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ABSTRACT 

     The Lorentz-Abraham-Dirac equation is reinterpreted as the lowest order, asymptotic 
differential relation for the velocity of the radiating pointlike mass, and higher order terms 
are added for more precise analysis of the radiating motion. Thereby in addition to mass 
and charge, supplementary kinetic constants of accelerated charged particles are defined. 
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1. Introduction 

In classical electrodynamics we study the implications of Lorentz forces between 
electric charges and currents: and these forces affect their sources. About twenty years ago 
we published a monograph [1] about certain open questions of classical electrodynamics, 
defining the density of the Lorentz force in terms of the Lorentz gauge potentials. Here we 
reconsider the basic open question about the Newtonian equations of motion in classical 
electrodynamics, since it turned out we should have followed the advice of English 
philosopher G.E. Moore in 1903, that to avoid difficulties and disagreements one should not 
“attempt to answer questions, without trying discovering precisely what question it is 
which you desire to answer,” cf. Miller [2, Ch.1]. To this end we give a breakdown of this 
open question, itemizing the closely related but distinct subjects we are going to address: 

a) In Section 2, we point out the basic conceptual question: Can so defined classical 
electrodynamics provide Newtonian equations of motion that take a non-iterative 
account of the loss of four-momentum by the electromagnetic radiation that results 
in the radiation reaction force (RRF) – an open question of mathematical physics.  

b) In Sections 3, to get the simplest example of this question we specify such 
differential four-momentum balance equations for an electrified pointlike mass (EPM) 
that would take account of the RRF – to get them is the problem of mathematical 
physics. 

c) In Section 4, we mention the quest for a Newtonian equation of motion for a classical 
charged particle – a century old, open question of theoretical physics.  

d) In Section 5, in the case of a small and slowly changing external force, we provide a 
partial answer to the above basic question by improvement on the Lorentz-
Abraham-Dirac equation, incorporating it in an asymptotic differential relation for 
EPM˙s velocity. To this end we introduced new, supplementary kinetic constants of 
an EPM, which we name after Dirac, Bhabha and Eliezer. 

e) In Section 6, we propose a particular experimental assessment of these kinetic 
constants, which take account of RRF’s dynamic effects– a subject of experimental 
methodology. 

 

2. The basic conceptual question of classical electrodynamics  

Around 1602 Galileo began classical mechanics with the study of pendulums by an 
innovative combination of experiment and mathematics. Thereby he clearly stated that the 
laws of nature are mathematical. However, if we only slightly rub a pendulum and electrify 
it, classical electrodynamics provides so far no non-iterative, Newtonian model of its 
swinging motion, which effects the loss of energy by electromagnetic radiation. We feel that   
a detailed experimental observation of such a swinging motion would be welcome as 
physics is based on measurements.  

According to Jackson [3], the basic trouble with classical electrodynamics is that we are 
able to obtain and study relevant solutions of its basic equations only in two limiting cases: 
“... one in which the sources of charges and currents are specified and the resulting 
electromagnetic fields are calculated, and the other in which external electromagnetic 



3 

 

 

fields are specified and the motion of charged particles or currents is calculated…   . 
Occasionally... the two problems are combined. But the treatment is a stepwise one -- first 
the motion of the charged particle in the external field is determined, neglecting the 
emission of radiation; then the radiation is calculated from the trajectory as a given source 
distribution. It is evident that this manner of handling problems in electrodynamics can be 
of only approximate validity.˝ Thus within the framework of classical electrodynamics 
there is no non-iterative, Newtonian modeling of interaction between electromagnetic 
fields and their sources, which we can use for consideration or prediction of experimental 
data. Consequently, we have only a partial physical understanding of such classical 
electromechanical systems where we cannot neglect this interaction. In what follows we 
intend to broaden our understanding by considering an electrified pointlike mass, which 
seems to provide the simplest case of such an interaction. 

 

3. A four-momentum balance equation for an electrified pointlike mass 

In classical mechanics, the simple, idealized Newtonian model of a pointlike mass is 
highly instructive and widely applicable, e.g. for studying the trajectories of planets. So it 
seems like it might be useful to have such a Newtonian model about the motion of an 
electrified pointlike mass that takes account of RRF. 

3.1. A differential four-momentum balance equation 

Inspired by the pointlike mass model, let us try to get better understanding  of RRF’s 
dynamic effects by considering the four-momentum of an accelerated EPM. Let the charge q 
and mass m of this EPM be located around the point     , and moving with velocity      
under the influence of a mechanical, Lorentz and/or gravitational external force  ext   ; 
and let the relation between the four-force 

                     ,    where                                          (1) 

and the EPM˙s four-velocity             be invariant under Poincaré transformations.3 

Were    , in classical mechanics we would model such a relation by the differential 
four–momentum balance equation  

                                         (2) 

which is a heavily used, relativistic Newtonian equation of motion for a pointlike mass. 

To take account of the RRF, we assume that EPM˙s electromagnetic radiation is 
adequately described by the Liénard-Wiechert potentials with singularity at      , which 
emit the four-momentum 

                   with               
  , (3) 

                                                 

3
 We will use the metric with signature        , so that        . 
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thereby diminishing EPM˙s four-momentum. Following Schott [4], we find that we must 
introduce the acceleration four-momentum            to obtain a complete description of 
changes to EPM˙s four-momentum effected by the RRF. Taking these two electromagnetic 
effects into account, we get from the Newtonian equation of motion (2) of classical 
mechanics the following differential balance equation for EPM˙s four-momentum: 

                                  . (4) 

Dirac [5] concluded that the conservation of four-momentum requires that      is a 
four-vector valued function of   and    and of a finite number of their derivatives, which 
satisfies the relation  

                     (5) 

Thereafter, Bhabha [6] pointed out that the conservation of angular four-momentum 
requires that the cross product 

              (6) 

is a total differential with respect to the proper time of a four-tensor valued function of   
and    and of a finite number of their derivatives. Physical assumptions underlying the 
differential balance equation (4) are discussed in [1, Chs.9 and 10]. 

3.2. Comments  

      The differential four-momentum balance equation (4) and conditions (5) and (6) 
with     model acceleration of a possibly electrified pointlike mass with an internal 
structure specified by       

We cannot simplify EPM˙s balance equation (4) by disregarding the acceleration four-
momentum   carried by EPM˙s internal structure; because when B = 0 and d ≠ 0, then the 
Bhabha condition (6) and the balance equation (4) imply that    . 

 However, we may pick           so as to get apparently the simplest possible EPM˙s 
differential four-momentum balance equation: 

                         , (7) 

the Lorentz-Abraham-Dirac equation of motion for an electron. Such an equation of motion 
is considered questionable since (a) it is not a Newtonian kind of equation of motion, and 
(b) it exhibits self-acceleration causing runaway solutions. The third term of the lhs (7) is 
known as the Abraham-Lorentz-Dirac RRF. We will interpret this equation (7) in Section 5 
as an asymptotic differential relation for EPM ˙s velocity. 

     Were certain acceleration four-momentum      given only as a function of EPM˙s 
velocity and of the external force, and satisfy the conditions (5) and (6), the differential 
four-momentum balance equation (4) would be a relativistic Newtonian equation for the 
particular EPM specified by this       In [1, Secs.10.1 and 10.2] and [7], we pointed out 
seventeen qualitative properties that we are expecting from a Newtonian equations of 
motion for a physically realistic EPM. 
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      It is still an open question whether we can somehow augment the continuous classical 
electrodynamics with the notion of a pointlike charge, which is presently only a common 
and handy computational device. We generalized it by an expansion in terms of co-moving 
moments of time-dependent, moving charges and currents [8].  

EPM seems to be the simplest generalization of classical mechanics notion of a   
pointlike mass to such a mathematical model of classical electrodynamics that takes into 
account RRF’s dynamic effects. We considered it extensively in our monograph [1], naming 
it a classical pointlike charged particle. We found this name to be misleading, since we did 
not intend it to be synonymous with the concept of an elementary physical particle. So we 
now rename it “electrified pointlike mass”. 

 

4. The equation of motion for a classical charged particle 

In 1892, H. A. Lorentz started a century long quest to appropriately take account of RRF 
in modeling the motion of a classical charged particle, cf. [1, 9]. However, there are no 
pertinent quantitative experimental data. Recently Rohrlich [10] stated that, using physical 
arguments, he derived from the Lorentz-Abraham-Dirac equation (7) the physically correct 
Newtonian equations of motion for a classical charged particle: 

                               , (8) 

provided 

                               .        (9) 

As pointed out by Rohrlich [11], his equation (8) is a result of a physical theory and it is 
important to obey its validity limits (9) when testing it by experiments. This equation is not 
an EPM˙s model as specified by the relations (4) to (6). 

     Using Langevin equation and the quantum electrodynamics Hamiltonian, G.W. Ford 
and R.F. O'Connell considered in detail the equation of motion of an electron in papers 
reviewed by O'Connell [12, 13]; who comments also on the Rohrlich statements.  

 

5. Improvement on the Lorentz-Abraham-Dirac equation 

     We do not know of such an acceleration four-momentum      that results in such a 
physically realistic Newtonian equation of motion for an EPM that takes an account of RRF. 
So it is an open question whether there is one, none or many of them. 

Now, Dirac [5], Bhabha [6], and Eliezer [14] pointed out that in addition to           

there are also higher order relativistic polynomials in       which satisfy the Dirac and 
Bhabha conditions (5) and (6). So what would be the physical significance of modified 
Lorentz-Abraham-Dirac equation (7), were we to assume that EPM ˙s kinetic properties are 
modeled by a      that is a sum of such polynomials? In 1989, inspired by the expansion of 
convolution-integrals in terms of derivatives of Dirac’s delta function, we proposed that the 
four-momentum balance equation (4) with a particular combination of such polynomials 
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provides an asymptotic expansion of EPM˙s acceleration four-momentum      in the case 
of a small and slowly changing external force [15]. 

 

5.1. An asymptotic, relativistic differential relation for EPM˙s velocity in the case of a small 

and slowly changing external force 

We put forward arguments [15; and 1, Chs.9-11] in support of the following hypothesis: 

Let the acceleration four-momentum      depend in a causal way, just on the values of 

acceleration          from the time     on. And let the external force depend on a non-

negative parameter   in such a way that               , with      being an analytic 

function of       and         . Then, in the asymptote      the nth derivative 

           of EPM ˙s velocity is of the order     as    ; and we may approximate the 

acceleration four-momentum      up to the order of     inclusive so that EPM ˙s velocity 

satisfies in the asymptote     , up to the order of      inclusive, the following differential 

four-momentum balance equation: 

                       

      
              

              
   

 

      
                         

              
   

 

                                        
             

 
  

   

    

(10) 

where         and    are real parameters. The first term of the relativistic differential 
relation (10) is due to Einstein; the second one is due to Dirac who calculated that for an 

electron           
  [5]; the relativistic polynomials in       multiplied by    and    

were constructed by Eliezer [14], and that multiplied by    is due to Bhabha [6]. So let us 
refer to   as the Dirac kinetic constant, to     and    as the Eliezer kinetic constants, and to 
   as the Bhabha kinetic constant. 

As the Lorentz-Abraham-Dirac equation (7) equals the asymptotic differential relation 

(10) with           , it makes sense to interpret it as the first asymptotic differential 

relation for EPM ˙s velocity that that takes some account of the RRF in the case of a small 

and slowly changing external force. And we can take the differential four-momentum 

balance equation (10) as an improvement on the Lorentz-Abraham-Dirac equation with 

regard to the parameter  . 

 

5.2. Applications to calculations of the external forces and trajectories 

When the kinetic constants            and    of a particular EPM are known, one may 
use the differential relation (10), cf. [15] and [1, Sects.11.4 and 11.5]: 

a) To determine up to the order of    inclusive the external force that results in a 
particular EPM ˙s trajectory.  
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b) To modify (10) into a variety of approximate Newtonian equations of motion, such 
as the Rohrlich equation (8), by eliminating through iteration all higher order 
derivatives of velocity. And use them to calculate approximate EPM˙s trajectories. 

c) To complete an ansatz, which we use to describe an asymptotic EPM ˙s trajectory, by 
expressing its parameters in terms of the external force constants and EPM ˙s 
kinetic ones. 

d) To use it in construction of an empirical formula for the prediction of experimental 
data about EPM˙s trajectories, cf. [16]. 

  

6. Discussion  

6.1. Experimental assessment of RRF’s dynamic effects  

The Dirac, Eliezer and Bhabha parameters of the asymptotic differential relations (10) 
are supplementary kinetic constants, additional to the mass of a pointlike physical object, 
possibly electrified. We could assess them by fitting the observed trajectories 
corresponding to various external forces. To this end we might modify the asymptotic 
differential relation (10) by replacing the time derivatives with finite difference 
approximations, choosing step sizes consistent with the experimental data to be fitted. We 
have no quantitative suggestions about when we may expect to obtain in this way the 
consistent values of Dirac, Eliezer or Bhabha kinetic constants of an electrified physical 
object. So let us point out three qualitative conditions:  

a) The object should be pointlike in the sense of Pauli [17, §29]; so were its charge q 
negligible, the Newtonian equation of motion for a pointlike mass (2) would be 
adequate. 

b) It should be losing the four-momentum through the radiation as effected by the 
Liénard-Wiechert potentials. 

c) The external force should be small and slowly changing as specified above. 

Inspired by J. J. Thomson, who could made good estimates of both the charge and mass 
of electron in 1898 by observing its trajectories, we could seek to assess the Dirac, Eliezer 
and Bhabha kinetic constants of a particular accelerated physical particle by using the 
differential relation (10) in fitting its velocities. To observe them we could use particle 
accelerators, since they may accelerate particles of any mass, from electrons and positrons 
to uranium ions. Such an innovative use of accelerators, for considering also classical 
kinetic properties of physical particles, may provide new insight into particle acceleration, 
helpful for improvement of performance and design of accelerator facilities. 

In 1797-98, H. Cavendish performed the first laboratory experiments to measure the 
force of gravity between masses. This research is ongoing [18], and may inspire the 
experiments to measure the Dirac, Eliezer and Bhabha kinetic constants of an electrified 
pointlike mass by using the differential relation (10) , e.g. of an electrically charged torque  
pendulum considered by Saxl [19]. 
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6.2. Testing theories 

The potentially experimentally testable results of the theories that take account of RRF 
are the proposed theoretical equations of motion for a classical charged particle. Each 
equation of motion implies specific asymptotic expansion of velocity analogous to (10), 
which we can then test experimentally. E.g. up to the order of     inclusive, such an 
asymptotic differential relation corresponding to the Rohrlich equation (8) reads: 

(11) 

       Considering the kinetic properties of an electron (or positron), one might check Dirac’s 
assumption [5], which he made when deriving Lorentz-Abraham-Dirac equation (7), that 

an electron is such a simple thing that         ; thus according to Dirac, the Eliezer and 
Bhabha kinetic constants of an electron should turn out to be negligible.  

 

7. Conclusions     

       A novel interpretation of the Lorentz-Abraham-Dirac equation is put forward that does 
not ignore the physical premises of the Newtonian mechanics. The asymptotic differential 
relation (10) for EPM ˙s velocity provides an improvement on the Lorentz-Abraham-Dirac 
equation by more precise, non-iterative modeling of RRF’s dynamic consequences. It 
defines new, supplementary kinetic constants of an accelerated electrified pointlike mass, 
which could be assessed by observing its trajectories in an accelerator. And it indicates that 
the basic equations of classical electrodynamics may be globally solvable, which seems to 
be an open questions as we are not aware of a mathematical proof that the classical 
electrodynamics of continuous media has global solutions, cf. Parrott [20]. 
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