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When a voltage higher than 20 kv is applied on an asymmetric capacitor, the

capacitor experiences a net force acting toward its thinner electrode. This effect

is called Brown-Biefeld (BB) effect, in honor of its discoverers Thomas Townsend

Brown and Paul Alfred Biefeld. A lot of theories have been proposed to explain the

BB effect, and many speculations can be found on the net suggesting the BB effect

to be an antigravitation effect that works in vacuum too. Other sources say the

BB effect warps the space. However, in the recent years, more an more researchers

attribute the BB effect to a unicharge ion wind . This work calculates the levitation

force due to the ion wind and also presents experimental results which confirm the

theoretical results. Our calculations use local coordinates analysis, and have a very

low computing cost.
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1. INTRODUCTION

The Brown-Biefeld (BB) effect has been discovered in 1920 by Thomas Townsend Brown

and Paul Alfred Biefeld during their experiments with Coolidge X-ray tube. They observed

a thrust acting toward the thin electrode. Thomas Townsend Brown made an extensive

research on this effect and wrote several patents1–3.

There is a site dedicated to the BB effect4 and a site dedicated to experiments of this

effect5, but very few theoretical works have been written on the subject.

Some of those tried to explain the effect by electro-gravitation6–8 or thermodynamics9.

However, in the recent years more and more sources10–13 attribute the effect to corona

ionic air propulsion. In13 a lot of experiments are described, and the thrust force is described

by approximate formulae based on ion propulsion, and in11 a full calculation of the thrust,

based on the jet of the corona ion wind is performed.

The calculations in11 were very accurate, but seemed to require a substantial amount of

computing power.

In this work we also calculate the force due to ionic air propulsion, but we adopt a

different approach, based on the Deutsch assumption14, which has been extensively used in

the unipolar charge flow literature15–17, but also criticized18.

The Deutsch assumption states that the equipotential surfaces of the Laplacian problem

are equipotential also for the Poissonian problem, only with different values of potential.

Of course under this assumption, the electric field lines of the Laplacian and Poissonian

problems are in the same direction at any location.

As we shall see, the calculations based on Deutsch assumption14, within the Warburg

region19,20 result in formulae which fit very well the experiment.

In Section 2 we explain the operation principle and the configuration on which we worked.

We also present the equations that have to be solved.

In Section 3 we present the basics of the Deutsch assumption, for which cases it is accurate

and for which cases it is an approximation. Also, we show how a first order correction can

be applied in the inaccurate region. A profound analysis on the subject is presented.

In Section 4 we solve the Laplacian problem and calculate the capacitance. Those results

are new, because as far as we know this Laplacian configuration has not been solved yet.

Also, this Laplacian solution is needed for the Poissonian problem when Deutsch assumption
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is used.

In Section 5 we solve the Poissonian problem using Deutsch assumption and a first order

correction, and display the calculated force and current.

In Section 6 we describe our experiment and show the obtained results.

In Section 7 we compare the measured and calculated results and express our calculated

results by approximate formulae.

The work is ended with some concluding remarks.

2. THE OPERATION PRINCIPLE AND THE CONFIGURA-

TION

The picture of the lifter on which we did our experiments appears in Figure 1. The lifter

is based on a thin anode wire at high voltage, over a grounded flat cathode. It is to be

mentioned that the flat electrode must be vertical otherwise no propulsion can occur.

FIG. 1: The picture of the lifter we built.

The working principle is as follows: when a high enough voltage is supplied between anode

and cathode, corona starts around the anode, and the positive ions are rejected from the

anode. Those ions receive high velocities and ionize neutral air molecules, this way positive

space charge is created in the air surrounding the electrodes. At bigger distances from the

anode, the positive ions have less velocity, hence transfer momentum to neutral molecules,
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without further ionizing them. The positive charge “feels” the force of the electric field and

hence moves toward the cathode, according to the positive ion mobility coefficient, and the

neutral molecules keep the inertia of the momentum they received. If the flat cathode were

horizontal, not only ions but also the neutral molecules would hit the cathode and hence the

forces on the anode and cathode would have been equal and opposite, hence no net thrust.

However, the cathode being vertical, and given the fact that the ions transfer most of

their momentum to neutral molecules, those do not hit the cathode, but form an air jet

downstairs, and by momentum conservation the lifter senses a net force upwards.

Hence, the thrust force is calculated as the total force on the space charge.

The shape must not necessarily be triangular, it may be rectangular or any other shape

and, neglecting edge effects, the operation is described by a thin anode wire, over a vertical

conducting plane. Hence we deal with a 2 dimensional problem described in Figure 2.
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FIG. 2: The simplified 2D configuration. The corona wire is at coordinates (0, 0) and its radius is

a. The distance between the electrodes is called b, and the cathode length is c.

Our lifter has the following dimensions: a = 0.075mm, b = 2.8cm and c = 4cm (see

Figure 2). Each side of the triangle is 0.2m, hence if we calculate the thrust force per unit

length, we have to multiply by the perimeter of 3× 0.2 = 0.6m to find the total force.

As long as the potential difference is below the corona inception voltage21, there is no

space charge, hence we have a Laplacian problem, defined by

∇2VL = 0 (1)

where the index “L” denotes the Laplacian solution. The boundary conditions are VL = V0

on the anode wire surface and VL = 0 on the cathode wire surface, where V0 is the applied
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voltage. The electric field is ĒL = −∇̄VL.

In presence of space charge, different kinds of ions have different mobilities, defining the

velocity of each ion as its mobility times the electric field. However, we use the average

mobility13,17,18 for positive air ions, known to be µ = 2 × 10−4m2/v sec. Diffusion can

usually be neglected22, hence the unipolar nondiffusive drift of ions is described by

J̄ = ρv̄ = µρĒP (2)

where ρ is the space charge per unit of volume and ĒP is not the Laplacian field, but the

Poissonian field, influenced by the space charge itself via:

ǫ0∇̄ · Ēp = ρ (3)

Being a stationary problem, the current continuity condition ∇̄ · J̄ = 0 must hold. So the

Poissonian problem may be formulated by: ∇̄ · (ρĒP ) = 0 or

∇̄ · (∇2VP ∇̄VP ) = 0 (4)

Clearly, this equation contains the 3rd derivative, hence one needs an additional boundary

condition, and what is usually assumed is Kaptzov hypothesis23.

Physically Kaptzov hypothesis means that once the potential difference has been raised

sufficiently for the corona to start, the electric field near the corona conductor remains

constant and equals the inception value, even when further raising the potential difference.

Felici24 analyzed equation (4) and gave some particular solutions, and Feng25 calculated

an exact solution of (4) for concentric cylinders.

As mentioned before, equation (4) is easier to solve by using the Deutsch assumption14.

It would be useful to understand the Deutsch assumption, for which cases it is accurate and

for which cases it is an approximation and to what extent.

This item is discussed in the following section.

3. ANALYSIS OF THE DEUTSCH ASSUMPTION

The Deutsch14 assumption states that the equipotential surfaces of the Laplacian problem,



6

defined by (1) are equipotential also for the Poissonian problem, defined by (4), only with

different values of potential. Of course, under this assumption, the electric field lines of the

Laplacian and Poissonian problems are in the same direction at any location.

Let us first take the curl of J̄ in (2)

∇̄ × J̄ = µ(∇̄ρ× ĒP + ρ ∇̄ × ĒP ) = µ∇̄ρ× ĒP (5)

because being a static problem, ∇̄ × ĒP = 0.

Now, we see that the condition for ∇̄ × J̄ = 0 is that ∇̄ρ be parallel to ĒP , i.e.

∇̄ρ× ĒP = 0 (6)

Let us suppose that we have a problem for which condition (6) is true. We know that

always ∇̄·J̄ = 0, so we see that J̄ has zero curl, zero divergence and its tangential component

near the conductors is zero.

But those are exactly the conditions satisfied by ĒL ! Those conditions set the function

ĒL up to a multiplying constant, established by the potential difference.

Exactly the same way, the above conditions set the function J̄ up to a multiplying con-

stant, established by the total current.

Hence, if (6) is satisfied, ĒL and J̄ are the same functions, up to a multiplying constant

K so that one may use:

J̄ = KĒL (7)

Now, clearly, if (6) is true, Deutsch assumption becomes a fact instead of an assumption.

This can be shown in the following way: for Deutsch assumption to hold true, ĒL and

ĒP must be in the same direction at any location. Hence ĒP = fĒL, where f is a scalar

function. But f cannot be any function, because the curl of ĒP must be 0. Hence,

0 = ∇̄ × ĒP = ∇̄ × (fĒL) = ∇̄f × ĒL + f ∇̄ × ĒL = ∇̄f × ĒL

So the multiplying function f must have its gradient parallel to ĒL. But from equations

(7) and (2), we see that

ĒP = K
1

µρ
ĒL (8)
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and from (6) ∇̄1
ρ
, like ∇̄ρ is parallel to ĒL and to ĒP .

The question is now in which cases the Deutsch assumption becomes a fact?

Let us first look at some simple and well known configurations: between parallel plates,

clearly with or without space charge the equipotential surfaces are parallel to the plates. The

same is true for concentric cylinders or concentric spheres: with or without space charge

the equipotential surfaces are concentric cylinders or spheres, respectively. The common

physical characteristic for all those cases is that the electric field lines are straight.

Now we prove that Deutsch assumption holds exactly if the field lines ĒL are straight.

The proof is based on Figure 3, which describes Poissonian curved field lines in local

coordinates (we omit here the “L” index). Requiring the curl of Ē to be 0 is equivalent to

requiring
∮

Ē · d̄l = 0 along the closed curve in Figure 3. This results in E1L1 − E2L2 = 0.

L1 6= L2 if the field lines are curved, hence E1 6= E2, or in other words, the electric field

must depend on the coordinate v (see Figure 3). In such case, ρ, which is proportional to

the divergence of Ē depends on v, and hence its gradient has a component perpendicular to

Ē.

On the other hand, if the field lines are straight, L1 = L2, hence E1 = E2, so Ē does not

depend on v, and therefore the gradient of ρ is parallel to Ē, and this completes the proof.

FIG. 3: Curved electric field lines in local coordinates. The coordinate u is in the local direction

of the field, and the orthogonal coordinate v is in the local direction of the equipotential line.

The conclusion from this analysis is that as straighter the field lines are, the usage of

Deutsch assumption results in more and more accurate results. To put this in another way,
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the Poissonian result will be more accurate in the regions where the Laplacian field lines are

straight.

Now we want to see the implications of formulating the solution with the Deutsch as-

sumption, in the regions where the Laplacian field lines are not “straight enough”. In such

region, because we “obliged” the curl of J to be 0, we get from (7) and (5):

∇̄ × ĒP =
−1

ρ
∇̄ρ× ĒP 6= 0 (9)

because condition (6) is not true in those regions. This implies that outside the correctness

region, the Ep field lines will sum to inaccurate values. The solution becomes less accurate,

as we get farther from the straight lines field region.

This inaccuracy may be compensated with a first order correction, by letting the constant

K in (7) be a function in the region where a correction is needed. To keep ∇̄ · J̄ = 0, one can

easily see that K can only be a function of v (see Figure 3). Such a first order correction is

implemented in Sect. 5, where we solve the Poissonian problem.

So, for using Deutsch assumption in the Poissonian problem, we need the solution to the

Laplacian problem first, and this is done in the next section.

4. SOLUTION OF THE LAPLACIAN PROBLEM

There are many ways to solve the Laplacian problem (analytic or numeric) and we chose

to solve it analytically, by separation of variables in cylindrical coordinates.

The schematic configuration in Figure 2, does not allow to properly define boundary

conditions in separate variables in cylindrical coordinates, hence we will make a slight change

to this configuration.

Anyhow the configuration in Figure 2 is not accurate, because it does not show the width

of the flat cathode. In practice the cathode must have a finite width, and more than that,

the curvature radius of the cathode at the location (x = b, y = 0) (see Figure 2) must be

big enough so that no corona can be formed there21.

The modified configuration is described in Figure 4.

The flat cathode surface is now defined along ϕ = ±α, where α is a fixed small angle

of about 1.3o (based on the thickness of the cathode in our lifter). The cathode edge at
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(x = b, y = 0) has now a big radius of curvature b and in addition is concave, hence does not

develop corona. And at last, we take the cathode length c to infinity: the main interaction

is between the electrodes and using a finite length c would be still solvable analytically, but

would be an unnecessary complication.

FIG. 4: Configuration adapted to cylindrical coordinates. The cathode contour is described by the

lines r = b, and ϕ = ±α.

We define the potential V1 for the region a ≤ r ≤ b and 0 ≤ ϕ ≤ 2π and the potential V2

for the region r ≥ b and α ≤ ϕ ≤ 2π − α. The boundary conditions are:

V1(r = a, ϕ) = V0 (10)

where V0 is the applied voltage.

Because of the mirror symmetry around the x axis, we require

V1(r, ϕ) = V1(r, 2π − ϕ) . (11)

The potential continuity at r = b gives

V1(r = b, ϕ) =



















0 0 ≤ ϕ ≤ α

0 2π − α ≤ ϕ ≤ 2π

V2(r = b, ϕ) α ≤ ϕ ≤ 2π − α

(12)

and the normal field continuity at r = b requires
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∂rV1(r = b, α ≤ ϕ ≤ 2π − α) = ∂rV2(r = b, α ≤ ϕ ≤ 2π − α) . (13)

The potential is 0 on the sides of the big conductor

V2(r, ϕ = α) = V2(r, ϕ = 2π − α) = 0 (14)

and must go to 0 at r → ∞

V2(r → ∞, α ≤ ϕ ≤ 2π − α) = 0 (15)

We will use the well know solutions for the Laplace equation in cylindrical coordinates,

for the z independent case, given by the trivial solution D − E ln r (where D and E are

constants) plus the non trivial solution:

∑

ν

(Aνr
ν +Bνr

−ν)(Cν cos(νϕ) +Dν sin(νϕ)) (16)

where one may consider only non negative values of ν, because negative ν just switches

the roles of Aν and Bν .

Let us start with V2. Condition (15) excludes the trivial solution and the rν solution which

diverge at r → ∞. Also, the requirement V2(r, ϕ = α) = 0 in (14) imposes a combination

between the sin and cos terms in (16) of the form sin(ν(ϕ − α)) and the constant Bν may

be normalized for convenience to Bν/b
−ν . Hence we may write the following expression for

V2:

V2 =
∑

ν

Bν(r/b)
−ν sin(ν(ϕ− α)) (17)

To satisfy the requirement V2(r, ϕ = 2π−α) = 0 in (14), we need sin(ν(2π−α−α)) = 0,

or ν(2π − 2α) = mπ (where m is a positive integer), thus giving the values of ν = m
2

1
1−α/π

.

So the expression for V2 may be written as:

V2 =

∞
∑

m=1

Bm(r/b)
−

m
2

1

1−α/π sin

(

m

2

ϕ− α

1− α/π

)

(18)

Now we look for an expression for V1. Because the non trivial solution is ϕ dependent for
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any r, to satisfy condition (10), we need also the trivial solution. Also, because V1 is defined

in a region with circular continuity, adding 2π to ϕ must result in the same potential, hence

ν must be an integer, say m. For satisfying (11) only the cos solution must be taken, and

again, we may normalize the constants so that the power is on r/a instead of r, so we may

write the following expression for V1:

V1 = D −E ln r +
∞
∑

m=0

(

Am(r/a)
m + Cm(r/a)

−m
)

cos(mϕ) (19)

To satisfy condition (10), the m 6= 0 terms of the non trivial part of (19), must be

identically 0 for r = a. Given that the functions cos(mϕ) are orthogonal in the interval

0 ≤ ϕ ≤ 2π, each term of the series must vanish for r = a, hence we get Am = −Cm,

for m 6= 0. The m = 0 term gives just a constant, which may be absorbed in the trivial

solution, but it proves convenient to name the m = 0 term L0, and to scale separately the

trivial solution so that it results in an arbitrary constant V ′ for r = a, and 0 for r = b, so

that D − E ln r = V ′

(

1− ln(r/a)
ln(b/a)

)

. So we may write the following expression for V1:

V1 = V ′

(

1− ln(r/a)

ln(b/a)

)

+ L0 +
∞
∑

m=1

Am

(

(r/a)m − (r/a)−m
)

cos(mϕ) (20)

It is to be mentioned that we do not lose any generality with the above scaling of the

trivial solution, because after scaling, the trivial solution plus L0 result in V ′ +L0 for r = a

and L0 for r = b, and the relationship between these two values has not been established

yet.

The reason for choosing this approach is that all the unknowns, namely Am and L0 in

(20) and Bm in (18) must be proportional to the applied voltage V0, so we may calculate

them with the aid of an arbitrary V ′, and obtain V1(r = a, ϕ) = V ′ + L0, which can be

scaled eventually by a factor V0/(V
′ + L0) to be equal to V0. So we may set from now on

V ′ ≡ 1, and remember to multiply everything by V0/(1 + L0).

One may verify that the alternative approach of absorbing L0 in the trivial solutions

results in much more complicated equations.

We require condition (13):
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−1

ln(b/a)
+

∞
∑

m=1

mAm

(

(b/a)m + (b/a)−m
)

cos(mϕ) =

∞
∑

m=1

−mBm

2(1− α/π)
sin

(

m

2

ϕ− α

1− α/π

)

(21)

and the above condition holds for α ≤ ϕ ≤ 2π − α. In this range, the sin
(

m
2

ϕ−α
1−α/π

)

functions are orthogonal, so we multiply (21) by sin
(

n
2

ϕ−α
1−α/π

)

(for any positive integer n)

and integrate on ϕ over the range [α, 2π − α]. We use the following integrals:

∫ 2π−α

α

sin

(

n

2

ϕ− α

1− α/π

)

dϕ =







0 n odd

4
n
(1− α/π) n even

(22)

∫ 2π−α

α

sin

(

n

2

ϕ− α

1− α/π

)

sin

(

m

2

ϕ− α

1− α/π

)

dϕ = π(1− α/π)δmn (23)

where δmn is the Kronecker delta, and:

∫ 2π−α

α

sin

(

n

2

ϕ− α

1− α/π

)

cos(mϕ)dϕ = Gnm (24)

where Gnm is a matrix defined by:

Gnm =



















0 n odd

cos(mα) n/(1−α/π)
((n/2)/(1−α/π))2−m2 m 6= (n/2)/(1− α/π) n even

−(π − α) sin(mα) m = (n/2)/(1− α/π) n even

(25)

The last case defined by m = (n/2)(1−α/π) is not likely to happen if α → 0, except for

very specific values of α, but we calculated this case for completeness. It is to be mentioned

that for this case α/π = 1− n/(2m), for some specific m and n, hence mα = mπ − nπ/2 is

equivalent to the points π/2 or 3π/2 on the unity circle, so that cosmα = 0, and this has

been used in the above calculation. Also, sin(mα) could be written as (−1)m−n/2−1/2.

After performing the above integrals, we obtain from (21) the following result for the B

coefficients in (18):

− 1

2
πnBn =







0 n even

− 4
n
(1− α/π) 1

ln(b/a)
+
∑

∞

m=1GnmmAm ((b/a)m + (b/a)−m) n odd
(26)
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This result implies that Bn are 0 for even n, and this is expected because of the mirror

symmetry around the x axis.

Now we require conditions (12):

L0+
∑

∞

m=1
Am((b/a)m−(b/a)−m) cos(mϕ)=



















0 0 ≤ ϕ ≤ α

0 2π − α ≤ ϕ ≤ 2π

∑
∞

m=1
Bm sin(m

2

ϕ−α
1−α/π ) α ≤ ϕ ≤ 2π − α

(27)

The above condition is defined for 0 ≤ ϕ ≤ 2π. In this range, the cos(mϕ) functions are

orthogonal, so we multiply (27) by cos(nϕ) and integrate on ϕ over the range [0, 2π], for n

being any non negative integer.

First, if we do it for n = 0, the sum on the left side vanishes, and using (22), with m

instead of n, we obtain the following expression for L0:

L0 =
2

π
(1− α/π)

∞
∑

m=1 (odd)

Bm

m
(28)

and we could have even omitted the word “odd”, because we already know that the even

B coefficients from (18) are 0.

Now we multiply (27) by cos(nϕ) and integrate from ϕ = 0 to 2π, for n 6= 0. This time

L0 vanishes, and after using:

∫ 2π

0

cos(nϕ) cos(mϕ)dϕ = πδmn (29)

where δmn is the Kronecker delta, and the result (24) for m and n switched, we obtain

from (27) the following result for the A coefficients in (20):

πAn

(

(b/a)n − (b/a)−n
)

=

∞
∑

m=1 (odd)

GmnBm (30)

again we could have omitted the word “odd” because the coefficients Bm and Gmn are 0

for even m.

Knowing that the even coefficients B are 0, we set in (18) m = 2l− 1, but for simplicity

we will call B2l−1 just Bl, in other words we redefine the B coefficients to include only the

odd ones. So we rewrite V2 as:
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V2 =
∞
∑

l=1

Bl(r/b)
−

l−1/2
1−α/π sin

(

(l − 1/2)
ϕ− α

1− α/π

)

(31)

In the same way, eq. (28) may be rewritten as:

L0 =
2

π
(1− α/π)

∞
∑

l=1

Bl

2l − 1
(32)

and eq. (26) and (30) may be rewritten as:

− 1

2
π(2l − 1)Bl = − 4

2l − 1
(1− α/π)

1

ln(b/a)
+

∞
∑

m=1

GlmmAm

(

(b/a)m + (b/a)−m
)

(33)

and

πAn

(

(b/a)n − (b/a)−n
)

=
∞
∑

l=1

GlnBl (34)

where the matrix Gnm has been redefined accordingly, by setting n = 2l − 1:

Glm =



















cos(mα) (2l−1)/(1−α/π)
((l−1/2)/(1−α/π))2−m2 m 6= (l − 1/2)/(1− α/π)

−(π − α) sin(mα) m = (l − 1/2)/(1− α/π)

(35)

or, as mentioned after (25), for the case m = (l−1/2)/(1−α/π), one may replace sin(mα)

by (−1)m−l.

Now we will rewrite eq. (33) and (34) in matrix form, to solve 2 matrix equations with 2

unknown vectors for the coefficients A and B, then find L0 with (32) and eventually calculate

the potential and scale it by the factor V0/(1 + L0).

To rewrite eq. (34) in matrix form we define the diagonal matrix Q, by its components

as Qmn ≡ ((b/a)m − (b/a)−m) δmn, and obtain:

πQA = GTB (36)

To rewrite eq. (33) in matrix form we define the diagonal matrices P, by Pmn ≡
((b/a)m + (b/a)−m) δmn, S, by Smn ≡ (2m − 1)δmn and J , by Jmn ≡ mδmn. We also
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define the column vector K by its components Km = 1, and obtain:

− 1

2
πSB = −4(1− α/π)

1

ln(b/a)
S−1K + GJPA (37)

We isolate B from (37):

B =
8

π
(1− α/π)

1

ln(b/a)
S−2K − 2

π
S−1GJPA (38)

and set it in (36) to obtain a closed form solution for A:

A =
8

π
(1− α/π)

1

ln(b/a)
(πQ+

2

π
GTS−1GJP)−1GTS−2K (39)

Clearly, for α = π (concentric cylinders), A, B and L0 are all 0, hence V2 = 0 and we are

left only with the trivial solution for V1, as expected.

This calculation has been carried out numerically. As smaller α we use, we need to keep

bigger dimensions in the matrices, to obtain convergence. Figure 5 shows the potential in a

3D plot, for the physical values of our lifter, where V0 is normalized to 1. The matrices and

vectors have been cut to the dimension of 119. Because of the mirror symmetry around the

x axis, we drew the potential only for positive y.

We derive now the electric field. For region 1 we obtain the radial field:

E1r = −∂V1

∂r
=

V0

1 + L0

1

r

[

1

ln(b/a)
−

∞
∑

m=1

mAm

(

(r/a)m + (r/a)−m
)

cos(mϕ)

]

(40)

and the circular field:

E1ϕ = −1

r

∂V1

∂ϕ
=

V0

1 + L0

1

r

∞
∑

m=1

mAm

(

(r/a)m − (r/a)−m
)

sin(mϕ) (41)

For region 2 we obtain the radial field:

E2r = −∂V2

∂r
=

V0

1 + L0

1

r

∞
∑

l=1

l − 1/2

1− α/π
Bl(r/b)

−
l−1/2
1−α/π sin

(

(l − 1/2)
ϕ− α

1− α/π

)

(42)

and the circular field:
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FIG. 5: 3D plot for the potential. V0 is normalized to 1.

E2ϕ = −1

r

∂V2

∂ϕ
= − V0

1 + L0

1

r

∞
∑

l=1

l − 1/2

1− α/π
Bl(r/b)

−
l−1/2
1−α/π cos

(

(l − 1/2)
ϕ− α

1− α/π

)

(43)

It would be useful to calculate the capacitance. The charge per unit of surface on the

anode is η = ǫ0E1r(r = a, ϕ), and the charge per unit of length is given by λ =
∫ 2π

0
a dϕ η.

Clearly, the integral on ϕ zeroes the sum in (40) and we are left with:

λ =
2πǫ0V0

ln(b/a)(1 + L0)
(44)

So the capacitance per unit of length is:

C ′ =
λ

V0
=

2πǫ0
ln(b/a)(1 + L0)

(45)

Of course, for α = π, L0 = 0 (see (32)) and we recover the known formula for the
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capacitance per unit of length for concentric cylinders.

We are of course interested in small α, so we calculated the values of L0 for different ratios

b/a, and fit an approximate formula for it - see Figure 6. It comes out that for α < π/100,

L0 can be expressed as:

FIG. 6: Values of L0 for α = 1.3o. The stars are the exact calculated values, and the continuous line

represents the fitted curve values given by eq. 46. This fitted curve is valid for α < π/100 rd = 1.8o

L0 ≈
1.3035

ln(b/a)
+ 0.011 (46)

resulting in the following approximate formula for the capacitance per unit of length:

C ′ ≈ 2πǫ0
1.011 ln(b/a) + 1.3035

(47)

If we set the values for our lifter: a = 0.075mm and b = 2.8cm into (47) we get C ′ =

7.63pF/m, and multiplying by the lifter’s perimeter 0.6m, the calculated capacitance comes

out Ccalculated = 4.57pF . To check the validity of this result we measured the capacitance of

our lifter and got Cmeasured = 4pF ± 5%, which is quite close to the calculated result.
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It is also useful to get a relation between the applied voltage V0 and the field intensity on

the anode. Of course, the field on the anode wire is not constant, and depends of ϕ. But for

a thin anode (b ≫ a), the field is almost constant (see also discussion in the next section).

One may verify that for r = a the absolute value of the sum in (40) is much smaller than

1
ln(b/a)

hence we may write the approximate expression:

V0

E1r(r = a, ϕ)
≈ (1 + L0) a ln(b/a) ≈ a(1.3035 + 1.011 ln(b/a)) (48)

where the second expression is a further approximation which uses (46).

Again, for α = π, L0 = 0, and we recover the known expression of this relation for

concentric cylinders.

In Figure 7 we show the equipotential surfaces and the field lines - those are needed in

the next section. The Warburg19,20 region can be seen also in Figure 7, and will be referred

to in the next section.

FIG. 7: The lines emerging from the anode are the electric field lines, and those perpendicular

to them are the equipotential surfaces. The axes are in units of meter. The coordinates u and

v denote the local direction of the field and the equipotential lines, respectively. The dashed line

shows the electric field line which delimits the Warburg region. This field line passes through the

point (x = b, y = b/ tan(60o)). Only the y > 0 is shown, because of the mirror symmetry around

the x axis
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5. THE POISSONIAN PROBLEM

In this section we use the Laplacian results obtained in the previous section to solve the

Poissonian problem, i.e. the state of the system when the applied voltage is bigger than the

corona inception voltage.

F.W. Peek21 made an extensive research on corona inception for different geometries

like concentric cylinders, parallel wires, etc. and published the results in his book. For

all the configurations involving corona around a thin wire of radius a, the electric field on

the surface of the wire at which corona begins (at room temperature) is given by Ei =

3 × 106(1 + p/
√
a) v/m, where p ≈ 0.03

√
m with very slight variations of less than 2% for

different geometries, with different asymmetries for the electric field.

We do not have the exact value for our geometry, but as explained by Peek himself, before

corona starts, the field very close to a thin wire behaves like the field on the surface (which

is almost constant if the wire is thin) times the wire radius, divided by the distance from

the wire. So when having the above Ei value on the wire surface, one can easily find that

at a distance of p
√
a from the wire surface the field is 3× 106 v/m, this way assuring a field

of more than 3× 106 v/m in a wide enough region around the wire to allow corona to start.

So we can safely use Peek formula:

Ei = 3× 106(1 + 0.03/
√
a) v/m (49)

as has be done a lot in the literature, for different configurations of thin wire electrode

near any other electrode11,18,25.

Given a = 0.075mm, we know that for our case Ei = 13.392 Mv/m.

Now we can find at which voltage the corona starts, i.e. the Corona Inception Voltage

(CIV). The CIV is the voltage for which the Laplacian field on the surface of the corona

wire equals to 13.392 Mv/m. For this we do not have to use Peek formula for CIV, we have

the Laplacian solution for our problem. Using the approximation (48), results in 7.32 Kv or

running the solution and measuring the exact relation results in 7.42 Kv, so the difference

is less than 2%. Hence we may use:

CIV = 7.4 Kv (50)
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Because of the asymmetry around the anode, the field on the corona surface is not

completely uniform, and that is the reason for the slight variations in p in Peek formula for

different asymmetric configurations. But fortunately, the corona wire being very thin, the

field on the corona wire surface is almost uniform (up to variations of 0.5%), so we do not

have to worry about it. (See also discussion before (48)).

So for a voltage bigger than the CIV, the Laplacian solution is not valid anymore, and

we need the solution to the Poissonian problem.

This requires the simultaneous solution of (3)) and (2)), where for J we use (7).

The coefficient K in (7) is unknown, but given the fact that our solution is accurate for

y = 0, i.e. where the field lines are straight (see discussion in Sect. 3), one can iterate the

coefficient K in this region to get
∫ b

a
E dx = V0, where V0 is the potential difference for which

we solve.

The numerical solution is described in Figure 8, which is a zoom on a region of Figure 7.

The “P” prefix for Poissonian is omitted, for brevity.

FIG. 8: The calculations are done along the Laplacian field lines, and start with n = 0 on the

anode surface up the final value of n on the cathode surface. The lengths on the sides of each area

are called d0, d1, L0 and L1.

Being a 2 dimensional problem J represents the current per unit of perpendicular length,

and ρ represents the charge per unit of surface.

The iterative calculation is done between each pair of field lines (see Figure 8) by:

ρn = Jn/(µEn) (51)

where Jn is J at the location of En, and it is known for a given K, and
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En+1 = (ρndavLav/ǫ0 + d0 En)/d1 (52)

where dav = (d0+d1)/2 and Lav = (L0+L1)/2. Those are the numerical implementations

of (2) and (3).

The initial condition for the iteration is Kaptzov assumption23 (explained in the intro-

duction), which requires:

E0 = Ei (53)

After finishing the calculation between the first two field lines (i.e. in the region of

very small y we check the result of
∫ b

a
E dx ≈

∑

n

EnLavn . Say its value is 2V0, we have

to reduce K by a factor of approximately 4 (approximate because the initial condition for

E is independent on K). This process converges very quickly (3-4 iterations), and after

establishing K we can process the calculations.

As explained in Sect. 3, as we get farther from the straight fields lines region, the errors

slowly increase, getting bigger and bigger when approaching the Warburg19,20 limit region

(see Figure 7).

This is correctable by letting K decrease with v (this way ∇̄ · J̄ remains 0, as it should).

We implemented a fixed K within the Warburg region, letting it drop to 0 outside the region,

although a smooth change may have been considered too.

It is to mentioned that this correction is also in accordance with the experimental knowl-

edge that the current drops to 0 outside the Warburg region27–30.

Within each area element we also calculate the x component of the force

Fxn = Exnρn (54)

where Exn is the x component of En. The total force is eventually summed on the whole

area, and knowing J we sum across the line fields (in the v direction), obtaining the total

current I.

In the final stage the force and the current are multiplied by 2 to account for the symmetric

y < 0 region and the values being per unit of length of the lifter, are multiplied by the

perimeter 0.6m. The force is normalized to show the lifted mass in grams.
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The values of V0 for which we did the calculations, have been chosen to fit the values on

which the experiment has been done (see next section).

The calculated results are presented in Table I

TABLE I: Calculated results

V0 [Kv] Current [mA] Mass that can be lifted [g]

11.12 0.084 1.54

12.9 0.145 2.65

14.08 0.19 3.55

14.4 0.219 4

15.64 0.27 4.98

16.8 0.34 6.16

18.9 0.46 8.42

20.5 0.586 10.74

21.8 0.678 12.44

22.8 0.76 13.9

6. THE EXPERIMENT

The experiment is shown in Figure 9.

High
voltage
source

R

Lifter
nV�
�� nV�

��

FIG. 9: The configuration of the experiment. The lifter is connected to a high voltage source

through a resistor. For different values of resistors, the input and lifter voltages are measured.

For different values of resistors, the input and lifter voltages are measured and the lifting

force is measured. The lifting force has been measured only for the cases for which the lifter

lifted, by counter balancing it, knowing that its mass is 7g.

The results of the measurements are shown Table II. The current is calculated using the

2 measured voltages and the resistor.

7. COMPARISON AND APPROXIMATED FORMULAE
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TABLE II: Measured results (NA means not available)

R [MΩ] Lifter voltage V0 [Kv] Source voltage [Kv] Current [mA] Lifted mass [g]

308 11.12 25.6 0.047 NA

154 12.9 25.58 0.082 NA

110 14.08 25.51 0.104 NA

88 14.4 25.46 0.126 NA

66 15.64 25.42 0.148 NA

44 16.8 25.3 0.193 NA

22 18.9 25 0.277 7.5

10 20.5 25 0.450 10

6.8 21.8 24.92 0.459 12.2

3.3 22.8 24.8 0.606 13

One may see that the calculated forces fit well to the measured force. We will now analyze

the current-voltage relation for the calculated and measured results. Those are shown in

Figure 10.

FIG. 10: The current-voltage curve of the lifter. The ’*’ describe the measured results and the ’+’

describe the calculated results. The continuous curves are the closest approximations to the above

results using I = K1V0(V0 − CIV)
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We remark that both measured and calculated results may be curve fitted with

Townsent26 formula:

I = K1V0(V0 − CIV) (55)

although the measured results look farther from their fitted curve than the calculated

results (might be because of some technical problems during experiment).

The curve fitted to the calculated results used K1 = 21.6 × 10−4mA/(Kv)2 and CIV =

7.42Kv, while this fitted to the measured results used K1 = 18.2 × 10−4mA/(Kv)2 and

CIV = 9.46Kv.

The constant26 is known to be proportional to the ion mobility µ and to the capacitance,

and inverse proportional to the square distance between the electrodes b2. Checking for the

proportionality factor (after putting everything in MKS units) we find that:

K1 = 1.9µC/b2 (56)

and here one may see that the differences between the measured and calculated K1 fit

the differences between the measured and calculated capacitances.

The fact that the measured and calculated force resemble, and we see from Table I that

the force is proportional to the current, i.e. mass divided by current is 18.34 g/mA, we may

write the relation between force and current:

F

I
= 179.72N/A (57)

We know that for a lifter with parallel field lines (like a series of parallel thin anode wires

over a platform of parallel vertical cathode surfaces) - see13, one may derive a very simple

relation between force and current: F =
∫∫∫

Eρdv. According to (2) Eρ = J/µ, hence we

get for constant µ: F = (1/µ)
∫∫∫

Jdv. The integral over the coordinates perpendicular to

J (v,z in Figure 7) result in the total current I, hence: F = (I/µ)
∫

du, and the last integral

is just the distance between the electrodes - let us call it d. So for the parallel field lifter

one obtains: F = (Id/µ).

Expressing the same way (57), we obtain:
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F =
I(1.284b)

µ
(58)

The factor 1.284 which multiplies the distance between electrodes b can be understood

as a lengthening factor. This means that 1.284b can be viewed as the average length of the

field lines (see Figure 7).

Hence we obtained an approximate formula (58) for calculating the force of a

lifter build as a thin anode over a vertical cathode surface. The current I to be set in

(58) can be calculated from (55) and (56), and the CIV can be calculated from (49) and (48).

CONCLUSIONS

In this paper we calculated to force on a levitation unit, built as a thin anode wire

over a vertical cathode plane, as the electric force on the space charge and compared with

experiment.

Our calculations were based on the Laplacian solution for this electrostatic configuration,

which by itself is a new result.

With the aid of the Laplacian solution, Deutsch assumption and a first order correction

we were able to calculate the force on the levitation unit and the current. The calculated

results showed a good correspondence with the measured results.

Also, based on the known formula which describes the force as the current multiplied

by the distance between electrodes (when this distance is constant) and divided by the ion

mobility, we interpreted our result as basically describing the force in the way mentioned

above, with the distance taken as 1.284b, which may be understood as the average length of

the field lines.



26

∗ Electronic address: riancon@mail.shenkar.ac.il

1 T.T. Brown, “A method of and an apparatus or machine for producing force or motion” , British

Patent 300311, (1928)

2 T.T. Brown, “Electrostatic motor”, US Patent 1974483, (1934)

3 T.T. Brown, “Electrokinetic Apparatus”, US Patent 2949550, (1960)

4 Website dedicated to BB effect “http://www.biefeldbrown.com/”

5 Jean-Louis Naudin website “http://jnaudin.free.fr/”

6 Tajmar M. and de Matos, C.J.,”Coupling of electromagnetism and gravitation in the weak field

approximation”, Journal of Theoretics, Vol.3 (1), (Feb/March 2001).

7 Musha T., “Theoretical explanation of the Biefeld-Brown Effect”, Electric Space Craft Journal,

Issue 31 (2000).

8 Website “http://montalk.net/science/84/the-biefeld-brown-effect”

9 T.B. Bahder, C. Fazi, “Force on an asymmetrical capacitor, Army Research Laboratory, Report

No. ARL-TR-3005, (March 2003)

10 Tajmar M. “Biefeld-Brown Effect: Misinterpretation of Corona Wind Phenomena”, AIAA Jour-

nal, Vol.42 (2), 315-318 (2004).

11 L. Zhao, K. Adamiak, “EHD gas flow in electrostatic levitation unit”, Journal of Electrostatics,

Vol. 64, 639-645 (July 2006)

12 L. Zhao, K. Adamiak, “Numerical analysis of forces in an electrostatic levitation unit”, Journal

of Electrostatics, Vol. 63, 729-734 (June 2005)

13 Website “http://www.blazelabs.com/”

14 W. Deutsch, “Uber die Dichteverteilung unipolarer Ionenstrome”, Annalen der Physik, Vol.

16, 588-612 (1933)

15 L. E. Tsyrlin Sov. Phys.-Tech. Phys. Vol. 30 (1958)

16 A. Ieta, Z. Kucerovsky and W. D. Greason, “Laplacian approximation of Warburg distribution”

Journal of Electrostatics, Vol. 63 (2), 143-154 (February 2005)

17 R.S. Sigmond, “Simple approximate treatment of unipolar space-charge-dominated coronas: the

Warburg law and the saturation current”, J. Appl. Phys., Vol. 53 (2), 891-898 (1982)

18 J. E. Jones and M. Davies, “A critique of the Deutsch assumption”, J. Phys. D: Appl. Phys.,

mailto:riancon@mail.shenkar.ac.il
http://www.biefeldbrown.com/
http://jnaudin.free.fr/
http://montalk.net/science/84/the-biefeld-brown-effect
http://www.blazelabs.com/


27

Vol. 25 (12), 1749-1759 (1992)

19 E. Warburg, “Uber die spitzenentladung”, Wied. Ann 67-69 (1899).

20 E. Warburg, “Characteristik des spitzenstromes”, Handbuch der Physik (Springer, Berlin), Vol.

14, 154-155 (1927).

21 F.W. Peek “Dielectric Phenomena in High Voltage Engineering”, McGraw-Hill (1929)

22 M. Davies, A. Goldman, M. Goldman and J.S. Jones “Developments in the theory of corona

corrosion for negative coronas in air”, Proc. XVIII Int. Conf. on Phenomena in Ionized Gases

(ICPIG), (1987)

23 N. Kaptzov, “Elektricheskie Yavlenia v Gazakh I Vakuumme”, Ogiz, Moscow, 587-630 (1947)

24 N.J. Felici, “Recent advances in the analysis of D.C. ionized electric fields”, Direct Current,

Vol. 8 (10), 278-287 (1963)

25 J.Q. Feng, “An analysis of corona currents between two concentric cylindrical electrodes”, Jour-

nal of Electrostatics, Vol. 46, 37-48 (1998)

26 J. S. Townsend, Philos. Mag., Vol. 28, p83 (1914).

27 Y. Kondo and Y. Miyoshi, Jpn. J. Appl. Phys., Vol. 17, 643 (1978).

28 A. Goldman, E. O. Selim, and R. T. Waters, The 5th International Conference on Gas Dis-

charges, lEE Conf. Publ., No. 165 pp. 88-91, (London, 1978).

29 E. O. Selim and R. T. Waters, Proceedings of the 3rd International Symposium on High Voltage

Engineering, Paper 53.03, (Milan, 1979)

30 E. O. Selim and R. T. Waters, The 6th International Conference on Gas Discharges and their

Applications, lEE Conf. Publ., No. 189, pp. 146-149, (London, 1980)


	 References

