Comment on "Response calculations with an independent particle system with an exact one-particle density matrix"

Ryan Requist** and Oleg Pankratov
Theoretische Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7-B2, 91058 Erlangen, Germany

(Dated: November 8, 2010)

Giesbertz, Gritsenko and Baerends (GGB) have stated that the occupation numbers n_{k} in time-dependent density matrix functional theory are time independent in the "adiabatic" approximation (AA) for any groundstate functional [1] (see also [2]). It is important to know whether this statement is true as it has implications for the design of functionals capable of generating time-dependent occupation numbers. Here we show that the argument given by GGB to support this statement is incorrect. The statement, however, is true; it follows quite generally from the stationarity of the ground state [3].

The equation of motion for the one-body reduced density matrix γ implies $i d n_{k} / d t=W_{k k}^{\dagger}-W_{k k}$ [2], where

$$
\begin{equation*}
W_{k l}=\sum_{q r s} w_{k q r s} \Gamma_{s r q l} \tag{1}
\end{equation*}
$$

with $\Gamma_{\text {srql }}=\langle\Psi| \hat{c}_{l}^{\dagger} \hat{c}_{q}^{\dagger} \hat{c}_{r} \hat{c}_{s}|\Psi\rangle$ and

$$
\begin{equation*}
w_{k q r s} \equiv \int d x d x^{\prime} \phi_{k}^{*}(x) \phi_{q}^{*}\left(x^{\prime}\right) \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \phi_{r}\left(x^{\prime}\right) \phi_{s}(x) \tag{2}
\end{equation*}
$$

In the AA, the memory-dependent functional $\Gamma([\gamma] ; t)$ on the right-hand side of Eq. (1) is approximated by the ground-state functional $\Gamma_{0}[\gamma]$ evaluated for $\gamma(t)$. GGB argue that the invariance of the ground-state interaction energy functional $W_{0}=W_{0}[\gamma]$ with respect to the change $\phi_{k} \rightarrow e^{i \alpha_{k}} \phi_{k}$ in the phases of the natural orbitals implies $d n_{k} / d t=0$. Therefore, they claim to prove the implication $d W_{0}[\gamma] / d \alpha_{k}=0 \Rightarrow d n_{k} / d t=0$. The crux of their argument is the statement

$$
\begin{equation*}
\frac{d W_{0}[\gamma]}{d \alpha_{k}}=W_{0, k k}^{\dagger}-W_{0, k k} \tag{3}
\end{equation*}
$$

where $W_{0, k k}$ are defined in the same way as the $W_{k k}$ but with ground-state quantities. To establish Eq. (3), GGB use the identity

$$
\begin{equation*}
i \frac{d W_{0}}{d \alpha_{k}}=\int d x \frac{\delta W_{0}}{\delta \phi_{k}^{*}(x)} \phi_{k}^{*}(x)-\int d x \frac{\delta W_{0}}{\delta \phi_{k}(x)} \phi_{k}(x) \tag{4}
\end{equation*}
$$

and the statement

$$
\begin{equation*}
W_{0, k k}^{\dagger}=\int d x \frac{\delta W_{0}}{\delta \phi_{k}^{*}(x)} \phi_{k}^{*}(x) \tag{5}
\end{equation*}
$$

quoted from Ref. 4, where it was derived from

$$
\begin{equation*}
\frac{\delta W_{0}[\gamma]}{\delta \phi_{i}^{*}(x)}=\sum_{p} \frac{\partial W_{0}[\gamma]}{\partial \xi_{p}} \frac{\delta \xi_{p}}{\delta \phi_{i}^{*}(x)}+\frac{1}{2} \sum_{k q r s} \frac{\delta w_{k q r s}}{\delta \phi_{i}^{*}(x)} \Gamma_{s r q k} \tag{6}
\end{equation*}
$$

Here $W_{0}[\gamma]=\frac{1}{2} \min _{\left\{\xi_{p}\right\}} \sum_{k q r s} w_{k q r s} \Gamma_{s r q k}\left(\xi_{p}\right)$ and $\left\{\xi_{p}\right\}$ parametrize a constrained search over N-representable $\Gamma_{s r q k}$ that contract to γ. It was argued [4] that Eq. (5) follows from Eq. (6) because the first term vanishes due to the variational nature of the constrained search. But there are two flaws with this argument: (i) Eq. (6) itself is manifestly incorrect because $W_{0}[\gamma]$ has no $\left\{\xi_{p}\right\}$ dependence after the constrained search has been performed: the operations $\sum_{p} \frac{\partial}{\partial \xi_{p}}$ and $\min _{\left\{\xi_{p}\right\}}$ do not commute; (ii) The variational character of $W_{0}\left(\left[\phi_{i}\right] ; \xi_{p}\right) \equiv$ $\frac{1}{2} \sum_{k q r s} w_{k q r s} \Gamma_{s r q k}\left(\xi_{p}\right)$ at the minimizing ξ_{p} for fixed $\left\{\phi_{i}, n_{i}\right\}$ does not imply that the gradient with respect to ξ_{p} is zero, because $W_{0}\left(\left[\phi_{i}\right] ; \xi_{p}\right)$ is only stationary with respect to the subspace of $\left\{\xi_{p}\right\}$ degrees of freedom that are orthogonal to the ϕ_{i} degrees of freedom as the latter are constrained. Ultimately, the argument is incorrect because it does not account for the ϕ_{i} dependence of $\Gamma_{s r q k}$.

For the specific case of approximate $W_{0}\left[n_{i}, \phi_{i}, \phi_{i}^{*}\right]$ that contain only $w_{k q k q}$ and $w_{k q q k}$ Coulomb integrals and in which the $\Gamma_{s r q k}$ are functions of n_{i}, it might seem that Eq. (5) can be verified by an explicit calculation of the functional derivative. However, such a calculation is not valid because the variation $\phi_{k}^{*} \rightarrow \phi_{k}^{*}+\delta \phi_{k}^{*}$ holding fixed all other ϕ_{i}^{*} and all ϕ_{i} corresponds to a non-Hermitian $\gamma+\delta \gamma$. Hence, such a variation goes outside the physical domain of $W_{0}\left[n_{i}, \phi_{i}, \phi_{i}^{*}\right]$. The functional derivative of $W_{0}[\gamma]$ with respect to an orbital should be understood as

$$
\begin{equation*}
\int d x \frac{\delta W_{0}[\gamma]}{\delta \phi_{k}^{*}(x)} \phi_{k}^{*}(x)=n_{k} \int d x d x^{\prime} \phi_{k}^{*}(x) \frac{\delta W_{0}[\gamma]}{\delta \gamma\left(x^{\prime}, x\right)} \phi_{k}\left(x^{\prime}\right) \tag{7}
\end{equation*}
$$

where now $W_{0}[\gamma]=\frac{1}{2} \int d x_{1} d x_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \Gamma_{0}\left([\gamma] ; x_{1} x_{2}, x_{1} x_{2}\right)$ and $\Gamma_{0}\left([\gamma] ; x_{1} x_{2}, x_{1}^{\prime} x_{2}^{\prime}\right)$ is the ground-state two-body reduced density matrix functional [5]. Clearly, Eqs. (4) and (7) cannot justify Eq. (3) because the right-hand side of Eq. (3) depends on degrees of freedom of $\Gamma_{0}\left(x_{1} x_{2}, x_{1}^{\prime} x_{2}^{\prime}\right)$ that are integrated out in the definition of $W_{0}[\gamma]$. This information cannot be recovered by taking the derivative with respect to α_{k}.

This work was supported by the Deutsche Forschungsgemeinshaft (Grant No. PA 516/7-1).

[^0][2] K. Pernal, O. Gritsenko, and E. J. Baerends, Phys. Rev. A 75, 012506 (2007).
[3] R. Requist and O. Pankratov, arXiv:1011.1220v1.
[4] K. Pernal and J. Cioslowski, Chem. Phys. Lett. 412, 71
(2005).
[5] T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).

[^0]: * Electronic address: ryan.requist@physik.uni-erlangen.de
 [1] K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, Phys. Rev. Lett. 105, 013002 (2010).

