Comment on "Response calculations with an independent particle system with an exact one-particle density matrix"

Ryan Requist^{*} and Oleg Pankratov

Theoretische Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7-B2, 91058 Erlangen, Germany

(Dated: November 8, 2010)

Giesbertz, Gritsenko and Baerends (GGB) have stated that the occupation numbers n_k in time-dependent density matrix functional theory are time independent in the "adiabatic" approximation (AA) for any groundstate functional [1] (see also [2]). It is important to know whether this statement is true as it has implications for the design of functionals capable of generating time-dependent occupation numbers. Here we show that the argument given by GGB to support this statement is incorrect. The statement, however, is true; it follows quite generally from the stationarity of the ground state [3].

The equation of motion for the one-body reduced density matrix γ implies $idn_k/dt = W_{kk}^{\dagger} - W_{kk}$ [2], where

$$W_{kl} = \sum_{qrs} w_{kqrs} \Gamma_{srql} \tag{1}$$

with $\Gamma_{srql} = \langle \Psi | \hat{c}_l^{\dagger} \hat{c}_q^{\dagger} \hat{c}_r \hat{c}_s | \Psi \rangle$ and

$$w_{kqrs} \equiv \int dx dx' \phi_k^*(x) \phi_q^*(x') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \phi_r(x') \phi_s(x).$$
(2)

In the AA, the memory-dependent functional $\Gamma([\gamma]; t)$ on the right-hand side of Eq. (1) is approximated by the ground-state functional $\Gamma_0[\gamma]$ evaluated for $\gamma(t)$. GGB argue that the invariance of the ground-state interaction energy functional $W_0 = W_0[\gamma]$ with respect to the change $\phi_k \to e^{i\alpha_k}\phi_k$ in the phases of the natural orbitals implies $dn_k/dt = 0$. Therefore, they claim to prove the implication $dW_0[\gamma]/d\alpha_k = 0 \Rightarrow dn_k/dt = 0$. The crux of their argument is the statement

$$\frac{dW_0[\gamma]}{d\alpha_k} = W_{0,kk}^{\dagger} - W_{0,kk}, \qquad (3)$$

where $W_{0,kk}$ are defined in the same way as the W_{kk} but with ground-state quantities. To establish Eq. (3), GGB use the identity

$$i\frac{dW_0}{d\alpha_k} = \int dx \frac{\delta W_0}{\delta \phi_k^*(x)} \phi_k^*(x) - \int dx \frac{\delta W_0}{\delta \phi_k(x)} \phi_k(x) \quad (4)$$

and the statement

$$W_{0,kk}^{\dagger} = \int dx \frac{\delta W_0}{\delta \phi_k^*(x)} \phi_k^*(x), \qquad (5)$$

quoted from Ref. 4, where it was derived from

$$\frac{\delta W_0[\gamma]}{\delta \phi_i^*(x)} = \sum_p \frac{\partial W_0[\gamma]}{\partial \xi_p} \frac{\delta \xi_p}{\delta \phi_i^*(x)} + \frac{1}{2} \sum_{kqrs} \frac{\delta w_{kqrs}}{\delta \phi_i^*(x)} \Gamma_{srqk}.$$
 (6)

Here $W_0[\gamma] = \frac{1}{2} \min_{\{\xi_p\}} \sum_{kqrs} w_{kqrs} \Gamma_{srqk}(\xi_p)$ and $\{\xi_p\}$ parametrize a constrained search over N-representable Γ_{srgk} that contract to γ . It was argued [4] that Eq. (5) follows from Eq. (6) because the first term vanishes due to the variational nature of the constrained search. But there are two flaws with this argument: (i) Eq. (6) itself is manifestly incorrect because $W_0[\gamma]$ has no $\{\xi_p\}$ dependence after the constrained search has been performed: the operations $\sum_{p} \frac{\partial}{\partial \xi_{p}}$ and $\min_{\{\xi_{p}\}}$ do not commute; (ii) The variational character of $W_0([\phi_i];\xi_p) \equiv$ $\frac{1}{2}\sum_{kqrs} w_{kqrs}\Gamma_{srqk}(\xi_p)$ at the minimizing ξ_p for fixed $\{\phi_i, n_i\}$ does not imply that the gradient with respect to ξ_p is zero, because $W_0([\phi_i]; \xi_p)$ is only stationary with respect to the subspace of $\{\xi_p\}$ degrees of freedom that are orthogonal to the ϕ_i degrees of freedom as the latter are *constrained*. Ultimately, the argument is incorrect because it does not account for the ϕ_i dependence of Γ_{srqk} .

For the specific case of approximate $W_0[n_i, \phi_i, \phi_i^*]$ that contain only w_{kqkq} and w_{kqqk} Coulomb integrals and in which the Γ_{srqk} are functions of n_i , it might seem that Eq. (5) can be verified by an explicit calculation of the functional derivative. However, such a calculation is not valid because the variation $\phi_k^* \to \phi_k^* + \delta \phi_k^*$ holding fixed all other ϕ_i^* and all ϕ_i corresponds to a non-Hermitian $\gamma + \delta \gamma$. Hence, such a variation goes outside the physical domain of $W_0[n_i, \phi_i, \phi_i^*]$. The functional derivative of $W_0[\gamma]$ with respect to an orbital should be understood as

$$\int dx \frac{\delta W_0[\gamma]}{\delta \phi_k^*(x)} \phi_k^*(x) = n_k \int dx dx' \phi_k^*(x) \frac{\delta W_0[\gamma]}{\delta \gamma(x',x)} \phi_k(x'),$$
(7)

where now $W_0[\gamma] = \frac{1}{2} \int dx_1 dx_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \Gamma_0([\gamma]; x_1 x_2, x_1 x_2)$ and $\Gamma_0([\gamma]; x_1 x_2, x'_1 x'_2)$ is the ground-state two-body reduced density matrix functional [5]. Clearly, Eqs. (4) and (7) cannot justify Eq. (3) because the right-hand side of Eq. (3) depends on degrees of freedom of $\Gamma_0(x_1 x_2, x'_1 x'_2)$ that are integrated out in the definition of $W_0[\gamma]$. This information cannot be recovered by taking the derivative with respect to α_k .

This work was supported by the Deutsche Forschungsgemeinshaft (Grant No. PA 516/7-1).

 $^{^{\}ast}$ Electronic address: ryan.requist@physik.uni-erlangen.de

K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, Phys. Rev. Lett. **105**, 013002 (2010).

(2005).

- [5] T. L. Gilbert, Phys. Rev. B **12**, 2111 (1975).
- $\left[2\right]$ K. Pernal, O. Gritsenko, and E. J. Baerends, Phys. Rev. A **75**, 012506 (2007).
- [3] R. Requist and O. Pankratov, arXiv:1011.1220v1.
 [4] K. Pernal and J. Cioslowski, Chem. Phys. Lett. 412, 71