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From a physical and phenomenological standpoint, we provide a model description of phyllotaxis
by investigating conditions to realize an arbitrary phyllotactic fraction, emphasizing the importance
of insensitivity to initial conditions and model parameters, especially, a finite range of repulsive
interaction.
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Phyllotaxis, the regular arrangement of leaves on
a plant stem, has since long attracted the minds of
botanists, mathematicians and physicists[1–3]. Most
commonly, alternate leaves along a twig execute a spi-
ral with an angle of 1/2, 1/3, 2/5, 3/8 of a full rotation
one after another, while other fractions are also observed
though less prevalently or quite rarely. Hence phyllotaxis
is regarded not as a universal law but only as a fasci-
natingly prevalent tendency[4]. Mathematically, number
theoretical properties elucidated for decades have deep-
ened our understanding of the subject significantly[5–12].
Nevertheless, there still remains the fundamental prob-
lem of why some fractions are observed prevalently while
others are only rarely and how the difference in frequency
of occurrence between sequences of fractions is brought
about. We address this issue from a physical and phe-
nomenological viewpoint. Motivated by the important
findings that similar phenomena are realized in physical
models[13–15], we attempt to find a simple model de-
scription of phyllotaxis with a rich mathematical struc-
ture by investigating conditions to realize an arbitrary
phyllotactic fraction in a comprehensive manner.
The nth object (primordium) is represented by a pos-

itive integer n, vertical coordinate, and an angular coor-
dinate θn measured from θ0 = 0 at n = 0. We assume a
regular spiral with an offset angle 2πα, i.e.,

θn = 2πnα, (1)

where α is a real number. Denoting interaction energy of
the nth object with the mth object as Vn(θm−θn,m−n),
we obtain the total interaction energy

E =

∞
∑

n=0

∑

m>n

Vn(θm − θn,m− n) (2)

=
∞
∑

n=0

∞
∑

m=1

Vn(2πmα,m). (3)

For the sake of simplicity, let us assume to write

Vn(2πx,m) = unV (2πx,m) = unvmV (x), (4)

then we obtain

E = v(α)
∞
∑

n=0

un, v(α) ≡
∞
∑

m=1

vmV (mα). (5)

We investigate conditions to realize a local minimum of
v(α). Specifically, a minimum is reached according to a
relaxation equation like

dα

dt
= −dE

dα
, (6)

from an initial condition,

α(0) = αini. (7)

We study v(α) within 0 < α ≤ 1/2, for v(1−α) = v(−α).
In Eq. (4), V (x) is a periodic function with period 1

and has a repulsive peak V (0) = 1 at x = 0. Beside
αini in Eq. (7), we introduce two model parameters to
characterize the finite range interaction Vn(θ,m). One is
a half-width X of V (x), i.e., V (x) ≃ 0 for X < x(< 1/2).
For example, we may assume

V (x) = e−(
2x

X )
2

. (8)

Then, the angular width of the original interaction
Vn(θ,m) is given by

∆θ ≃ 4πX. (9)

The other is a vertical range of influence nmax, i.e.,
Vn(θ, nmax) ≃ 0, or vn > 0 for 0 < n ≤ nmax while
vn ≃ 0 for n > nmax. In what follows, the parameter
nmax is particularly important, as the effect of finite in-
teraction range seem to have never been systematically
investigated.
By way of illustration, we show v(α) for nmax = 5, 6

and 7 in Fig. 1. At nmax = 5, there are five minima
around α = 1/6, 2/9, 2/7, 3/8, 3/7. Among them, two
remain almost intact as we increase nmax from 5 to 7,
that is, 2/9 and 3/8. The latter has a wider range of
αini allowed for, i.e, 1/3 . αini . 2/5, shown as ∆αini

in Fig. 1. In other words, 3/8 has a tolerance width
∆αini ≃ 0.067 wider than ∆αini ≃ 0.05 for 2/9. On
the other side, α = 3/8 becomes a local maximum at
nmax = 8, where 2/9 still remains intact. In fact, 3/8
remains as a local minimum only for nmax = 5, 6, 7, or
for

nmax,0 ≤ nmax ≤ nmax,0 +∆nmax, (10)

with (nmax,0,∆nmax) = (5, 2). Similarly, we get
(nmax,0,∆nmax) = (5, 3) for 2/9. The local minimum
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FIG. 1: v(α) for nmax = 5, 6 and 7 (X = 0.1 and vn = 0.8n

for n ≤ nmax) .
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FIG. 2: Positions of local minima of v(α), represented by
rational numbers attached to the points. Lines connecting
the points represent hierarchical branching structure.

at α = 2/7 for nmax = 5, 6 ((nmax,0,∆nmax) = (4, 2))
becomes a local maximum at nmax = 7, where the max-
imum at 2/7 is flanked on both sides by two newborn
‘daughter’ minima at 3/11 and 3/10, or 2/7 branches
into 3/11 and 3/10 at nmax = 7.
The positions of the local minima of v(α) and the

branching structure are shown in Fig. 2 as a function
of nmax. There is a vertical segment stretching upward
from a point labeled with a fraction, whose length repre-
sents ∆nmax for the fraction. Rational numbers between
0 and 1/2 have their own ∆nmax and ∆αini. Thus they
are plotted in the ∆nmax-∆αini plane in Fig. 3.

Nature’s apparent preference for particular rational
numbers may be explained by the following hypotheses.
(i) A fraction is derived from its parent in increasing

order of nmax.
(ii) Between two fractions which appear at a branch

point, the one with larger ∆nmax is favorably realized.
These are simple enough as a basic mechanism and bio-

logically plausible if we regard nmax as a generation index
of a developing tree. The former (i) states continuous
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FIG. 3: For the local minima of v(α) labeled by rational num-
bers, ∆αini is plotted against ∆nmax, the length of the vertical
segment in Fig. 2. The inset shows a 3D plot of nmax,0 against
∆nmax and ∆αini.
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FIG. 4: Positions of local minima of v(α) are represented by
continued fractions attached to the points.

fine-tuning of the initial condition αini in development
process. The latter (ii) ensures stability against possi-
ble misarrangement (e.g., overshoot) of the interaction
range nmax. In other words, 2/5 (one of the most com-
mon cases) is preferred to 1/4 by redundancy ∆nmax = 1
in the critical dependence on nmax. Thus the main se-
quence 1/2, 1/3, 2/5, 3/8, 5/13, · · · , is derived as denoted
by the thick line in Figs. 2 and 3, without excluding many
other possible ramifications.

It is remarkable that Fig. 2 has the same structure as
the Stern-Brocot tree of number theory[16], which con-
tains each rational numbers exactly once. This is im-
portant because methodologically we regard rationals,
not ‘ideal’ irrationals[5–11], as fundamental to the phyl-
lotaxis number α[1]. We regard the latter appear only as
approximate limits of the former, not vice versa. Thus we
consider it more important to have a general basis to deal
with all possibly relevant rationals than to study partic-
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ular numbers favored by specific mechanisms. In general,
the parent-child relation between numbers in the tree is
concisely represented in terms of mediants and continued

fractions.
For prime numbers m, n, p, q (0 < n < q, |np−mq| =

1), the mediant (m + p)/(n+ q) occurs in between m/n
and p/q for q ≤ nmax < n + q, i.e., (m + p)/(n + q) has
(nmax,0,∆nmax) = (q, n− 1) and ∆αini = 1/nq. Then, in
between (m+p)/(n+ q) and m/n occurs (2m+p)/(2n+
q) with (nmax,0,∆nmax) = (n + q, n − 1) and ∆αini =
1/n(n+ q), while (m+2p)/(n+2q) occurs between (m+
p)/(n+ q) and p/q with (nmax,0,∆nmax) = (n+ q, q− 1)
and ∆αini = 1/q(n + q). In other words, at nmax =
n + q, (m + p)/(n + q) becomes unstable to yield two
minima at (2m + p)/(2n + q) and (m + 2p)/(n + 2q).
The former has the same value of ∆nmax = n − 1 as its
parent (m+ p)/(n+ q), while the latter (with the larger
denominator n + 2q) increases it to ∆nmax = q − 1 >
n−1. This is read from Fig. 3. At a branching point, one
branch grows to the right while the other goes down along
the ordinate in the main figure. Those sequences with
increasing ∆nmax comprise the main branch of our tree.
The bifurcation rule (ii) may be compared with Levitov’s
maximal denominator principle on a Farey tree[12].
Numbers are represented as continued fractions. A real

number α (0 < α < 1) is represented as

α =
1

a1 +
1

a2 +
1

a3 + · · ·

≡ [a1, a2, a3, · · · ], (11)

in terms of positive integers ai (i = 1, 2, · · · ). Every ra-
tional fraction has two continued fraction expansions. In
one the final term is 1. Hence rational α is represented
as α = [a1, a2, · · · , an, 1] with a finite number of ai. Ac-
cording to this notation, Fig. 2 is transcribed to Fig. 4,
showing a bifurcation rule

[a1, a2, · · · , an, 1] −→ [a1, a2, · · · , an, 1, 1]
[a1, a2, · · · , an + 1, 1].

(12)

The upper one increases ∆nmax, while the lower con-
serves it. Hence the former may be called a nor-

mal path[6] or regular transition[11]. Therefore, it be-
comes the most important to study a sequence of ra-
tional fractions: [a1, a2, · · · , an, 1], [a1, a2, · · · , an, 1, 1],
[a1, a2, · · · , an, 1, 1, 1], · · · , that is, principal convergents
of a ‘noble’ (irrational) number[5, 8–10],

α = [a1, a2, · · · , an, 1, 1, 1, · · · ]. (13)

Successive rational approximation

pn
qn

= [a1, · · · , an] (14)

of an irrational number α, Eq. (11), is obtained from
relatively prime positive integers pn and qn satisfying re-
cursion relations,

pn+2 = an+2pn+1 + pn, qn+2 = an+2qn+1 + qn, (15)

TABLE I: Principal convergents pn/qn of [2, 1, 1, · · · ].
The width ∆αini allowed for the initial value αini and
(nmax,0,∆nmax) for (10) to realize α = pn/qn.

pn
qn

1

2

1

3

2

5

3

8

5

13

8

21

∆αini 1 0.5 0.167 0.067 0.025 0.010

(nmax,0,∆nmax) (1, 0) (2, 0) (3, 1) (5, 2) (8, 4) (13, 7)

X̄ 0.5 0.333 0.2 0.125 0.077 0.048

TABLE II: For α = [3, 1, 1, · · · ].

pn
qn

1

3

1

4

2

7

3

11

5

18

8

29

∆αini 0.333 0.083 0.036 0.013 0.005

(nmax,0,∆nmax) (3, 0) (4, 2) (7, 3) (11, 6) (18, 10)

X̄ 0.25 0.143 0.091 0.056 0.034

and

p0 = 0, p1 = 1, q0 = 1, q1 = a1. (16)

The fractions pn/qn (n = 1, 2, · · · ) are called principal

convergents. The difference between successive principal
convergents satisfies

pn+1

qn+1

− pn
qn

=
(−1)n

qnqn+1

. (17)

The irrational α is sandwiched between even and odd
order convergents,

p2k
q2k

< α <
p2k+1

q2k+1

. (18)

The main sequence, covering more than 90% of all
cases[2], is given by

α = τ−2 = [2, 1, 1, 1, · · · ]. (19)

where τ = (1 +
√
5)/2. This gives a ‘golden’ angle

2πα ≃ 137.5◦ and the Fibonacci sequence for qn, as
presented in Table I. The principal convergents pn/qn
approach the limit in Eq. (19) according to (18). The
next favored sequences, realized through one unfavor-
able branch, are [3, 1, 1, · · · ] in Table II, [2, 2, 1, 1, · · · ]
in Table III, [2, 1, 2, 1, 1, · · · ] and so on. Then follow
[4, 1, 1, · · · ], [2, 3, 1, · · · ], [3, 2, 1, · · · ] and so on. The prior-
ity order of observed sequences has been documented by

TABLE III: For α = [2, 2, 1, 1, 1, · · · ].

pn
qn

1

2

2

5

3

7

5

12

8

19

13

31

∆αini 0.1 0.029 0.012 0.004

(nmax,0,∆nmax) (5, 1) (7, 4) (12, 6) (19, 11)

X̄ 0.143 0.083 0.053 0.032
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FIG. 5: Lattice points (nα, n) for α = τ−2. The number
attached to each point represents n. The principal neighbors
are connected with lines.

Jean[2, 17]. Note that we do not exclude any sequence,
including such rarely observed cases as the last two.
Let us restate the conditions for the principal conver-

gents of the noble number (13). For i > n, pi/qi occurs in
between pi−1/qi−1 and pi−2/qi−2 for qi−1 ≤ nmax < qi,
i.e., pi/qi has

(nmax,0,∆nmax) = (qi−1, qi−2 − 1). (20)

And, from Eq. (17),

∆αini =

∣

∣

∣

∣

pi−1

qi−1

− pi−2

qi−2

∣

∣

∣

∣

=
1

qi−1qi−2

. (21)

These are presented in the tables numerically.
Lastly, let us examine the width X of V (x) to realize

pn/qn. In the lattice of points (nα, n), labeled by the non-
negative integer n, a set of points (qnα−pn, qn) comprise
principal neighbors of the origin n = 0[5]. In Fig. 5,
the points connected with lines represent the principal

neighbors. Therefore we may write v(α) as

v(α) ≃
∑

n

vqnV (qnα− pn). (22)

(We neglect intermediate convergents as they are irrel-
evant here.) For instance, to derive 3/8=[2,1,1,1] from
within the region

1/3 = [2, 1] < αini < 2/5 = [2, 1, 1], (23)

consider αini = [2, 1, 1+y] (0 < y ≤ 1) and αini = [2, 1, n]
(n = 2, 3, · · · ). For 5 ≤ nmax < 8, we obtain

v(α) ≃ v1V (α) + v2V (2α− 1)

+v3V (3α− 1) + v5V (5α− 2). (24)

The first two terms in Eq. (24) are neglected when
V (1/5) ≃ 0, or for X < 1/5. Then v(α) is determined by
the last two terms. In effect, this is a minimal model to
derive a local minimum. As V (3α−1) and V (5α−2) are
peaked at α = 1/3 and 2/5 with the half-width of X/3
and X/5, respectively, an optimal width X̄ is estimated
by X̄/3+X̄/5 = 2/5−1/3 = ∆αini, or X̄ = 1/8. In other
words, according to Eq. (9), the optimal angular width
of interaction is ∆θ ≃ 90◦ for 3/8. Hence, for X ≃ X̄,
we obtain α ≃ 3/8 from within (23) properly with good
accuracy, as expected. For X . X̄, stiffness v′′(α) at the
minimum, driving force in the right-hand side of Eq. (6),
will be reduced, without affecting the minimum position
appreciably. The minimum can disappear if X becomes
large enough, X & X̄. In general, pi/qi (i > n) of the
noble number (13) has

X̄ = 1/qi. (25)

This is also shown in Tables I, II and III.
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