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CONGRUENCES FOR ANDREWS’ SPT-FUNCTION

MODULO 32760 AND EXTENSION OF ATKIN’S

HECKE-TYPE PARTITION CONGRUENCES

F. G. GARVAN

Dedicated to the memory of A.J. (Alf) van der Poorten, my former teacher

Abstract. New congruences are found for Andrews’ smallest parts partition function spt(n). The
generating function for spt(n) is related to the holomorphic part α(24z) of a certain weak Maass

form M(z) of weight 3

2
. We show that a normalized form of the generating function for spt(n) is

an eigenform modulo 72 for the Hecke operators T (ℓ2) for primes ℓ > 3, and an eigenform modulo
p for p = 5, 7 or 13 provided that (ℓ, 6p) = 1. The result for the modulus 3 was observed earlier
by the author and considered by Ono and Folsom. Similar congruences for higher powers of p
(namely 56, 74 and 132) occur for the coefficients of the function α(z). Analogous results for the
partition function were found by Atkin in 1966. Our results depend on the recent result of Ono
that Mℓ(z/24) is a weakly holomorphic modular form of weight 3

2
for the full modular group

where

Mℓ(z) = M(z)|T (ℓ2)−
(3

ℓ

)

(1 + ℓ)M(z).

1. Introduction

Andrews [1] defined the function spt(n) as the number of smallest parts in the partitions of n. He
related this function to the second rank moment and proved some surprising congruences mod 5, 7
and 13. Rank and crank moments were introduced by A. O. L. Atkin and the author [2]. Bringmann
[6] studied analytic, asymptotic and congruence properties of the generating function for the second
rank moment as a quasi-weak Maass form. Further congruence properties of Andrews’ spt-function
were found by the author [10], [11], Folsom and Ono [8] and Ono [12]. In particular, Ono [12] proved
that if

(

1−24n
ℓ

)

= 1 then

(1.1) spt(ℓ2n− 1
24 (ℓ

2 − 1)) ≡ 0 (mod ℓ),

for any prime ℓ ≥ 5. This amazing result was originally conjectured by the author(i). Earlier special
cases were observed by Tina Garrett [9] and her students. Recently the author [11] has proved the
following congruences for powers of 5, 7 and 13. For a, b, c ≥ 3,

spt(5an+ δa) + 5 spt(5a−2n+ δa−2) ≡ 0 (mod 52a−3),(1.2)

spt(7bn+ λb) + 7 spt(7b−2n+ λb−2) ≡ 0 (mod 7⌊
1

2
(3b−2)⌋),(1.3)
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spt(13cn+ γc)− 13 spt(13c−2n+ γc−2) ≡ 0 (mod 13c−1),(1.4)

where δa, λb and γc are the least nonnegative residues of the reciprocals of 24 mod 5a, 7b and 13c

respectively.
As in [12], [11] we define

(1.5) a(n) := 12spt(n) + (24n− 1)p(n),

for n ≥ 0, and define

(1.6) α(z) :=
∑

n≥0

a(n)qn−
1
24 ,

where as usual q = exp(2πiz) and ℑ(z) > 0. We note that spt(0) = 0 and p(0) = 1. Bringmann
[6] showed that α(24z) is the holomorphic part of the weight 3

2 weak Maass form M(z) on Γ0(576)
with Nebentypus χ12 where

(1.7) M(z) := α(24z)− 3i

π
√
2

∫ i∞

−z

η(24τ) dτ

(−i(τ + z))
3
2

,

η(z) := q
1
24
∏∞

n=1(1− qn) is the Dedekind eta-function, the function α(z) is defined in (1.6), and

(1.8) χ12(n) =











1 if n ≡ ±1 (mod 12),

−1 if n ≡ ±5 (mod 12),

0 otherwise.

Ono [12] showed that for ℓ ≥ 5 prime, the operator

(1.9) T (ℓ2)− χ12(ℓ)ℓ(1 + ℓ)

annihilates the nonholomorphic part of M(z), and the function Mℓ(z/24) is a weakly holomorphic
modular form of weight 3

2 for the full modular group where

(1.10) Mℓ(z) = M(z)|T (ℓ2)− χ12(ℓ)(1 + ℓ)M(z) = α(24z)|T (ℓ2)− χ12(ℓ)(1 + ℓ)α(24z).

In fact he obtained

Theorem 1.1 (Ono [12]). If ℓ ≥ 5 is prime then the function

(1.11) Mℓ(z/24) η(z)
ℓ2

is an entire modular form of weight 1
2 (ℓ

2 + 3) for the full modular group Γ(1).

Applying this theorem Ono obtained

(1.12) Mℓ(z) ≡ 0 (mod ℓ).

The congruence (1.1) then follows easily.
Folsom and Ono [8] sketched the proof of the following

Theorem 1.2 (Folsom and Ono). If ℓ ≥ 5 is prime then

(1.13) spt(ℓ2n− sℓ) + χ12(ℓ)

(

1− 24n

ℓ

)

spt(n) + ℓ spt

(

n+ sℓ
ℓ2

)

≡ χ12(ℓ) (1 + ℓ) spt(n) (mod 3),

where

(1.14) sℓ =
1

24
(ℓ2 − 1).

This result was observed earlier by the author. In this paper we prove a much stronger result.
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Theorem 1.3. (i) If ℓ ≥ 5 is prime then

(1.15) spt(ℓ2n− sℓ) + χ12(ℓ)

(

1− 24n

ℓ

)

spt(n) + ℓ spt

(

n+ sℓ
ℓ2

)

≡ χ12(ℓ) (1 + ℓ) spt(n) (mod 72).

(ii) If ℓ ≥ 5 is prime, t = 5, 7 or 13 and ℓ 6= t then

(1.16) spt(ℓ2n− sℓ) + χ12(ℓ)

(

1− 24n

ℓ

)

spt(n) + ℓ spt

(

n+ sℓ
ℓ2

)

≡ χ12(ℓ) (1 + ℓ) spt(n) (mod t).

Of course this implies the

Corollary 1.4. If ℓ is prime and ℓ 6∈ {2, 3, 5, 7, 13} then

(1.17) spt(ℓ2n−sℓ)+χ12(ℓ)

(

1− 24n

ℓ

)

spt(n)+ℓ spt

(

n+ sℓ
ℓ2

)

≡ χ12(ℓ) (1+ℓ) spt(n) (mod 32760).

This congruence modulo 32760 = 23 · 32 · 5 · 7 · 13 is the congruence referred in the title of this
paper.

In 1966, Atkin [4] found a similar congruence for the partition function.

Theorem 1.5 (Atkin). Let t = 5, 7, or 13, and c = 6, 4, or 2 respectively. Suppose ℓ ≥ 5 is prime
and ℓ 6= t. If

(

1−24n
t

)

= −1, then

(1.18) ℓ3 p(ℓ2n− sℓ) + ℓχ12(ℓ)

(

1− 24n

ℓ

)

p(n) + p

(

n+ sℓ
ℓ2

)

≡ γt p(n) (mod tc),

where γt is an integral constant independent of n.

We find that there is a corresponding result for the function a(n) defined in (1.5).

Theorem 1.6. Let t = 5, 7, or 13, and c = 6, 4, or 2 respectively. Suppose ℓ ≥ 5 is prime and
ℓ 6= t. If

(

1−24n
t

)

= −1, then

(1.19) a(ℓ2n− sℓ) + χ12(ℓ)

(

1− 24n

ℓ

)

a(n) + ℓ a

(

n+ sℓ
ℓ2

)

≡ χ12(ℓ) (1 + ℓ)a(n) (mod tc).

In Section 2 we prove Theorem 1.3. The method involves reviewing the action of weight − 1
2 Hecke

operators T (ℓ2) on the function η(z)−1 and doing a careful study of the action of weight 3
2 Hecke

operators on the function d
dzη(z)

−1 modulo 5, 7, 13, 27 and 32. In Section 3 we prove Theorem 1.6.
The method involves extending Atkin’s [4] on modular functions to weight two modular forms on
Γ0(t) for t = 5, 7 and 13. The proof of both Theorems 1.3 and 1.6 depend on Ono’s Theorem 1.1.

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Atkin [3] showed essentially that applying certain weight
− 1

2 Hecke operators T (ℓ2) to the function η(z)−1 produces a function with the same multiplier

system as η(z)−1 and thus η(z) times this function is a certain polynomial (depending on ℓ) of
Klein’s modular invariant j(z). We review Ono’s [13] recent explicit form for these polynomials.
Although our proof does not depend on Ono’s result it is quite useful for computational purposes.
The action of the corresponding weight 3

2 Hecke operators on d
dzη(z)

−1 can be given in terms of the
same polynomials. See Theorem 2.3 below. To finish the proof of the theorem we need to make a
careful study of the action of these operators modulo 5, 7, 13, 27 and 32.

For ℓ ≥ 5 prime we define

(2.1) Zℓ(z) =
∞
∑

n=−sℓ

(

ℓ3 p(ℓ2n− sℓ) + ℓχ12(ℓ)

(

1− 24n

ℓ

)

p(n) + p

(

n+ sℓ
ℓ2

))

qn−
1

24 .
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Proposition 2.1 (Atkin [4]). The function Zℓ(z) η(z) is a modular function on the full modular
group Γ(1).

It follows that Zℓ(z) η(z) is a polynomial in j(z), where j(z) is Klein’s modular invariant

(2.2) j(z) :=
E4(z)

2

∆(z)
= q−1 + 744 + 196884q+ · · · ,

E2(z), E4(z), E6(z) are the usual Eisenstein series
(2.3)

E2(z) := 1− 24

∞
∑

n=1

σ1(n)q
n, E4(z) := 1 + 240

∞
∑

n=1

σ3(n)q
n, E6(z) := 1− 504

∞
∑

n=1

σ5(n)q
n,

σk(n) =
∑

d|n q
k, and ∆(z) is Ramanujan’s function

(2.4) ∆(z) := η(z)24 = q
∞
∏

n=1

(1 − qn)24.

In a recent paper, Ono [13] has found a nice formula for this polynomial. We define

(2.5) E(q) :=

∞
∏

n=1

(1− qn) = q−
1

24 η(z),

and a sequence of polynomials Am(x) ∈ Z[x] by

∞
∑

m=0

Am(x)qm = E(q)
E4(z)

2E6(z)

∆(z)

1

j(z)− x
(2.6)

= 1 + (x− 745)q + (x2 − 1489x+ 160511)q2 + · · · .

Theorem 2.2 (Ono [13]). For ℓ ≥ 5 prime

(2.7) Zℓ(z) η(z) = ℓ χ12(ℓ) +Asℓ(j(z)),

where Zℓ(z) is given in (2.1), and sℓ is given in (1.14).

We define a sequence of polynomials Cℓ(x) ∈ Z[x] by

Cℓ(x) := ℓ χ12(ℓ) +Asℓ(x),(2.8)

=

sℓ
∑

n=0

cn,ℓx
n,

so that

(2.9) Zℓ(z) η(z) = Cℓ(j(z)).

We define

(2.10) d(n) := (24n− 1) p(n),

so that

(2.11)

∞
∑

n=0

d(n)q24n−1 = q
d

dq

1

η(24z)
= −E2(24z)

η(24z)
,

and

(2.12) a(n) = 12spt(n) + d(n).



ANDREWS’ SPT-FUNCTION MODULO 32760 5

For ℓ ≥ 5 prime we define

(2.13) Ξℓ(z) =

∞
∑

n=−sℓ

(

d(ℓ2n− sℓ) + χ12(ℓ)

((

1− 24n

ℓ

)

− 1− ℓ

)

d(n) + ℓ d

(

n+ sℓ
ℓ2

))

qn−
1

24 .

We then have the following analogue of Theorem 2.2.

Theorem 2.3. For ℓ ≥ 5 prime we have

ℓΞℓ(z) η(z)∆(z)sℓ = −
sℓ
∑

n=0

cn,ℓ E4(z)
3n−1 ∆(z)sℓ−n (24nE6(z) + E4(z)E2(z))(2.14)

+ χ12(ℓ)ℓ(1 + ℓ)E2(z)∆(z)sℓ ,

where the coefficients cn,ℓ are defined by (2.6) and (2.8).

Proof. Suppose ℓ ≥ 5 is prime. In equation (2.9) we replace z by 24z, apply the operator q d
dq and

replace z by 1
24z to obtain

(2.15) ℓΞℓ(z) η(z) = 24C′
ℓ(j(z)) q

d

dq
(j(z)) + (χ12(ℓ)ℓ(1 + ℓ)− Cℓ(j(z))E2(z)

The result then follows easily from the identities
(2.16)

j(z)∆(z) = E4(z)
3, q

d

dq
(∆(z)) = ∆(z)E2(z), and q

d

dq
(j(z))∆(z) = −E4(z)

2E6(z),

which we leave as an easy exercise. �

We are now ready to prove Theorem 1.3. A standard calculation gives the following congruences.

(2.17) E4(z)
3 − 720∆(z) ≡ 1 (mod 65520), and E2(z) ≡ E4(z)

2E6(z) (mod 65520).

We now use (2.17) to reduce (2.15) modulo 65520.

ℓΞℓ(z) η(z)∆(z)sℓ

(2.18)

≡ −
sℓ
∑

n=0

cn,ℓ E4(z)
3n−1 ∆(z)sℓ−n

(

24nE6(z)(E4(z)
3 − 720∆(z)) + E4(z)

3E6(z)
)

+ χ12(ℓ)ℓ(1 + ℓ)E4(z)
2E6(z)∆(z)sℓ (mod 65520)

≡ −
sℓ
∑

n=0

(24n+ 1)cn,ℓE4(z)
3n+2 E6(z)∆(z)sℓ−n

+

sℓ
∑

n=0

720 · 24ncn,ℓE4(z)
3n−1 E6(z)∆(z)sℓ−n+1 + χ12(ℓ)ℓ(1 + ℓ)E4(z)

2E6(z)∆(z)sℓ (mod 65520)

≡ (720 c1,ℓ − c0,ℓ + χ12(ℓ)ℓ(1 + ℓ)) E4(z)
2 E6(z)∆(z)sℓ

+

sℓ−1
∑

n=1

(720 · 24(n+ 1)cn+1,ℓ − (24n+ 1)cn,ℓ) E4(z)
3n+2 E6(z)∆(z)sℓ−n

− (24sℓ + 1)csℓE4(z)
3sℓ+2 E6(z) (mod 65520).
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We define

(2.19) Aℓ(z) :=

∞
∑

n=−sℓ

(

a(ℓ2n− sℓ) + χ12(ℓ)

((

1− 24n

ℓ

)

− 1− ℓ

)

a(n) + ℓ a

(

n+ sℓ
ℓ2

))

qn−
1

24

and
(2.20)

Sℓ(z) :=

∞
∑

n=1

(

spt(ℓ2n− sℓ) + χ12(ℓ)

((

1− 24n

ℓ

)

− 1− ℓ

)

spt(n) + ℓ spt

(

n+ sℓ
ℓ2

))

qn−
1

24 ,

so that

(2.21) Aℓ(z) = 12Sℓ(z) + Ξℓ(z) = Mℓ(z/24).

By Theorem 1.1 and equation (1.10) we see that the function

(2.22) ℓAℓ(z) η(z)∆(z)sℓ ∈ M 1
2 (ℓ

2+3)
(Γ(1)),

the space of entire modular forms of weight 1
2 (ℓ

2 + 3) on Γ(1). Since 1
2 (ℓ

2 + 3) = 2 + 12sℓ the set

(2.23) {E4(z)
3n−1 E6(z)∆(z)sℓ−n : 1 ≤ n ≤ sℓ}

is a basis. Hence there are integers bn,ℓ (1 ≤ n ≤ sℓ) such that

(2.24) Aℓ(z) η(z)∆(z)sℓ =

sℓ
∑

n=1

bn,ℓE4(z)
3n−1 E6(z)∆(z)sℓ−n.

Using (2.17) we find that

Aℓ(z) η(z)∆(z)sℓ ≡ −720b1,ℓE4(z)
2 E6(z)∆(z)sℓ(2.25)

+

sℓ−1
∑

n=1

(bn,ℓ − 720bn+1,ℓ)E4(z)
3n+2 E6(z)∆(z)sℓ−n

+ bsℓ,ℓE4(z)
3sℓ+2 E6(z) (mod 65520).

By (2.18), (2.21) and (2.24) we deduce that there are integers an,ℓ (0 ≤ n ≤ sℓ) such that

(2.26) 12 ℓSℓ(z) η(z)∆(z)sℓ ≡
sℓ
∑

n=0

an,ℓE4(z)
3n+2 E6(z)∆(z)sℓ−n (mod 65520).

It follows that

(2.27) 12 ℓSℓ(z) ≡ 0 (mod 65520),

since

ord i∞ (12 ℓSℓ(z) η(z)∆(z)sℓ) = sℓ + 1,(2.28)

0 ≤ ord i∞

(

E4(z)
3n+2 E6(z)∆(z)sℓ−n

)

≤ sℓ,

E4(z)
3n+2 E6(z)∆(z)sℓ−n = qsℓ−n + · · · ,

for 0 ≤ n ≤ sℓ and all functions have integral coefficients. Since 65550 = 24 · 32 · 5 · 7 · 13, the
congruence (2.27) implies Part (ii) of Theorem 1.3. To prove Part (i) we need to work a little
harder. We note that the congruence (2.27) does imply

(2.29) Sℓ(z) ≡ 0 (mod 12).

We need to show this congruence actually holds modulo 72.
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First we show the congruence holds modulo 8 by studying Ξℓ(z) modulo 32. We need the con-
gruences,

(2.30) E2(z) ≡ E4(z)E6(z) + 16∆(z) (mod 32), and E4(z)
2 ≡ 1 (mod 32),

which are routine to prove. We proceed as in the proof of (2.18) to find that

ℓΞℓ(z) η(z)∆(z)sℓ(2.31)

≡ (χ12(ℓ)ℓ(1 + ℓ)− c0,ℓ − 16c1,ℓ) E2(z)∆(z)sℓ

−
sℓ−1
∑

n=1

((24n+ 1)cn,ℓ + 16cn+1,ℓ) E4(z)
3n−1E6(z)∆(z)sℓ−n

− (24sℓ + 1)csℓE4(z)
3sℓ−1 E6(z) (mod 32).

By (2.31), (2.21) and (2.24) we deduce that there are integers a′n,ℓ (0 ≤ n ≤ sℓ) such that

(2.32) 12 ℓSℓ(z) η(z)∆(z)sℓ ≡
sℓ
∑

n=1

a′n,ℓE4(z)
3n−1 E6(z)∆(z)sℓ−n + a′0,ℓE2(z)∆(z)sℓ (mod 32).

Arguing as before, it follows that

(2.33) 12Sℓ(z) ≡ 0 (mod 32), and Sℓ(z) ≡ 0 (mod 8).

To complete the proof, we need to study Ξℓ(z) modulo 27. We need the congruences,

(2.34) E2(z) ≡ E4(z)
5 + 18∆(z) (mod 27) and E6(z) ≡ E4(z)

6 (mod 27),

which are routine to prove. We proceed as in the proof of (2.18) and (2.31) to find that

ℓΞℓ(z) η(z)∆(z)sℓ(2.35)

≡ (χ12(ℓ)ℓ(1 + ℓ)− c0,ℓ − 18c1,ℓ) E2(z)∆(z)sℓ

−
sℓ−1
∑

n=1

((24n+ 1)cn,ℓ + 18cn+1,ℓ) E4(z)
3n−1E6(z)∆(z)sℓ−n

− (24sℓ + 1)csℓE4(z)
3sℓ−1 E6(z) (mod 27).

By (2.35), (2.21) and (2.24) we deduce that there are integers a′′n,ℓ (0 ≤ n ≤ sℓ) such that

(2.36) 12 ℓSℓ(z) η(z)∆(z)sℓ ≡
sℓ
∑

n=1

a′′n,ℓE4(z)
3n−1 E6(z)∆(z)sℓ−n + a′′0,ℓE2(z)∆(z)sℓ (mod 27).

Arguing as before, it follows that

(2.37) 12Sℓ(z) ≡ 0 (mod 27), and Sℓ(z) ≡ 0 (mod 9).

The congruences (2.33) and (2.37) give (1.15) and this completes the proof of Theorem 1.3.

3. Proof of Theorem 1.6

In this section we prove Theorem 1.6. Atkin [4] proved Theorem 1.5 by constructing certain
special modular functions on Γ0(t) and Γ0(t

2) for t = 5, 7 and 13. We attack the problem by
extending Atkin’s results to the corresponding weight 2 case.

Let GL+
2 (R) denote the group of all real 2 × 2 matrices with positive determinant. GL+

2 (R)
acts on the complex upper half plane H by linear fractional transformations. We define the slash
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operator for modular forms of integer weight. Let k ∈ Z. For a function f : H −→ C and

L =

(

a b
c d

)

∈ GL+
2 (R) we define

(3.1) f(z) |k L = f |k L = f | L = (detL)
k
2 (cz + d)−kf(Lz).

Let Γ′ ⊂ Γ(1) (a subgroup of finite index). We say f(z) is a weakly holomorphic modular form of
weight k on Γ′ if f(z) is holomorphic on the upper half plane H, f(z) |k L = f(z) for all L in
Γ′, and f(z) has at most polar singularities in the local variables at the cusps of the fundamental
region of Γ′. We say f(z) is a weakly holomorphic modular function if it is a weakly holomorphic
modular form of weight 0. We say f(z) is an entire modular form of weight k on Γ′ if it is a weakly
holomorphic modular form that is holomorphic at the cusps of the fundamental region of Γ′. We
denote the space of entire modular forms of weight k on Γ′ by Mk(Γ

′).
Suppose that t ≥ 5 is prime. We need

Wt = W =

(

0 −1
t 0

)

, R =

(

1 0
−1 1

)

, Va =

(

a λ
t a′

)

, Bt =

(

t 0
0 1

)

,

Tb,t =

(

1 b
0 1

)

, Qb,t =

(

1/t b/t
0 1

)

,

where for 1 ≤ a ≤ t− 1, a′ is uniquely defined by 1 ≤ a′ ≤ t− 1, and a′a− λt = 1. We have

Bt R
at = Wt Va T−a′/t(3.2)

Rat Wt = Wt2 Qa,t.(3.3)

We define

(3.4) Φt(z) = Φ(z) :=
η(z)

η(t2z)
.

Then Φt(z) is a modular function of Γ0(t),

(3.5) Φt(z) | Wt2 = tΦt(z)
−1 ([4, (24)]),

and

(3.6) Φt(z) | Rat =
√
t eπi(t−1)/4 e−πia′t/12

(

a′

t

)

η(z)

η(z − a′/t)
([4, (25)]).

Although E2(z) is not a modular form, it well-known that

(3.7) E2,t(z) :=
1

t− 1
(t E2(tz)− E2(z)) ,

is an entire modular form of weight 2 on Γ0(t) and

(3.8) E2,t(z) | Wt = −E2,t(z).
Proposition 3.1. Suppose t ≥ 5 is prime, K(z) is a weakly holomorphic modular function on Γ0(t),
and

(3.9) S(z) = E2,t(tz)K∗(tz)
η(z)

η(t2z)
− χ12(t) η(z)

∞
∑

n=m

(

1− 24n

t

)

βt(n)q
n− 1

24 ,

where

(3.10) E2,t(z)
K(z)

η(z)
=

∞
∑

n=m

βt(n)q
n− 1

24 ,
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and

(3.11) K∗(z) = K(z) | Wt.

Then S(z) is a weakly holomorphic modular form of weight 2 on Γ0(t).

Proof. Suppose t ≥ 5 is prime and K(z), K∗(z), S(z) are defined as in the statement of the propo-
sition. The function

(3.12) H(z) := E2,t(tz)Φt(z)K
∗(tz)

is a weakly holomorphic modular form of weight 2 on Γ0(t
2). As in [4, Lemma1] the function

(3.13) S1(z) :=

t−1
∑

a=0

H(z) | Rat

is a weakly holomorphic modular form of weight 2 on Γ0(t). Utilizing (3.2), (3.6), (3.8) and the
evaluation of a quadratic Gauss sum [5, (1.7)] we find that
(3.14)

S1(z) = E2,t(tz)K∗(tz)
η(z)

η(t2z)
− 1√

t
eπi(t−1)/4 η(z)

t−1
∑

a′=1

e−πia′t/12

(

a′

t

)

E2,t(z − a′/t)
K(z − a′/t)

η(z − a′/t)

Here we have also used the fact that

(3.15) E2,t(z) | Rat = −1

t
E2,t(z − a′/t),

where a a′ ≡ 1 (mod t). Hence

S1(z) = S(z).

This gives the result. �

We illustrate Proposition 3.1 with two examples:

S(z) = E2,5(z)
(

η(z)

η(5z)

)6

(K(z) = 1 and t = 5)(3.16)

and

S(z) = E2,7(z)
(

(

η(z)

η(7z)

)8

+ 3

(

η(z)

η(7z)

)4
)

(K(z) = 1 and t = 7).(3.17)

Corollary 3.2. Suppose t ≥ 5 is prime and S(z), K(z) and the sequence βt(n) are defined as in
Proposition 3.1. Then

(3.18) S(z) | Wt = −η(tz)
∑

tn−st≥m

βt(tn− st)q
n− t

24 .

Proof. The result follows easily from (3.3), (3.5) and (3.8). �

We illustrate the corollary by applying W to both sides of the equations (3.16)–(3.17):

∞
∑

n=1

β5(5n− 1)qn−
5

24 = 53
E2,5(z)
η(5z)

(

η(5z)

η(z)

)6

(K(z) = 1 and t = 5)

(3.19)

and
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∞
∑

n=1

β7(7n− 2)qn−
7

24 = 72
E2,7(z)
η(7z)

(

3

(

η(7z)

η(z)

)4

+ 72
(

η(7z)

η(z)

)8
)

(K(z) = 1 and t = 7).

(3.20)

For t and K(z) as in Proposition 3.1 we define

Ψt,K(z) = Ψt(z) = E2,t(tz)
K∗(tz)

η(t2z)
− χ12(t)

∞
∑

n=m

(

1− 24m

t

)

βt(n)q
n− 1

24(3.21)

−
∑

t2n−st≥m

βt(t
2n− st)q

n− 1

24 ,

where K∗(z) and the sequence βt(n) is defined in (3.10)–(3.11). We have the following analogue of
2.1.

Corollary 3.3. The function Ψt,K(z) η(z) is a weakly holomorphic modular form of weight 2 on the
full modular group Γ(1).

Proof. Let S(z) be defined as in (3.9), so that S(z) is a weakly holomorphic modular form of weight
2 on Γ0(t). By [14, Lemma 7], the function

(3.22) S(z) + S(z) | Wt | U
is a modular form of weight 2 on Γ(1). Here U = Ut is the Atkin operator

(3.23) g(z) | Ut =
1

t

t−1
∑

a=0

g

(

z + a

t

)

.

The result then follows from applying the U -operator to equation (3.18). �

We illustrate the K(z) = 1 case of Corollary 3.3 with two examples:

Ψ5(z) =
E4(z)

2 E6(z)

η(z)25
(3.24)

and

Ψ7(z) =
1

η(z)49
(

E4(z)
5E6(z)− 745E4(z)

2 E6(z)∆(z)
)

.(3.25)

We need a weight 2 analogue of [4, Lemma 3]. For t = 5, 7 or 13 the genus of Γ0(t) is zero, and
a Hauptmodul is

(3.26) Gt(z) :=

(

η(z)

η(tz)

)24/(t−1)

.

This function satisfies

(3.27) Gt

(−1

tz

)

= t12/(t−1)Gt(z)
−1.

Proposition 3.4. Suppose t = 5, 7 or 13, and let m be any negative integer such that 24m 6≡ 1
(mod t). Suppose constants kj (1 ≤ j ≤ −m) are chosen so that

(3.28) βt(n) = 0, for m+ 1 ≤ n ≤ −1,

where

(3.29) K(z) = Gt(z)
−m +

−m−1
∑

k=1

kjGt(z)
j
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and

(3.30)

∞
∑

n=m

βt(n)q
n− 1

24 = E2,t(z)
K(z)

η(z)
.

Then

(3.31) βt(n) = 0, for

(

1− 24n

t

)

= −
(

1− 24m

t

)

.

Proof. Suppose t = 5, 7 or 13, and m is a negative integer such that 24m 6≡ 1 (mod t). Suppose
K(z) is chosen so that (3.28) holds. Let S(z) be defined as in (3.9), and define

(3.32) B(z) := S(z) + χ12(t)

(

1− 24m

t

)

E2,t(z)K(z),

so that

(3.33) B(z) | Wt = S∗(z)− χ12(t)

(

1− 24m

t

)

E2,t(z)K∗(z),

where

(3.34) S∗(z) = S(z) | Wt.

Since 24m 6≡ 1 (mod t), we see that

(3.35) ord 0(S(z)) = ord i∞(S∗(z)) > 0.

From (3.27) and (3.29) we see that

(3.36) ord 0(K(z)) = ord i∞(K∗(z)) > 0

and hence

(3.37) ord 0(B(z)) > 0.

Now

(3.38) ord i∞

(

E2,t(tz)K∗(tz)
η(z)

η(t2z)

)

≥ t− 1

24
(t2 − 1) > 0,

for t = 5, 7, 13. By construction the coefficient of qm in B(z) is zero and so (3.28), (3.38) imply that

(3.39) ord i∞(B(z)) ≥ 0.

Therefore B(z) is an entire modular form of weight 2 and hence a multiple of E2,t(z) since there are
no nontrivial cusp forms of weight 2 on Γ0(t) for t = 5, 7 or 13 by [7]. This implies that B(z) is
identically zero by (3.37). Hence

(3.40)
B(z)

E(q)
= q−stE2,t(tz)K∗(tz)

1

E(qt2)
− χ12(t)

∞
∑

n=m

((

1− 24n

t

)

−
(

1− 24m

t

))

βt(n)q
n = 0.

Since −24st − 1 ≡ 0 (mod t), this implies that βt(n) = 0 whenever
(

1−24n
t

)

= −
(

1−24m
t

)

. �

We illustrate Proposition 3.4 with two examples:
∞
∑

n=−2

β5(n)q
n =

E2,5(z)
E(q)

(

G5(z)
2 + 5G5(z)

)

(3.41)

= q−2 + 1− 379 q3 + 625 q4 + 869 q5 − 20125 q8 + 23125 q9 + 25636 q10 − 329236 q13 + · · · .
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In this example, t = 5 and m = −2, and we see that β5(n) = 0 for n ≡ 1, 2 (mod 5). In our second
example, t = 7 and m = −1.

∞
∑

n=−1

β7(n)q
n =

E2,7(z)
E(q)

G7(z)

(3.42)

= q−1 + 1− 15 q2 + 49 q5 − 24 q6 + 88 q7 − 311 q9 + 392 q12 − 182 q13 + 811 q14 − 1886 q16 + · · · .
(3.43)

In this example we see that β7(n) = 0 for n ≡ 1, 3, 4 (mod 7).
The function

E4(z)
2 E6(z)

∆(z)
=

E6(z)

E4(z)
j(z)

(3.44)

= q−1 − 196884 q− 42987520 q2 − 2592899910 q3− 80983425024 q4 − 1666013203000 q5+ · · ·
is a modular form of weight 2 on Γ(1). As a modular form on Γ0(t) it has a simple pole at i∞ and
a pole of order t at z = 0. When t = 5, 7 or 13, it is straightforward to show that there are integers
aj,t (−1 ≤ j ≤ t) such that

(3.45)
E6(z)

E4(z)
j(z) = E2,t(z)

t
∑

j=−1

aj,tGt(z)
j .

For example,

E6(z)

E4(z)
j(z) = E2,5(z)

(

G5(z)− 32 · 55 · 7G5(z)
−1 − ·23 · 58 · 13G5(z)

−2 − ·33 · 510 · 7G5(z)
−3

(3.46)

−3 · 23 · 513 G5(z)
−4 − 516 G5(z)

−5
)

.

Reducing (3.45) mod tc we obtain a weight 2 analogue of [4, Lemma 4].

Lemma 3.5. We have

E6(z)

E4(z)
j(z) ≡ E2,5(z)

(

G5(z) + 2 · 31 · 55 G5(z)
−1
)

(mod 58),(3.47)

E6(z)

E4(z)
j(z) ≡ E2,7(z)G7(z) (mod 74),(3.48)

E6(z)

E4(z)
j(z) ≡ E2,13(z)G13(z) (mod 132).(3.49)

We also need [4, Lemma 4].

Lemma 3.6 (Atkin [4]). [Atkin [4]] We have

j(z) ≡ G5(z) + 750 + 32 · 7 · 55 G5(z)
−1 (mod 58),(3.50)

j(z) ≡ G7(z) + 748 (mod 74),(3.51)

j(z) ≡ G13(z) + 70 (mod 132).(3.52)

Remark 3.7. In equation (3.50) we have corrected a misprint in [4, Lemma 4].

To handle the (t, c) = (5, 6) case of Theorem 1.6 we will need
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Lemma 3.8.

E6(z)

E4(z)
j(z) ≡ E2,5(z)

(

G5(z) + 2 · 55 G5(z)
−1
)

(mod 56),(3.53)

E6(z)

E4(z)
j(z)2 ≡ E2,5(z)

(

2 · 3 · 53G5(z) +G5(z)
2
)

(mod 56),(3.54)

and
E6(z)

E4(z)
j(z)a ≡ E2,5(z)

(

ε1,aG5(z)
a−2 + ε2,a G5(z)

a−1 +G5(z)
a
)

(mod 56),(3.55)

for a ≥ 3, where ε1,a, ε2,a are integers satisfying

(3.56) ε1,a ≡ 0 (mod 55) and ε2,a ≡ 0 (mod 53).

Proof. The result can be proved from Lemmas 3.5 and 3.6, some calculation and an easy induction
argument. �

We need bases for M2+12sℓ(Γ0(t)) for t = 5, 7, 13. The following result follows from [7] and by
checking the modular forms involved are holomorphic at the cusps i∞ and 0.

Lemma 3.9. Suppose t = 5, 7 or 13 and ℓ > 3 is prime. Then

(3.57) dimM2+12sℓ(Γ0(t)) = 1 + (1 + t) sℓ,

and the set

(3.58) {E2,t(z)∆(z)sℓ Gt(z)
a : −tsℓ ≤ a ≤ sℓ}

is a basis for M2+12sℓ(Γ0(t)).

We are now ready to prove Theorem 1.6. We have two cases:

Case 1. In the first case we assume that (t, c) = (5, 5), (7, 4) or (13, 2). Suppose ℓ > 3 is prime and
ℓ 6= t. By (2.24) we have

(3.59) Aℓ(z) =

sℓ
∑

n=1

bn,ℓ
E6(z)

E4(z)

j(z)n

η(z)
.

By Theorem 1.1, equation (2.21) and Lemma 3.9 we have

(3.60) Aℓ(z) =

sℓ
∑

n=−tsℓ

dn,ℓ
E2,t(z)
η(z)

Gt(z)
n,

for some integers dn,ℓ (−tsℓ ≤ n ≤ sℓ). Now let

(3.61) K(z) =

sℓ
∑

n=1

dn,ℓGt(z)
n.

By using Lemmas 3.5 and 3.6 to reduce equation (3.59) modulo tc and comparing the result with
(3.60) we deduce that

(3.62) Aℓ(z) ≡ E2,t(z)
K(z)

η(z)
(mod tc)

and that

(3.63) dn,ℓ ≡ 0 (mod tc),
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for −tsℓ ≤ n ≤ 0. By examining (3.60) we see that

(3.64) Aℓ(z) = E2,t(z)
K(z)

η(z)
+O(q−

1

24 ).

So if we let

(3.65) E2,t(z)
K(z)

η(z)
=

∞
∑

n=−sℓ

βt,ℓ(n)q
n− 1

24 , ,

then (3.62) may be rewritten as

(3.66) a(ℓ2n− sℓ) + χ12(ℓ)

((

1− 24n

ℓ

)

− 1− ℓ

)

a(n) + ℓ a

(

n+ sℓ
ℓ2

)

≡ βt,ℓ(n) (mod tc)

and from (3.64) we have

(3.67) a(ℓ2n− sℓ) + χ12(ℓ)

((

1− 24n

ℓ

)

− 1− ℓ

)

a(n) + ℓ a

(

n+ sℓ
ℓ2

)

= βt,ℓ(n)

for −sℓ ≤ n ≤ −1. Equation (3.67) implies that

βt,ℓ(−sℓ) = −ℓ(3.68)

and

βt,ℓ(n) = 0,(3.69)

for −sℓ ≤ n ≤ −1. We can now apply Proposition 3.4 with m = −sℓ since 1− 24m = ℓ2 and t 6= ℓ.
Hence

(3.70) βt,ℓ(n) = 0, provided

(

1− 24n

t

)

= −1.

This gives Theorem 1.6 when (t, c) = (5, 5), (7, 4) or (13, 2) by (3.66).

Case 2. We consider the remaining case (t, c) = (5, 6) and assume ℓ > 5 is prime. We proceed as
in Case 1. This time when we use Lemma 3.8 to reduce (2.24) modulo 56 we see that the only extra
term occurs when n = 1. We find that with K(z) as before we have

(3.71) Aℓ(z) ≡ E2,t(z)
K(z)

η(z)
+ b1,5 · 2 · 55

E2,5(z)
η(z)

G5(z)
−1 (mod 56).

All that remains is to show that

(3.72) b1,5 ≡ 0 (mod 5),

since then (3.62) actually holds modulo 56 and the rest of the proof proceeds as in Case 1. Since
E4(z) ≡ 1 (mod 5) we may reduce (2.18) modulo 5 to obtain

(3.73) ℓΞℓ ≡ (χ12(ℓ)ℓ(1 + ℓ)− c0,ℓ)
E6(z)

E4(z)

1

η(z)
−

sℓ
∑

n=1

(24n+ 1)cn,ℓ
E6(z)

E4(z)

j(z)n

η(z)
(mod 5).

But

(3.74) Sℓ(z) ≡ 0 (mod 5),

by Theorem 1.3 (ii). Hence

(3.75) ℓAℓ(z) ≡ (χ12(ℓ)ℓ(1 + ℓ)− c0,ℓ)
E6(z)

E4(z)

1

η(z)
−

sℓ
∑

n=1

(24n+ 1)cn,ℓ
E6(z)

E4(z)

j(z)n

η(z)
(mod 5)
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and we see that b1,5 the coefficient of E6(z)
E4(z)

j(z)
η(z) is divisible by 5 as required. This completes the

proof of Theorem 1.6.
We close by illustrating Theorem 1.6 when t = 5 and ℓ = 7. In this case the theorem predicts

that

a(49n− 2)−
(

1− 24n

7

)

a(n) + 7a

(

n+ 2

49

)

≡ −8 a(n) (mod 56),

when n ≡ 1, 2 (mod 5). When n = 1 this says

149077845 ≡ −280 (mod 56),

which is easy to check.
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7. H. Cohen and J. Oesterlé, Dimensions des espaces de formes modulaires, Springer Lecture Notes, Vol. 627, 1977,
69–78.
URL: http://dx.doi.org/10.1007/BFb0065297

8. A. Folsom and K. Ono, The spt-function of Andrews, Proc. Natl. Acad. Sci. USA 105 (2008), 20152–20156.
URL: http://mathcs.emory.edu/~ono/publications-cv/pdfs/111.pdf

9. K. C. Garrett, Private communication, October 18, 2007.
10. F. G. Garvan, Congruences for Andrews’ smallest parts partition function and new congruences for Dyson’s rank,

Int. J. Number Theory 6 (2010), 1–29.
URL: http://dx.doi.org/10.1142/S179304211000296X

11. F. G. Garvan, Congruences for Andrews’ spt-function modulo powers of 5, 7 and 13, in preparation.
URL: http://www.math.ufl.edu/~fgarvan/papers/spt2.pdf

12. K. Ono, Congruences for the Andrews spt-function, Proc. Natl. Acad. Sci. USA, to appear.
URL: http://mathcs.emory.edu/~ono/publications-cv/pdfs/132.pdf

13. K. Ono, The partition function and Hecke operators, preprint.
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