_{\ell}} c_{n,\ell} E_4(z)^{3n-1} \Delta(z)^{s_{\ell}-n} (24nE_6(z)(E_4(z)^3 - 720 \Delta(z)) + E_4(z)^3 E_6(z))
$$
\n
$$
+ \chi_{12}(\ell)\ell(1+\ell) E_4(z)^2 E_6(z) \Delta(z)^{s_{\ell}} \pmod{65520}
$$
\n
$$
\equiv -\sum_{n=0}^{s_{\ell}} (24n+1)c_{n,\ell} E_4(z)^{3n+2} E_6(z) \Delta(z)^{s_{\ell}-n}
$$
\n
$$
+ \sum_{n=0}^{s_{\ell}} 720 \cdot 24nc_{n,\ell} E_4(z)^{3n-1} E_6(z) \Delta(z)^{s_{\ell}-n+1} + \chi_{12}(\ell)\ell(1+\ell) E_4(z)^2 E_6(z) \Delta(z)^{s_{\ell}} \pmod{65520}
$$
\n
$$
\equiv (720 c_{1,\ell} - c_{0,\ell} + \chi_{12}(\ell)\ell(1+\ell)) E_4(z)^2 E_6(z) \Delta(z)^{s_{\ell}}
$$
\n
$$
+ \sum_{n=1}^{s_{\ell}-1} (720 \cdot 24(n+1)c_{n+1,\ell} - (24n+1)c_{n,\ell}) E_4(z)^{3n+2} E_6(z) \Delta(z)^{s_{\ell}-n}
$$
\n
$$
- (24s_{\ell}+1)c_{s_{\ell}} E_4(z)^{3s_{\ell}+2} E_6(z) \pmod{65520}.
$$

We define

$$
(2.19) \quad \mathcal{A}_{\ell}(z) := \sum_{n=-s_{\ell}}^{\infty} \left(\mathbf{a}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\left(\frac{1-24n}{\ell} \right) - 1 - \ell \right) \mathbf{a}(n) + \ell \mathbf{a} \left(\frac{n+s_{\ell}}{\ell^2} \right) \right) q^{n-\frac{1}{24}}
$$

and (2.20)

$$
\mathcal{S}_{\ell}(z) := \sum_{n=1}^{\infty} \left(\operatorname{spt}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\left(\frac{1 - 24n}{\ell} \right) - 1 - \ell \right) \operatorname{spt}(n) + \ell \operatorname{spt} \left(\frac{n + s_{\ell}}{\ell^2} \right) \right) q^{n - \frac{1}{24}},
$$

so that

(2.21)
$$
\mathcal{A}_{\ell}(z) = 12 \mathcal{S}_{\ell}(z) + \Xi_{\ell}(z) = \mathcal{M}_{\ell}(z/24).
$$

By Theorem [1.1](#page-1-2) and equation [\(1.10\)](#page-1-4) we see that the function

(2.22)
$$
\ell \mathcal{A}_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}} \in M_{\frac{1}{2}(\ell^2+3)}(\Gamma(1)),
$$

the space of entire modular forms of weight $\frac{1}{2}(\ell^2+3)$ on $\Gamma(1)$. Since $\frac{1}{2}(\ell^2+3)=2+12s_{\ell}$ the set

(2.23)
$$
\{E_4(z)^{3n-1} E_6(z) \Delta(z)^{s_\ell - n} : 1 \le n \le s_\ell\}
$$

is a basis. Hence there are integers $b_{n,\ell}$ $(1\leq n\leq s_\ell)$ such that

(2.24)
$$
\mathcal{A}_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}} = \sum_{n=1}^{s_{\ell}} b_{n,\ell} E_4(z)^{3n-1} E_6(z) \Delta(z)^{s_{\ell}-n}.
$$

Using [\(2.17\)](#page-4-1) we find that

(2.25)
$$
\mathcal{A}_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}} \equiv -720b_{1,\ell} E_4(z)^2 E_6(z) \Delta(z)^{s_{\ell}} + \sum_{n=1}^{s_{\ell}-1} (b_{n,\ell} - 720b_{n+1,\ell}) E_4(z)^{3n+2} E_6(z) \Delta(z)^{s_{\ell}-n} + b_{s_{\ell},\ell} E_4(z)^{3s_{\ell}+2} E_6(z) \pmod{65520}.
$$

By [\(2.18\)](#page-4-3), [\(2.21\)](#page-5-0) and [\(2.24\)](#page-5-1) we deduce that there are integers $a_{n,\ell}$ ($0 \le n \le s_\ell$) such that

(2.26)
$$
12 \ell \mathcal{S}_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}} \equiv \sum_{n=0}^{s_{\ell}} a_{n,\ell} E_4(z)^{3n+2} E_6(z) \Delta(z)^{s_{\ell}-n} \pmod{65520}.
$$

It follows that

$$
(2.27) \t12 \ell \mathcal{S}_{\ell}(z) \equiv 0 \pmod{65520},
$$

since

(2.28)
$$
\operatorname{ord}_{i\infty} (12 \ell \mathcal{S}_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}}) = s_{\ell} + 1,
$$

$$
0 \le \operatorname{ord}_{i\infty} (E_4(z)^{3n+2} E_6(z) \Delta(z)^{s_{\ell}-n}) \le s_{\ell},
$$

$$
E_4(z)^{3n+2} E_6(z) \Delta(z)^{s_{\ell}-n} = q^{s_{\ell}-n} + \cdots,
$$

for $0 \le n \le s_\ell$ and all functions have integral coefficients. Since $65550 = 2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$, the congruence [\(2.27\)](#page-5-2) implies Part (ii) of Theorem 1.3. To prove Part (i) we need to work a little harder. We note that the congruence [\(2.27\)](#page-5-2) does imply

$$
(2.29) \t S\ell(z) \equiv 0 \pmod{12}.
$$

We need to show this congruence actually holds modulo 72.

(2.30)
$$
E_2(z) \equiv E_4(z) E_6(z) + 16\Delta(z)
$$
 (mod 32), and $E_4(z)^2 \equiv 1$ (mod 32),

which are routine to prove. We proceed as in the proof of (2.18) to find that

(2.31)
$$
\ell \Xi_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}}
$$

$$
\equiv (\chi_{12}(\ell)\ell(1+\ell) - c_{0,\ell} - 16c_{1,\ell}) E_2(z) \Delta(z)^{s_{\ell}}
$$

$$
- \sum_{n=1}^{s_{\ell}-1} ((24n+1)c_{n,\ell} + 16c_{n+1,\ell}) E_4(z)^{3n-1} E_6(z) \Delta(z)^{s_{\ell}-n}
$$

$$
- (24s_{\ell} + 1)c_{s_{\ell}} E_4(z)^{3s_{\ell}-1} E_6(z) \pmod{32}.
$$

By [\(2.31\)](#page-6-1), [\(2.21\)](#page-5-0) and [\(2.24\)](#page-5-1) we deduce that there are integers $a'_{n,\ell}$ $(0 \le n \le s_\ell)$ such that

$$
(2.32) \quad 12 \, \ell \, \mathcal{S}_{\ell}(z) \, \eta(z) \, \Delta(z)^{s_{\ell}} \equiv \sum_{n=1}^{s_{\ell}} a'_{n,\ell} \, E_4(z)^{3n-1} \, E_6(z) \, \Delta(z)^{s_{\ell}-n} + a'_{0,\ell} \, E_2(z) \, \Delta(z)^{s_{\ell}} \pmod{32}.
$$

Arguing as before, it follows that

(2.33) $12\mathcal{S}_{\ell}(z) \equiv 0 \pmod{32}$, and $\mathcal{S}_{\ell}(z) \equiv 0 \pmod{8}$.

To complete the proof, we need to study $\Xi_{\ell}(z)$ modulo 27. We need the congruences,

(2.34)
$$
E_2(z) \equiv E_4(z)^5 + 18\Delta(z) \pmod{27} \text{ and } E_6(z) \equiv E_4(z)^6 \pmod{27},
$$
which are routine to prove. We proceed as in the proof of (2.18) and (2.31) to find that

(2.35)
$$
\ell \Xi_{\ell}(z) \eta(z) \Delta(z)^{s_{\ell}}
$$

$$
\equiv (\chi_{12}(\ell)\ell(1+\ell) - c_{0,\ell} - 18c_{1,\ell}) E_2(z) \Delta(z)^{s_{\ell}}
$$

$$
- \sum_{n=1}^{s_{\ell}-1} ((24n+1)c_{n,\ell} + 18c_{n+1,\ell}) E_4(z)^{3n-1} E_6(z) \Delta(z)^{s_{\ell}-n}
$$

$$
- (24s_{\ell} + 1)c_{s_{\ell}} E_4(z)^{3s_{\ell}-1} E_6(z) \pmod{27}.
$$

By [\(2.35\)](#page-6-2), [\(2.21\)](#page-5-0) and [\(2.24\)](#page-5-1) we deduce that there are integers $a''_{n,\ell}$ $(0 \le n \le s_\ell)$ such that

$$
(2.36)\quad 12\,\ell\,\mathcal{S}_{\ell}(z)\,\eta(z)\,\Delta(z)^{s_{\ell}}\equiv\sum_{n=1}^{s_{\ell}}a_{n,\ell}''\,E_4(z)^{3n-1}\,E_6(z)\,\Delta(z)^{s_{\ell}-n}+a_{0,\ell}''\,E_2(z)\,\Delta(z)^{s_{\ell}}\pmod{27}.
$$

Arguing as before, it follows that

(2.37) $12\mathcal{S}_{\ell}(z) \equiv 0 \pmod{27}$, and $\mathcal{S}_{\ell}(z) \equiv 0 \pmod{9}$.

The congruences [\(2.33\)](#page-6-3) and [\(2.37\)](#page-6-4) give [\(1.15\)](#page-2-3) and this completes the proof of Theorem 1.3.

3. Proof of Theorem [1.6](#page-2-1)

In this section we prove Theorem [1.6.](#page-2-1) Atkin [\[4\]](#page-14-8) proved Theorem [1.5](#page-2-4) by constructing certain special modular functions on $\Gamma_0(t)$ and $\Gamma_0(t^2)$ for $t = 5, 7$ and 13. We attack the problem by extending Atkin's results to the corresponding weight 2 case.

Let $GL_2^+(\mathbb{R})$ denote the group of all real 2×2 matrices with positive determinant. $GL_2^+(\mathbb{R})$ acts on the complex upper half plane H by linear fractional transformations. We define the slash

operator for modular forms of integer weight. Let $k \in \mathbb{Z}$. For a function $f : \mathcal{H} \longrightarrow \mathbb{C}$ and $L = \begin{pmatrix} a & b \ c & d \end{pmatrix} \in GL_2^+(\mathbb{R})$ we define

(3.1)
$$
f(z) |_{k} L = f |_{k} L = f | L = (\det L)^{\frac{k}{2}} (cz + d)^{-k} f(Lz).
$$

Let $\Gamma' \subset \Gamma(1)$ (a subgroup of finite index). We say $f(z)$ is a weakly holomorphic modular form of weight k on Γ' if $f(z)$ is holomorphic on the upper half plane H, $f(z) \mid_k L = f(z)$ for all L in $Γ'$, and $f(z)$ has at most polar singularities in the local variables at the cusps of the fundamental region of Γ'. We say $f(z)$ is a weakly holomorphic modular function if it is a weakly holomorphic modular form of weight 0. We say $f(z)$ is an entire modular form of weight k on Γ' if it is a weakly holomorphic modular form that is holomorphic at the cusps of the fundamental region of Γ' . We denote the space of entire modular forms of weight k on Γ' by $M_k(\Gamma').$

Suppose that $t \geq 5$ is prime. We need

$$
W_t = W = \begin{pmatrix} 0 & -1 \\ t & 0 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad V_a = \begin{pmatrix} a & \lambda \\ t & a' \end{pmatrix}, \quad B_t = \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix},
$$

$$
T_{b,t} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \quad Q_{b,t} = \begin{pmatrix} 1/t & b/t \\ 0 & 1 \end{pmatrix},
$$

where for $1 \le a \le t-1$, a' is uniquely defined by $1 \le a' \le t-1$, and $a'a - \lambda t = 1$. We have

(3.2)
$$
B_t R^{at} = W_t V_a T_{-a'/t}
$$

(3.3)
$$
R^{at} W_t = W_{t^2} Q_{a,t}.
$$

We define

(3.4)
$$
\Phi_t(z) = \Phi(z) := \frac{\eta(z)}{\eta(t^2 z)}.
$$

Then $\Phi_t(z)$ is a modular function of $\Gamma_0(t)$,

(3.5)
$$
\Phi_t(z) | W_{t^2} = t \Phi_t(z)^{-1} \quad ([4, (24)]),
$$

and

(3.6)
$$
\Phi_t(z) | R^{at} = \sqrt{t} e^{\pi i (t-1)/4} e^{-\pi i a' t/12} \left(\frac{a'}{t}\right) \frac{\eta(z)}{\eta(z-a'/t)} \qquad ([4, (25)]).
$$

Although $E_2(z)$ is not a modular form, it well-known that

(3.7)
$$
\mathcal{E}_{2,t}(z) := \frac{1}{t-1} \left(t E_2(tz) - E_2(z) \right),
$$

is an entire modular form of weight 2 on $\Gamma_0(t)$ and

$$
(3.8) \t\t\t\t\mathcal{E}_{2,t}(z) | W_t = -\mathcal{E}_{2,t}(z).
$$

Proposition 3.1. Suppose $t \geq 5$ is prime, $K(z)$ is a weakly holomorphic modular function on $\Gamma_0(t)$, and

(3.9)
$$
S(z) = \mathcal{E}_{2,t}(tz) K^*(tz) \frac{\eta(z)}{\eta(t^2 z)} - \chi_{12}(t) \eta(z) \sum_{n=m}^{\infty} \left(\frac{1-24n}{t}\right) \beta_t(n) q^{n-\frac{1}{24}},
$$

where

(3.10)
$$
\mathcal{E}_{2,t}(z) \frac{K(z)}{\eta(z)} = \sum_{n=m}^{\infty} \beta_t(n) q^{n - \frac{1}{24}},
$$

and

(3.11)
$$
K^*(z) = K(z) | W_t.
$$

Then $S(z)$ is a weakly holomorphic modular form of weight 2 on $\Gamma_0(t)$.

Proof. Suppose $t \geq 5$ is prime and $K(z)$, $K^*(z)$, $S(z)$ are defined as in the statement of the proposition. The function

(3.12)
$$
H(z) := \mathcal{E}_{2,t}(tz) \, \Phi_t(z) \, K^*(tz)
$$

is a weakly holomorphic modular form of weight 2 on $\Gamma_0(t^2)$. As in [\[4,](#page-14-8) Lemma1] the function

(3.13)
$$
S_1(z) := \sum_{a=0}^{t-1} H(z) \mid R^{at}
$$

is a weakly holomorphic modular form of weight 2 on $\Gamma_0(t)$. Utilizing [\(3.2\)](#page-7-0), [\(3.6\)](#page-7-1), [\(3.8\)](#page-7-2) and the evaluation of a quadratic Gauss sum $[5, (1.7)]$ we find that (3.14)

$$
S_1(z) = \mathcal{E}_{2,t}(tz) K^*(tz) \frac{\eta(z)}{\eta(t^2 z)} - \frac{1}{\sqrt{t}} e^{\pi i (t-1)/4} \eta(z) \sum_{a'=1}^{t-1} e^{-\pi i a' t/12} \left(\frac{a'}{t}\right) \mathcal{E}_{2,t}(z-a'/t) \frac{K(z-a'/t)}{\eta(z-a'/t)}
$$

Here we have also used the fact that

(3.15)
$$
\mathcal{E}_{2,t}(z) | R^{at} = -\frac{1}{t} \mathcal{E}_{2,t}(z - a'/t),
$$

where $a a' \equiv 1 \pmod{t}$. Hence

$$
S_1(z) = S(z).
$$

This gives the result.

We illustrate Proposition [3.1](#page-7-3) with two examples:

(3.16)
$$
S(z) = \mathcal{E}_{2,5}(z) \left(\frac{\eta(z)}{\eta(5z)}\right)^6 \qquad (K(z) = 1 \text{ and } t = 5)
$$

and

(3.17)
$$
S(z) = \mathcal{E}_{2,7}(z) \left(\left(\frac{\eta(z)}{\eta(7z)} \right)^8 + 3 \left(\frac{\eta(z)}{\eta(7z)} \right)^4 \right) \qquad (K(z) = 1 \text{ and } t = 7).
$$

Corollary 3.2. Suppose $t \geq 5$ is prime and $S(z)$, $K(z)$ and the sequence $\beta_t(n)$ are defined as in Proposition [3.1.](#page-7-3) Then

(3.18)
$$
S(z) | W_t = -\eta(tz) \sum_{tn-s_t \ge m} \beta_t (tn-s_t) q^{n-\frac{t}{24}}.
$$

Proof. The result follows easily from (3.3) , (3.5) and (3.8) .

We illustrate the corollary by applying W to both sides of the equations (3.16) – (3.17) : (3.19)

$$
\sum_{n=1}^{\infty} \beta_5 (5n-1) q^{n-\frac{5}{24}} = 5^3 \frac{\mathcal{E}_{2,5}(z)}{\eta(5z)} \left(\frac{\eta(5z)}{\eta(z)}\right)^6 \qquad (K(z) = 1 \text{ and } t = 5)
$$

and

(3.20)

$$
\sum_{n=1}^{\infty} \beta_7(7n-2)q^{n-\frac{7}{24}} = 7^2 \frac{\mathcal{E}_{2,7}(z)}{\eta(7z)} \left(3\left(\frac{\eta(7z)}{\eta(z)}\right)^4 + 7^2\left(\frac{\eta(7z)}{\eta(z)}\right)^8\right) \qquad (K(z) = 1 \text{ and } t = 7).
$$

For t and $K(z)$ as in Proposition [3.1](#page-7-3) we define

(3.21)
$$
\Psi_{t,K}(z) = \Psi_t(z) = \mathcal{E}_{2,t}(tz) \frac{K^*(tz)}{\eta(t^2 z)} - \chi_{12}(t) \sum_{n=m}^{\infty} \left(\frac{1-24m}{t}\right) \beta_t(n) q^{n-\frac{1}{24}}
$$

$$
- \sum_{t^2 n - s \cdot t \ge m} \beta_t(t^2 n - s_t) q^{n-\frac{1}{24}},
$$

where $K^*(z)$ and the sequence $\beta_t(n)$ is defined in [\(3.10\)](#page-7-6)–[\(3.11\)](#page-8-2). We have the following analogue of [2.1.](#page-3-4)

Corollary 3.3. The function $\Psi_{t,K}(z) \eta(z)$ is a weakly holomorphic modular form of weight 2 on the full modular group $\Gamma(1)$.

Proof. Let $S(z)$ be defined as in [\(3.9\)](#page-7-7), so that $S(z)$ is a weakly holomorphic modular form of weight 2 on $\Gamma_0(t)$. By [\[14,](#page-14-12) Lemma 7], the function

$$
(3.22) \t S(z) + S(z) |W_t| U
$$

is a modular form of weight 2 on $\Gamma(1)$. Here $U = U_t$ is the Atkin operator

(3.23)
$$
g(z) | U_t = \frac{1}{t} \sum_{a=0}^{t-1} g\left(\frac{z+a}{t}\right).
$$

The result then follows from applying the U-operator to equation [\(3.18\)](#page-8-3). \Box

We illustrate the $K(z) = 1$ case of Corollary [3.3](#page-9-0) with two examples:

(3.24)
$$
\Psi_5(z) = \frac{E_4(z)^2 E_6(z)}{\eta(z)^{25}}
$$

and

(3.25)
$$
\Psi_7(z) = \frac{1}{\eta(z)^{49}} \left(E_4(z)^5 E_6(z) - 745 E_4(z)^2 E_6(z) \Delta(z) \right).
$$

We need a weight 2 analogue of [\[4,](#page-14-8) Lemma 3]. For $t = 5$, 7 or 13 the genus of $\Gamma_0(t)$ is zero, and a Hauptmodul is

.

(3.26)
$$
G_t(z) := \left(\frac{\eta(z)}{\eta(tz)}\right)^{24/(t-1)}
$$

This function satisfies

(3.27)
$$
G_t\left(\frac{-1}{tz}\right) = t^{12/(t-1)}G_t(z)^{-1}.
$$

Proposition 3.4. Suppose $t = 5$, 7 or 13, and let m be any negative integer such that $24m \neq 1$ (mod t). Suppose constants k_j ($1 \leq j \leq -m$) are chosen so that

(3.28) βt(n) = 0, for m + 1 ≤ n ≤ −1,

where

(3.29)
$$
K(z) = G_t(z)^{-m} + \sum_{k=1}^{-m-1} k_j G_t(z)^j
$$

and

(3.30)
$$
\sum_{n=m}^{\infty} \beta_t(n) q^{n-\frac{1}{24}} = \mathcal{E}_{2,t}(z) \frac{K(z)}{\eta(z)}.
$$

Then

(3.31)
$$
\beta_t(n) = 0, \qquad \text{for} \quad \left(\frac{1 - 24n}{t}\right) = -\left(\frac{1 - 24m}{t}\right).
$$

Proof. Suppose $t = 5$, 7 or 13, and m is a negative integer such that $24m \neq 1 \pmod{t}$. Suppose $K(z)$ is chosen so that [\(3.28\)](#page-9-1) holds. Let $S(z)$ be defined as in [\(3.9\)](#page-7-7), and define

(3.32)
$$
B(z) := S(z) + \chi_{12}(t) \left(\frac{1 - 24m}{t} \right) \mathcal{E}_{2,t}(z) K(z),
$$

so that

(3.33)
$$
B(z) | W_t = S^*(z) - \chi_{12}(t) \left(\frac{1 - 24m}{t} \right) \mathcal{E}_{2,t}(z) K^*(z),
$$

where

 (3.34) * $(z) = S(z) | W_t.$

Since $24m \not\equiv 1 \pmod{t}$, we see that

(3.35)
$$
\text{ord}_0(S(z)) = \text{ord}_{i\infty}(S^*(z)) > 0.
$$

From (3.27) and (3.29) we see that

(3.36)
$$
\operatorname{ord}_0(K(z)) = \operatorname{ord}_{i\infty}(K^*(z)) > 0
$$

and hence

$$
(3.37) \t\t \text{ord}_0(B(z)) > 0.
$$

Now

(3.38)
$$
\operatorname{ord}_{i\infty}\left(\mathcal{E}_{2,t}(tz)\,K^*(tz)\frac{\eta(z)}{\eta(t^2z)}\right) \geq t - \frac{1}{24}(t^2 - 1) > 0,
$$

for $t = 5, 7, 13$. By construction the coefficient of q^m in $B(z)$ is zero and so [\(3.28\)](#page-9-1), [\(3.38\)](#page-10-0) imply that

(3.39)
$$
\operatorname{ord}_{i\infty}(B(z)) \geq 0.
$$

Therefore $B(z)$ is an entire modular form of weight 2 and hence a multiple of $\mathcal{E}_{2,t}(z)$ since there are no nontrivial cusp forms of weight 2 on $\Gamma_0(t)$ for $t = 5$, 7 or 13 by [\[7\]](#page-14-13). This implies that $B(z)$ is identically zero by [\(3.37\)](#page-10-1). Hence

$$
(3.40)\quad \frac{B(z)}{E(q)} = q^{-s_t} \mathcal{E}_{2,t}(tz) \, K^*(tz) \frac{1}{E(q^{t^2})} - \chi_{12}(t) \sum_{n=m}^{\infty} \left(\left(\frac{1 - 24n}{t} \right) - \left(\frac{1 - 24m}{t} \right) \right) \, \beta_t(n) q^n = 0.
$$

Since $-24s_t - 1 \equiv 0 \pmod{t}$, this implies that $\beta_t(n) = 0$ whenever $\left(\frac{1-24n}{t}\right) = -\left(\frac{1-24m}{t}\right)$

 \Box

We illustrate Proposition [3.4](#page-9-4) with two examples:

$$
(3.41) \sum_{n=-2}^{\infty} \beta_5(n)q^n = \frac{\mathcal{E}_{2,5}(z)}{E(q)} \left(G_5(z)^2 + 5 G_5(z) \right)
$$

= $q^{-2} + 1 - 379 q^3 + 625 q^4 + 869 q^5 - 20125 q^8 + 23125 q^9 + 25636 q^{10} - 329236 q^{13} + \cdots$

In this example, $t = 5$ and $m = -2$, and we see that $\beta_5(n) = 0$ for $n \equiv 1, 2 \pmod{5}$. In our second example, $t = 7$ and $m = -1$.

(3.42)
\n
$$
\sum_{n=-1}^{\infty} \beta_7(n) q^n = \frac{\mathcal{E}_{2,7}(z)}{E(q)} G_7(z)
$$
\n(3.43)

 $= q^{-1} + 1 - 15 q^2 + 49 q^5 - 24 q^6 + 88 q^7 - 311 q^9 + 392 q^{12} - 182 q^{13} + 811 q^{14} - 1886 q^{16} + \cdots$

In this example we see that $\beta_7(n) = 0$ for $n \equiv 1, 3, 4 \pmod{7}$.

The function

(3.44)

$$
\frac{E_4(z)^2 E_6(z)}{\Delta(z)} = \frac{E_6(z)}{E_4(z)} j(z)
$$

= $q^{-1} - 196884 q - 42987520 q^2 - 2592899910 q^3 - 80983425024 q^4 - 1666013203000 q^5 + \cdots$

is a modular form of weight 2 on $\Gamma(1)$. As a modular form on $\Gamma_0(t)$ it has a simple pole at $i\infty$ and a pole of order t at $z = 0$. When $t = 5, 7$ or 13, it is straightforward to show that there are integers $a_{j,t}$ (-1 ≤ j ≤ t) such that

(3.45)
$$
\frac{E_6(z)}{E_4(z)}j(z) = \mathcal{E}_{2,t}(z) \sum_{j=-1}^t a_{j,t} G_t(z)^j.
$$

For example,

$$
(3.46)
$$
\n
$$
\frac{E_6(z)}{E_4(z)}j(z) = \mathcal{E}_{2,5}(z) \left(G_5(z) - 3^2 \cdot 5^5 \cdot 7 G_5(z)^{-1} - 2^3 \cdot 5^8 \cdot 13 G_5(z)^{-2} - 3^3 \cdot 5^{10} \cdot 7 G_5(z)^{-3} - 3 \cdot 2^3 \cdot 5^{13} G_5(z)^{-4} - 5^{16} G_5(z)^{-5} \right).
$$

Reducing (3.45) mod t^c we obtain a weight 2 analogue of [\[4,](#page-14-8) Lemma 4].

Lemma 3.5. We have

(3.47)
$$
\frac{E_6(z)}{E_4(z)}j(z) \equiv \mathcal{E}_{2,5}(z) \left(G_5(z) + 2 \cdot 31 \cdot 5^5 G_5(z)^{-1} \right) \pmod{5^8},
$$

(3.48)
$$
\frac{E_6(z)}{E_4(z)} j(z) \equiv \mathcal{E}_{2,7}(z) G_7(z) \pmod{7^4},
$$

(3.49)
$$
\frac{E_6(z)}{E_4(z)} j(z) \equiv \mathcal{E}_{2,13}(z) G_{13}(z) \pmod{13^2}.
$$

We also need [\[4,](#page-14-8) Lemma 4].

Lemma 3.6 (Atkin [\[4\]](#page-14-8)). *[Atkin* [\[4\]](#page-14-8)] We have

(3.50)
$$
j(z) \equiv G_5(z) + 750 + 3^2 \cdot 7 \cdot 5^5 G_5(z)^{-1} \pmod{5^8},
$$

(3.51)
$$
j(z) \equiv G_7(z) + 748 \pmod{7^4},
$$

(3.52)
$$
j(z) \equiv G_{13}(z) + 70 \pmod{13^2}.
$$

Remark 3.7. In equation [\(3.50\)](#page-11-1) we have corrected a misprint in [\[4,](#page-14-8) Lemma 4].

To handle the $(t, c) = (5, 6)$ case of Theorem [1.6](#page-2-1) we will need

Lemma 3.8.

(3.53)
$$
\frac{E_6(z)}{E_4(z)} j(z) \equiv \mathcal{E}_{2,5}(z) \left(G_5(z) + 2 \cdot 5^5 G_5(z)^{-1} \right) \pmod{5^6},
$$

(3.54)
$$
\frac{E_6(z)}{E_4(z)}j(z)^2 \equiv \mathcal{E}_{2,5}(z)\left(2\cdot 3\cdot 5^3 G_5(z) + G_5(z)^2\right) \pmod{5^6},
$$

and

$$
(3.55) \qquad \frac{E_6(z)}{E_4(z)}j(z)^a \equiv \mathcal{E}_{2,5}(z)\left(\varepsilon_{1,a}\,G_5(z)^{a-2} + \varepsilon_{2,a}\,G_5(z)^{a-1} + G_5(z)^a\right) \pmod{5^6},
$$

for $a \geq 3$, where $\varepsilon_{1,a}$, $\varepsilon_{2,a}$ are integers satisfying

(3.56)
$$
\varepsilon_{1,a} \equiv 0 \pmod{5^5}
$$
 and $\varepsilon_{2,a} \equiv 0 \pmod{5^3}$.

Proof. The result can be proved from Lemmas [3.5](#page-11-2) and [3.6,](#page-11-3) some calculation and an easy induction argument.

We need bases for $M_{2+12s_{\ell}}(\Gamma_0(t))$ for $t=5, 7, 13$. The following result follows from [\[7\]](#page-14-13) and by checking the modular forms involved are holomorphic at the cusps $i\infty$ and 0.

Lemma 3.9. Suppose $t = 5$, 7 or 13 and $\ell > 3$ is prime. Then

(3.57)
$$
\dim M_{2+12s_{\ell}}(\Gamma_0(t)) = 1 + (1+t) s_{\ell},
$$

and the set

(3.58)
$$
\{ \mathcal{E}_{2,t}(z) \Delta(z)^{s_{\ell}} G_t(z)^a : -ts_{\ell} \le a \le s_{\ell} \}
$$

is a basis for $M_{2+12s_{\ell}}(\Gamma_0(t))$.

We are now ready to prove Theorem [1.6.](#page-2-1) We have two cases:

Case 1. In the first case we assume that $(t, c) = (5, 5), (7, 4)$ or $(13, 2)$. Suppose $\ell > 3$ is prime and $\ell \neq t$. By [\(2.24\)](#page-5-1) we have

(3.59)
$$
\mathcal{A}_{\ell}(z) = \sum_{n=1}^{s_{\ell}} b_{n,\ell} \frac{E_6(z)}{E_4(z)} \frac{j(z)^n}{\eta(z)}.
$$

By Theorem [1.1,](#page-1-2) equation [\(2.21\)](#page-5-0) and Lemma [3.9](#page-12-0) we have

(3.60)
$$
\mathcal{A}_{\ell}(z) = \sum_{n=-ts_{\ell}}^{s_{\ell}} d_{n,\ell} \frac{\mathcal{E}_{2,t}(z)}{\eta(z)} G_{t}(z)^{n},
$$

for some integers $d_{n,\ell}$ ($-ts_{\ell} \leq n \leq s_{\ell}$). Now let

(3.61)
$$
K(z) = \sum_{n=1}^{s_{\ell}} d_{n,\ell} G_t(z)^n.
$$

By using Lemmas [3.5](#page-11-2) and [3.6](#page-11-3) to reduce equation (3.59) modulo t^c and comparing the result with [\(3.60\)](#page-12-2) we deduce that

(3.62)
$$
\mathcal{A}_{\ell}(z) \equiv \mathcal{E}_{2,t}(z) \frac{K(z)}{\eta(z)} \pmod{t^{c}}
$$

and that

$$
(3.63) \t d_{n,\ell} \equiv 0 \pmod{t^c},
$$

for $-ts_\ell \leq n \leq 0$. By examining [\(3.60\)](#page-12-2) we see that

(3.64)
$$
\mathcal{A}_{\ell}(z) = \mathcal{E}_{2,t}(z) \frac{K(z)}{\eta(z)} + O(q^{-\frac{1}{24}}).
$$

So if we let

and

(3.65)
$$
\mathcal{E}_{2,t}(z) \frac{K(z)}{\eta(z)} = \sum_{n=-s_{\ell}}^{\infty} \beta_{t,\ell}(n) q^{n-\frac{1}{24}},
$$

then [\(3.62\)](#page-12-3) may be rewritten as

(3.66)
$$
\mathbf{a}(\ell^2 n - s_\ell) + \chi_{12}(\ell) \left(\left(\frac{1 - 24n}{\ell} \right) - 1 - \ell \right) \mathbf{a}(n) + \ell \mathbf{a} \left(\frac{n + s_\ell}{\ell^2} \right) \equiv \beta_{t,\ell}(n) \pmod{t^c}
$$

and from [\(3.64\)](#page-13-0) we have

(3.67)
$$
\mathbf{a}(\ell^2 n - s_\ell) + \chi_{12}(\ell) \left(\left(\frac{1 - 24n}{\ell} \right) - 1 - \ell \right) \mathbf{a}(n) + \ell \mathbf{a} \left(\frac{n + s_\ell}{\ell^2} \right) = \beta_{t,\ell}(n)
$$

for $-s_{\ell} \leq n \leq -1$. Equation [\(3.67\)](#page-13-1) implies that

$$
\beta_{t,\ell}(-s_{\ell}) = -\ell
$$

$$
\beta_{t,\ell}(n) = 0,
$$

for $-s_{\ell} \le n \le -1$. We can now apply Proposition [3.4](#page-9-4) with $m = -s_{\ell}$ since $1 - 24m = \ell^2$ and $t \ne \ell$. Hence

(3.70)
$$
\beta_{t,\ell}(n) = 0, \text{ provided } \left(\frac{1-24n}{t}\right) = -1.
$$

This gives Theorem [1.6](#page-2-1) when $(t, c) = (5, 5), (7, 4)$ or $(13, 2)$ by (3.66) .

Case 2. We consider the remaining case $(t, c) = (5, 6)$ and assume $\ell > 5$ is prime. We proceed as in Case 1. This time when we use Lemma [3.8](#page-12-4) to reduce (2.24) modulo 5⁶ we see that the only extra term occurs when $n = 1$. We find that with $K(z)$ as before we have

(3.71)
$$
\mathcal{A}_{\ell}(z) \equiv \mathcal{E}_{2,t}(z) \frac{K(z)}{\eta(z)} + b_{1,5} \cdot 2 \cdot 5^5 \frac{\mathcal{E}_{2,5}(z)}{\eta(z)} G_5(z)^{-1} \pmod{5^6}.
$$

All that remains is to show that

$$
(3.72) \t\t b_{1,5} \equiv 0 \pmod{5},
$$

since then (3.62) actually holds modulo $5⁶$ and the rest of the proof proceeds as in Case 1. Since $E_4(z) \equiv 1 \pmod{5}$ we may reduce [\(2.18\)](#page-4-3) modulo 5 to obtain

$$
(3.73) \qquad \ell \Xi_{\ell} \equiv (\chi_{12}(\ell)\ell(1+\ell) - c_{0,\ell}) \frac{E_6(z)}{E_4(z)} \frac{1}{\eta(z)} - \sum_{n=1}^{s_{\ell}} (24n+1)c_{n,\ell} \frac{E_6(z)}{E_4(z)} \frac{j(z)^n}{\eta(z)} \pmod{5}.
$$

But

$$
(3.74) \t S\ell(z) \equiv 0 \pmod{5},
$$

by Theorem 1.3 (ii). Hence

$$
(3.75) \qquad \ell \mathcal{A}_{\ell}(z) \equiv (\chi_{12}(\ell)\ell(1+\ell) - c_{0,\ell}) \frac{E_6(z)}{E_4(z)} \frac{1}{\eta(z)} - \sum_{n=1}^{s_{\ell}} (24n+1)c_{n,\ell} \frac{E_6(z)}{E_4(z)} \frac{j(z)^n}{\eta(z)} \pmod{5}
$$

and we see that $b_{1,5}$ the coefficient of $\frac{E_6(z)}{E_4(z)}$ $j(z)$ $\frac{J(z)}{\eta(z)}$ is divisible by 5 as required. This completes the proof of Theorem [1.6.](#page-2-1)

We close by illustrating Theorem [1.6](#page-2-1) when $t = 5$ and $\ell = 7$. In this case the theorem predicts that

$$
\mathbf{a}(49n-2) - \left(\frac{1-24n}{7}\right)\mathbf{a}(n) + 7\mathbf{a}\left(\frac{n+2}{49}\right) \equiv -8\,\mathbf{a}(n) \pmod{5^6},
$$

when $n \equiv 1, 2 \pmod{5}$. When $n = 1$ this says

$$
149077845 \equiv -280 \pmod{5^6},
$$

which is easy to check.

Acknowledgements

I would like to thank Ken Ono for sending me preprints of his recent work [\[12\]](#page-14-6), [\[13\]](#page-14-10).

REFERENCES

- 1. G. E. Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624 (2008), 133–142. URL: <http://dx.doi.org/10.1515/CRELLE.2008.083>
- 2. A. O. L. Atkin and F. G. Garvan, Relations between the ranks and cranks of partitions, Ramanujan J. 7 (2003), 343–366.
	- URL: <http://dx.doi.org/10.1023/A:1026219901284>
- 3. A. O. L. Atkin, Ramanujan congruences for $p_{-k}(n)$, Canad. J. Math. 20 (1968), 67-78; corrigendum, ibid. 21 (1968), 256.
	- URL: <http://cms.math.ca/cjm/v20/p67>
- 4. A. O. L. Atkin, *Multiplicative congruence properties and density problems for* $p(n)$, Proc. London Math. Soc. (3) 18 (1968), 563–576.
	- URL: <http://dx.doi.org/10.1112/plms/s3-18.3.563>
- 5. B. C. Berndt and R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107– 129.
- URL: <http://dx.doi.org/10.1090/S0273-0979-1981-14930-2>
- 6. K. Bringmann, On the explicit construction of higher deformations of partition statistics, Duke Math. J. 144 (2008), 195–233.
- URL: <http://dx.doi.org/10.1215/00127094-2008-035>
- 7. H. Cohen and J. Oesterlé, Dimensions des espaces de formes modulaires, Springer Lecture Notes, Vol. 627, 1977, 69–78.
	- URL: <http://dx.doi.org/10.1007/BFb0065297>
- 8. A. Folsom and K. Ono, The spt-function of Andrews, Proc. Natl. Acad. Sci. USA 105 (2008), 20152–20156. URL: <http://mathcs.emory.edu/~ono/publications-cv/pdfs/111.pdf>
- 9. K. C. Garrett, Private communication, October 18, 2007.
- 10. F. G. Garvan, Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank, Int. J. Number Theory 6 (2010), 1–29.
	- URL: <http://dx.doi.org/10.1142/S179304211000296X>
- 11. F. G. Garvan, Congruences for Andrews' spt-function modulo powers of 5, 7 and 13, in preparation. URL: <http://www.math.ufl.edu/~fgarvan/papers/spt2.pdf>
- 12. K. Ono, Congruences for the Andrews spt-function, Proc. Natl. Acad. Sci. USA, to appear. URL: <http://mathcs.emory.edu/~ono/publications-cv/pdfs/132.pdf>
- 13. K. Ono, The partition function and Hecke operators, preprint.
- 14. J.-P. Serre, Formes modulaires et fonctions zêta p-adiques in "Modular functions of one variable, III", (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191–268, Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973.

URL: http://dx.doi.org/10.1007/978-3-540-37802-0_4

Department of Mathematics, University of Florida, Gainesville, Florida 32611-8105 E-mail address: fgarvan@ufl.edu