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Calculational results are presented for the fine-structure splitting of the 23P state of helium and
helium-like ions with the nuclear charge Z up to 10. Theoretical predictions are in agreement with
the latest experimental results for the helium fine-structure intervals as well as with the most of
the experimental data available for light helium-like ions. Comparing the theoretical value of the
23P0 − 23P1 interval in helium with the experimental result [T. Zelevinsky et al. Phys. Rev. Lett.
95, 203001 (2005)], we determine the value of the fine-structure constant α with an accuracy of 31
parts per billion.
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I. INTRODUCTION

The fine structure splitting of the 23P state in helium plays a special role in atomic spectroscopy because it can be
used for an accurate determination of the fine structure constant α. This fact was first pointed out by Schwartz in
1964 [1]. The attractive features of the fine structure splitting in helium as compared to other atomic transitions are,
first, the long lifetime of the metastable 23PJ levels (roughly two orders of magnitude larger than that of the 2p state
in hydrogen) and, second, the relative simplicity of the theory of the fine structure. Schwartz’s suggestion stimulated
a sequence of calculations [2–5], which resulted in a theoretical description of the helium fine structure complete up
to order mα6 (or α4 Ry) and a value of α accurate to 0.9 ppm [6].
The present experimental precision for the fine-structure intervals in helium is sufficient for a determination of α

with an accuracy of 14 ppb [7, 8]. In order to match this level of accuracy in the theoretical description of the fine
structure, the complete calculation of the next-order, mα7 contribution and an estimation of the higher-order effects
is needed. The work towards this end started in 1990s and extended over two decades [9–19]. In 2006, the first
complete evaluation of the mα7 correction to the helium fine structure was reported [20]. However, the numerical
results presented there disagreed with the experimental values by more than 10 standard deviations.
In our recent investigations [21, 22], we recalculated all effects up to order mα7 to the fine structure of helium

and performed calculations for helium-like ions with nuclear charges Z up to 10. The calculations were extensively
checked by studying the hydrogenic (Z → ∞) limit of individual corrections and by comparing them with the results
known from the hydrogen theory. We found several problems in previous studies. As a result, the present theoretical
predictions are in agreement with the latest experimental data for the fine-structure intervals in helium, as well as with
the most of experimental data available for light helium-like ions. Comparison of our theoretical prediction for the
23P0 − 23P1 interval in helium (accurate to 57 ppb) with the experimental value [7] (accurate to 24 ppb) determines
the value of the fine structure constant α with an accuracy of 31 ppb.
The calculation of the mα7 correction for the fine-structure splitting of light helium-like atoms was reported in our

recent Letter [22]. In this paper, we present an extended description of the mα7 correction and a detailed term-by-
term comparison of our results with independent calculations by Drake [18] for helium and by Zhang et al. [12] for
helium-like ions.

II. THE SPIN-DEPENDENT mα
7
CORRECTION

The mα7 correction to the fine-structure splitting of a two-electron atom can be conveniently separated into four
parts,

E(7) ≡ mα7E(7) = mα7

[

E
(7)
log + E

(7)
first + E(7)

sec + E
(7)
L

]

. (1)
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The first term in the brackets above combines all terms with lnZ and lnα [10–12, 15, 20],

E
(7)
log = ln[(Z α)−2]

[〈

2Z

3
i ~p1 × δ3(r1) ~p1 · ~σ1

〉

−

〈

1

4
(~σ1 · ~∇) (~σ2 · ~∇)δ3(r)

〉

−

〈

3

2
i ~p1 × δ3(r) ~p1 · ~σ1

〉

+
8Z

3

〈

H
(4)
fs

1

(E0 −H0)′
[

δ3(r1) + δ3(r2)
]

〉]

, (2)

where ~r = ~r1 − ~r2, H0 and E0 are the Schrödinger Hamiltonian and its eigenvalue, and H
(4)
fs is the spin-dependent

part of the Breit-Pauli Hamiltonian,

H
(4)
fs =

1

4 r3

[

(

~σ2 + 2 ~σ1

)

· ~r × ~p2 −
(

~σ1 + 2 ~σ2

)

· ~r × ~p1

]

+
Z

4

(

~r1
r31

× ~p1 · ~σ1 +
~r2
r32

× ~p2 · ~σ2

)

+
1

4

(

~σ1 · ~σ2

r3
− 3

~σ1 · ~r ~σ2 · ~r

r5

)

. (3)

The second part of E(7) is induced by effective Hamiltonians to order mα7. They were derived by one of us (K.P.) in
Refs. [20, 21]. (The previous derivation of this correction by Zhang [10, 11] turned out to be not entirely consistent.)
The result is

E
(7)
first =

〈

HQ +HH +H
(7)
fs,amm

〉

. (4)

The Hamiltonian HQ is induced by the two-photon exchange between the electrons, the electron self-energy and the
vacuum polarization. It is given by [20]

HQ = Z
91

180
i ~p1 × δ3(r1) ~p1 · ~σ1

−
1

2
(~σ1 · ~∇) (~σ2 · ~∇) δ3(r)

[

83

30
+ lnZ

]

+ 3 i ~p1 × δ3(r) ~p1 · ~σ1

[

23

10
− lnZ

]

−
15

8 π

1

r7
(~σ1 · ~r) (~σ2 · ~r)−

3

4 π
i ~p1 ×

1

r3
~p1 · ~σ1 . (5)

Here, the terms with lnZ compensate the logarithmic dependence implicitly present in expectation values of singular
operators 1/r3 and 1/r5, so that matrix elements of HQ do not have any logarithms in their 1/Z expansion. The
singular operators are defined though their integrals with the arbitrary smooth function f ,

∫

d3r
1

r3
f(~r) ≡ lim

ǫ→0

∫

d3r

[

1

r3
θ(r − ǫ)

+ 4 π δ3(r) (γ + ln ǫ)

]

f(~r) , (6)

and
∫

d3r
1

r7

(

ri rj −
δij

3
r2
)

f(~r) ≡

lim
ǫ→0

∫

d3r

[

1

r7

(

ri rj −
δij

3
r2
)

θ(r − ǫ)

+
4 π

15
δ3(r) (γ + ln ǫ)

(

∂i ∂j −
δij

3
∂2

)]

f(~r) , (7)

where γ is the Euler constant.
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The effective Hamiltonian HH represents the anomalous magnetic moment (amm) correction to the Douglas-Kroll
mα6 operators and is given by [20]

HH = −
Z

4
p21

~r1
r31

× ~p1 · ~σ1 −
3Z

4

~r1
r31

×
~r

r3
· ~σ1 (~r · ~p2) +
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4

~r
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2 r4
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3

4 r6
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4 r
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8
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+
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8
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1

r3

[

~r · ~σ2 ~p2 · ~σ1 + (~r · ~σ1) (~p2 · ~σ2)−
3

r2
~r · ~σ1 ~r · ~σ2 ~r · ~p2

]

−
1

4
~p1 · ~σ1 ~p1 ×

~r

r3
· ~p2

+
1

8
~p1 · ~σ1

[

−~p1 · ~σ2
1

r3
+ 3~p1 · ~r

~r

r5
· ~σ2

]

. (8)

The Hamiltonian H
(7)
fs is the mα7 amm correction to the Breit-Pauli Hamiltonian,

H
(7)
fs =

1

2π3 r3
(

~σ1 + ~σ2

)

· ~r ×
(

~p2 − ~p1
)

c3

+
Z

2π3

(

~r1
r31

× ~p1 · ~σ1 +
~r2
r32

× ~p2 · ~σ2

)

c3

+
1

2π3

(

~σ1 · ~σ2

r3
− 3

~σ1 · ~r ~σ2 · ~r

r5

)

(

c1c2 + c3
)

, (9)

where c1 = 1/2, c2 = −0.328 478 965 and c3 = 1.181 241 456 are the expansion coefficients of the free-electron amm in
powers of (α/π).
The third part of E(7) is given by the second-order matrix elements of the form [20]

E(7)
sec = 2

〈

H
(4)
fs

1

(E0 −H0)′
H

(5)
nlog

〉

+ 2

〈[

H
(4)
fs +H

(4)
nfs

]

1

(E0 −H0)′
H

(5)
fs

〉

, (10)

where H
(5)
nlog is the effective Hamiltonian responsible for the nonlogarithmic mα5 correction to the energy,

H
(5)
nlog = −

7

6 π r3
+

38Z

45

[

δ3(r1) + δ3(r2)
]

, (11)

H
(4)
nfs is the spin-independent part of the Breit-Pauli Hamiltonian (with the term ∝ δ3(r) omitted since it does not

contribute in our case),

H
(4)
nfs = −

1

8
(p41 + p42) +

Z π

2

[

δ3(r1) + δ3(r2)
]

−
1

2
pi1

(

δij

r
+

ri rj

r3

)

pj2 , (12)

and H
(5)
fs is the mα5 amm correction to H

(4)
fs ,

H
(5)
fs =

1

4π r3
(

~σ1 + ~σ2

)

· ~r ×
(

~p2 − ~p1
)

+
Z

4π

(

~r1
r31

× ~p1 · ~σ1 +
~r2
r32

× ~p2 · ~σ2

)

+
1

4π

(

~σ1 · ~σ2

r3
− 3

~σ1 · ~r ~σ2 · ~r

r5

)

. (13)

The fourth part of E(7) is the contribution induced by the emission and reabsorption of virtual photons of low

energy. It is denoted as E
(7)
L and interpreted as the relativistic correction to the Bethe logarithm. The expression for
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TABLE I: Summary of individual contributions to the fine-structure intervals in helium, in kHz. The parameters [23] are
α−1 = 137.035 999 679(94), cR∞ = 3289 841 960 361(22) kHz, and m/M = 1.370 933 555 70 × 10−4. The values by Drake are
taken from Table 3 of Ref. [18]. The label (+m/M) indicates that the corresponding entry comprises both the non-recoil and
recoil contributions of the specified order in α. The uncertainty due to the value of α is not shown.

Term ν01 ν12 Ref.

mα4(+m/M) 29 563 765.45 2 320 241.43
29 563 765.23a 2 320 241.42a [18]

mα5(+m/M) 54 704.04 −22 544.00
54 704.04 −22 545.01 [18]

mα6
−1 607.52(2) −6 506.43
−1 607.61(4) −6 506.45(7) [18]

mα6m/M −9.96 9.15
−10.37(5) 9.80(11) [18]

mα7 log(Zα) 81.43 −5.87
81.42b −5.87b [18]

mα7, nlog 18.86 −14.38

mα8
±1.7 ±1.7

Total theory 29 616 952.29± 1.7 2 291 178.91± 1.7

Experiment 29 616 951.66(70)c 2 291 177.53(35)f

29 616 952.7(10)d 2 291 175.59(51)c

29 616 950.9(9)e 2 291 175.9(10)g

a the original result was scaled to the present value of α.
b the original result was altered by the substitution ln(α) → ln(Zα) in the terms proportional to ln(α), in order to comply

with the present result for the logarithmic mα7 contribution.
c Ref. [7]. d Ref. [24]. e Ref. [25]. f Ref. [8]. g Ref. [26].

E
(7)
L reads [16]

E
(7)
L = −

2

3 π
δ

〈

(~p1 + ~p2) · (H0 − E0) ln

[

2(H0 − E0)

Z2

]

(~p1 + ~p2)

〉

+
i Z2

3 π

〈

(

~r1
r31

+
~r2
r32

)

×
~σ1 + ~σ2

2
ln

[

2(H0 − E0)

Z2

](

~r1
r31

+
~r2
r32

)

〉

,

(14)

where δ 〈. . .〉 denotes the first-order perturbation of the matrix element 〈. . .〉 by H
(4)
fs , implying perturbations of the

reference-state wave function, the reference-state energy, and the electron Hamiltonian.

III. RESULTS: HELIUM

The summary of individual contributions to the fine-structure intervals of helium is given in Table I. Numerical
results are presented for the large ν01 and the small ν12 intervals, defined by

ν01 =
[

E(23P0)− E(23P1)
]

/h , (15)

ν12 =
[

E(23P1)− E(23P2)
]

/h . (16)

We note that the style of breaking the total result into separate entries used in Table I differs from that used in the
summary tables of the previous papers by K.P. et al. [20, 21]. Particulary, the lower-order terms listed in Table III of
Ref. [20] and in Table II of Ref. [21] contained contributions of higher orders, whereas in the present work, the entries
in Table I contain only the contributions of the order specified.
A term-by-term comparison with the independent calculation by Drake [18] is made whenever possible. We observe

good agreement between the two calculations for the lower-order terms, namely, for the mα4, mα5, and mα6 correc-
tions. However, for the recoil correction to order mα6, our results differ from Drake’s ones by about 0.5 kHz for both
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TABLE II: Individual contributions to the fine-structure intervals of helium-like atoms, in MHz/Z4. The label (+m/M)
indicates that the corresponding entry comprises both the non-recoil and recoil contributions of the specified order in α. For
Z = 3, 7, and 10, a term-by-term comparison is made with the previous calculation by Zhang et. al. [12]. The results of
Ref. [12] for the leading mα4 correction were scaled to the present value of α. The deviation for the mα7(log) contribution is
due to the difference in the expressions for this term.

Z mα4(+m/M) mα5(+m/M) mα6 mα6m/M mα7(log) mα7(nlog) Total Ref.

ν01
2 1847.735 34 3.419 00 −0.100 47 −0.000 62 0.005 09 0.001 18 1851.059 52 (11)
3 1917.793 96 3.249 78 1.230 26 −0.002 43 −0.010 76 0.018 01 1922.278 81 (59)

1917.793 97 3.249 78 1.230 25 −0.010 27 1922.26 (2) [12]
4 1346.965 34 1.943 84 4.566 98 −0.006 70 −0.028 43 0.046 48 1353.4875 (39)
5 765.885 57 0.685 51 10.374 47 −0.014 17 −0.041 39 0.086 28 776.976 (14)
6 270.387 72 −0.367 57 19.266 47 −0.027 89 −0.048 86 0.139 52 289.349 (37)
7 −139.085 57 −1.229 55 31.908 79 −0.045 30 −0.051 10 0.209 03 −108.294 (83)

−139.085 58 −1.229 55 31.908 82 −0.046 33 −108.5 (3) [12]
8 −477.534 46 −1.937 91 48.988 80 −0.068 79 −0.048 55 0.297 85 −430.30 (17)
9 −759.770 39 −2.526 32 71.203 90 −0.093 96 −0.041 63 0.409 16 −690.82 (31)
10 −997.723 26 −3.021 03 99.257 05 −0.137 44 −0.030 76 0.546 19 −901.11 (53)

−997.723 25 −3.021 03 99.257 05 −0.021 29 −901.5 [12]

ν02
2 1992.750 43 2.009 94 −0.507 12 −0.000 05 0.004 72 0.000 28 1994.258 20 (11)
3 1150.274 90 −0.942 85 −0.864 60 −0.000 05 −0.022 16 0.014 83 1148.460 07 (41)

1150.274 91 −0.942 85 −0.864 60 −0.023 48 1148.44 (2) [12]
4 −384.659 15 −4.448 24 −1.389 63 −0.000 06 −0.045 39 0.032 04 −390.5104 (12)
5 −1739.328 53 −7.320 66 −2.393 83 −0.000 04 −0.054 46 0.046 61 −1749.0509 (32)
6 −2838.550 28 −9.580 33 −3.994 54 0.000 01 −0.048 68 0.056 88 −2852.1169 (77)
7 −3724.421 92 −11.370 60 −6.245 32 0.000 08 −0.029 03 0.062 15 −3742.005 (16)

−3724.421 93 −11.370 60 −6.263 64 −0.041 90 −3742.1 (3) [12]
8 −4445.632 74 −12.812 45 −9.174 16 0.000 17 0.003 27 0.062 07 −4467.554 (31)
9 −5041.009 23 −13.993 89 −12.797 23 0.000 25 0.047 05 0.056 47 −5067.697 (55)
10 −5539.338 27 −14.977 37 −17.124 41 0.000 38 0.101 27 0.045 23 −5571.293 (91)

−5539.338 27 −14.977 38 −17.145 16 0.075 67 −5571.4 [12]

intervals. The reason for this disagreement seems to be different for the large and the small intervals. For the large
interval, the deviation is due to the recoil operator part, whereas for the small interval, it is mainly due to the mass
polarization part (see discussion in Ref. [21]).
Our estimates of the uncalculated higher-order effects for helium are much larger than those in the previous studies

[17, 18]. The previous estimates amounted to significantly less than 1 kHz for both intervals and were based on
some logarithmic contributions to order mα8 that were identified by analogy with the hydrogen fine structure. We
now believe that the dominant mα8 contribution might be of relativistic origin. Our estimates of ±1.7 kHz for both
intervals were obtained by multiplying the mα6 contribution for the sum of ν01 + ν12 by the factor of (Zα)2.
Our result for the ν01 interval of helium agrees well with the experimental values [7, 24, 25]. For the ν12 interval,

our theory is by about 2σ away from the values obtained in Refs. [7, 26] but in agreement with the latest measurement
by Hessels and coworkers [8]. Assuming the validity of the theory, we combine the theoretical prediction for the ν01
interval in helium with the experimental result [7] and obtain the following value of the fine structure constant,

α−1(He) = 137.036 001 1 (39)theo (16)exp , (17)

which is accurate to 31 ppb and agrees with the more precise results of Refs. [27–29].

IV. RESULTS: HELIUM-LIKE IONS

Table II gives the summary of individual contributions to the fine-structure intervals of helium-like atoms with the
nuclear charge number Z up to 10. We choose to present results for the intervals ν01 and ν02 ≡ ν01 + ν12, and not for
ν01 and ν12, as is customary. The reason to consider ν02 is that this interval is free from effects of the 23P1 − 21P1

mixing, which strongly affect the ν01 and ν12 intervals. As a result of the absence of the mixing effects, all corrections
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to ν02 starting with the order of mα6 demonstrate a weaker Z dependence as compared to those to ν01 and ν12.
The most drastic difference occurs for the α6m2/M correction: for Z = 10, this correction for ν02 is by 3 orders of
magnitude smaller than that for ν01.
The uncertainty of the theoretical values specified in Table II is solely due to uncalculated higher-order effects. Its

estimation for helium was already discussed. For helium-like ions, we obtain the uncertainty by multiplying the mα6

contribution for the corresponding interval by the factor of (Zα)2. So, our error estimates are typically by a factor of
1/Z smaller for the ν02 interval than for the ν01 (or, equivalently, ν12) interval.
For Z = 3, 7, and 10, Table II presents a term-by-term comparison with the previous calculation by Zhang et.

al. [12]. We observe excellent agreement for the mα4 and mα5 corrections. For the mα6 correction, the agreement is
excellent in all cases except for the ν02 interval and Z = 7 and 10, where a small deviation is present. The results of
the two calculations for the mα7(log) correction are different, but this is explained by the difference in the expressions
for this term. If we use the same expression as in Ref. [12], excellent agreement is found again.
In Fig. 1 we plot our numerical results for the mα7 correction as a function of the nuclear charge number Z, together

with the fit of the 1/Z expansion and with the asymptotical high-Z limit of this correction. The form of the 1/Z
expansion and the values of the first coefficient(s) are known. For the ν02 interval, the leading term scales as Z6 and
is calculated for hydrogen in Ref. [30]. For the ν12 interval, there are additional Z7 and Z6 contributions due to the
triplet-singlet mixing, which are obtained by expanding the following expression in 1/Z,

δEmix =

∣

∣

∣
〈21P1|H

(4)
fs |23P1〉

∣

∣

∣

2

E0(23P1)− E0(21P1)
.

The resulting asymptotic form of the nonlogarithmic mα7 correction is

E(7,nlog)(ν01)/Z
7 = 0.004045− 0.015524/Z +O(1/Z2) , (18)

E(7,nlog)(ν02)/Z
6 = −0.021706+O(1/Z) . (19)

By fitting the 1/Z expansion of our numerical data for E(7,nlog), we were able to reproduce well the values of the
coefficients given above, which served as an important check of our calculations.
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FIG. 1: Nonlogarithmic mα7 correction to the fine-structure intervals of helium-like atoms, for the ν01 interval (left) and for the
ν02 interval (right). Black dots denote the numerical results, solid line stands for the fit of the 1/Z expansion, and the dashed
(red) line indicates the asymptotic high-Z results. Note that the results in different graphs are scaled by different factors. It
is Z7 for the ν01 interval and Z6, for ν02. The different Z scaling is the consequence of the triplet-singlet mixing effects.

The comparison of the present theoretical predictions with experiment data is summarized in Table III. The
agreement is very good in most cases. The only significant discrepancy is for Be2+, where the difference of 1.7
standard deviations (σ) is observed for ν12 and that of 3.5 σ, for ν02. It is important that for both the ν01 and
ν12 intervals there are experimental results available for helium-like ions, whose accuracy significantly exceeds the
theoretical errors. These are the measurement of ν01 in helium-like nitrogen by Thompson at al. [31] and that of
ν12 in helium-like fluorine by Myers et al. [32]. Good agreement of the present theory with these experimental
results suggests that the theoretical errors (i.e., the uncalculated higher-order effects) were reasonably estimated. It is
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TABLE III: Comparison of theoretical and experimental results for the fine-structure intervals of helium-like ions. Units are
MHz for Li+ and cm−1 for other atoms.

Z Present theory Experiment Ref.

ν01
3 155 704.584(48) 155 704.27(66) [33]
4 11.557 756(33) 11.558 6(5) [34]
5 16.198 21(29) 16.203(18) [35]
7 −8.673 1(67) −8.670 7(7) [31]
8 −58.791 (23) −59.2 (1.1) [36]
10 −300.58(18) −300.7(2.2) [36]

ν12
9 −957.886(79) −957.873 0(12) [32]

ν02
3 93 025.266(34) 93 025.86(61) [33]
4 −3.334 663(10) −3.336 4(5) [34]
5 −36.463 787(66) −36.457(16) [35]
8 −610.392 3(42) −611.3(7) [36]
10 −1858.383 (30) −1858.3(1.5) [36]

unfortunate that there are no experimental results with comparable accuracy available for the ν02 interval. Since ν02
is not affected by the triplet-singlet mixing effects, accurate experimental results for this interval in light helium-like
ions would yield an improved estimate for the uncalculated higher-order effects in helium, thus increasing accuracy of
determination of α from the helium fine structure.
Comparing theoretical and experimental results for the fine structure of helium-like ions, one should keep in mind

that the present calculation is carried out for a spinless nucleus, whereas the experimental results listed in Table III
were performed for non-zero nuclear spin isotopes. For a nucleus with spin, the hyperfine splitting can usually be
evaluated separately and employed for an experimental determination of the fine structure. This procedure, however,
ignores the mixing between the hyperfine and the fine splittings. So, more accurate calculations should account for
both effects simultaneously.
In summary, the theory of the fine structure of helium and light helium-like ions is now complete up to orders mα7

and α6m2/M . Theoretical predictions agree with the latest experimental results for helium, as well as with most
of the experimental data for light helium-like ions. A combination of the theoretical and experimental results for
the 23P0 − 23P1 interval in helium yields an independent determination of the fine structure constant α accurate to
31 ppb.
Support by NIST through Precision Measurement Grant PMG 60NANB7D6153 and by the Helmholtz Gemeinschaft

(Nachwuchsgruppe VH-NG-421) is gratefully acknowledged.

[1] C. Schwartz, Phys. Rev. 134, A1181 (1964).
[2] M. Douglas and N. Kroll, Ann. Phys. (NY) 82, 89 (1974).
[3] L. Hambro, Phys. Rev. A 5, 2027 (1972).
[4] L. Hambro, Phys. Rev. A 6, 865 (1972).
[5] L. Hambro, Phys. Rev. A 7, 479 (1973).
[6] M. L. Lewis and P. H. Serafino, Phys. Rev. A 18, 867 (1978).
[7] T. Zelevinsky, D. Farkas, and G. Gabrielse, Phys. Rev. Lett. 95, 203001 (2005).
[8] J. S. Borbely, M. C. George, L. D. Lombardi, M. Weel, D. W. Fitzakerley, and E. A. Hessels, Phys. Rev. A 79, 0605030(R)

(2009).
[9] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 74, 4791 (1995).

[10] T. Zhang, Phys. Rev. A 54, 1252 (1996).
[11] T. Zhang, Phys. Rev. A 53, 3896 (1996).
[12] T. Zhang, Z.-C. Yan, and G. W. F. Drake, Phys. Rev. Lett. 77, 1715 (1996).
[13] T. Zhang and G. W. F. Drake, Phys. Rev. A 54, 4882 (1996).
[14] T. Zhang, Phys. Rev. A 56, 270 (1997).
[15] K. Pachucki, J. Phys. B 32, 137 (1999).



8

[16] K. Pachucki and J. Sapirstein, J. Phys. B 33, 5297 (2000).
[17] K. Pachucki and J. Sapirstein, J. Phys. B 35, 1783 (2002).
[18] G. W. F. Drake, Can. J. Phys. 80, 1195 (2002).
[19] K. Pachucki and J. Sapirstein, J. Phys. B 36, 803 (2003).
[20] K. Pachucki, Phys. Rev. Lett. 97, 013002 (2006).
[21] K. Pachucki and V. A. Yerokhin, Phys. Rev. A 79, 062516 (2009) [ibid. 80, 019902(E) (2009); ibid. 81, 039903(E) (2010)].
[22] K. Pachucki and V. A. Yerokhin, Phys. Rev. Lett. 104, 070403 (2010).
[23] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 80, 633 (2008).
[24] G. Giusfredi, P. C. Pastor, P. D. Natale, D. Mazzotti, C. de Mauro, L. Fallani, G. Hagel, V. Krachmalnicoff, and M. Inguscio,

Can. J. Phys. 83, 301 (2005).
[25] M. C. George, L. D. Lombardi, and E. A. Hessels, Phys. Rev. Lett. 87, 173002 (2001).
[26] J. Castillega, D. Livingston, A. Sanders, and D. Shiner, Phys. Rev. Lett. 84, 4321 (2000).
[27] D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008).
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