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Large tunable photonic band gaps in nanostructured doped semiconductors
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A plasmonic nanostructure conceived with periodic layers of a doped semiconductor and passive
semiconductor is shown to generate spontaneously surface plasmon polaritons thanks to its periodic
nature. The nanostructure is demonstrated to behave as an effective material modeled by a simple
dielectric function of ionic-crystal type, and possesses a fully tunable photonic band gap, with widths
exceeding 50%, in the region extending from mid-infra-red to Tera-Hertz.
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I. INTRODUCTION

The science of surface plasma waves on metallic-
dielectric interfaces1, has received such interest as to
become a true branch of physics, the palsmonics, and
opened new perspectives in the control of light-matter in-
teractions, see e.g. Refs.2–4. The surface plasmon polari-
ton (SPP), which results from coupling electromagnetic
field with collective oscillations of electrons supported by
the metal/dielectric interface, has unique physical prop-
erties based on enhanced nanolocalized optical fields, al-
lowed by the negative dielectric constant of the metal
below the plasma frequency. For example SPP propaga-
tion can be controlled by waveguides5 or by plasmonic
crystals whose metal film periodically nanostructured in-
duces the plasmonic band gap6,7.

Engineering of surface plasmons using nanostructura-
tion made it possible to develop a new range of materi-
als with remarkable optical properties such as extraor-
dinary optical transmission8, optical filtering9, optical
magnetism10, second harmonic generation11 or higher
harmonic generation in extreme UV12, and also to con-
trol the optical processes at the femto-second scale13,14.
The main concern is to control the optical properties as-
sociated with surface plasmons by engineering effective
materials through periodicity, size and metal shape of
the nano-objects. For instance a recent theoretical study
proposed the nanosturcturation of metallic nano-sticks
along the three direction of space to highlight a strong
coupling between the incident light and the free electrons
of the metal which opens a photonic band gap (with a
stop band of 6.3%) in the telecom wavelength range15.

The main idea is to ensure opening of the gap by using
the polaritonic nature of surface plasmons rather than
Bragg reflections. As a matter of fact, the dispersion re-
lation of an electromagnetic wave propagating along the
interface between a metal and a dielectric, the so-called
surface wave, is similar to the one resulting from a strong
coupling between a photon and an oscillator, it is said to
be ionic-crystal-like1. However, while the low energy sur-
face plasmon branch is purely two-dimensional, the high
energy branch of the dispersion relation is radiative and
therefore a photon propagating along the interface will

not see the stop band. Studies of such systems dates
back to 196916, revealing three branches in the SPP dis-
persion relation, two of them corresponding to the anti-
symmetric modes, the third one to the symmetric modes.

We study light propagation in a periodic nanostructure
constituted of planar layers of a metal and a dielectric,
sketched in Fig.1, assumed infinitely periodic and infinite
in the second transverse direction. We demonstrate that
this metal-dielectric nanostructure, worked as a planar
waveguide array, but outside the guided mode regime,
naturally and spontaneously generates SPP and then be-
haves as an effective three-dimensional material whose
optical properties are completely and precisely under-
stood by means of a single effective dielectric function
of the ionic-crystal type, the formula (2) below.

Moreover, using, instead of a metal, a doped semicon-
ductor is a means, by adapting the doping level, to set
the plasma frequency in a chosen range, such as, in par-
ticular, to avoid absorption due to interband transitions.
Then the simplicity of the obtained effective dielectric
function allows one to determine readily how the choice
of the materials and the dimensions of the nanostructure
will tune the width of the stop band, and how the doping
level will tune its position. The properties of the effective
material in the gap region is the principal concern of our
study with future interest in its switching properties in
nonlinear regimes, see e.g. Refs.17,18.

We thus demonstrate the polariton nature of the sys-
tem when it is worked with transverse magnetic (TM)
fields, in the long-wave approximation. Similar studies in
literature focus mainly on the SPP properties of metal-
dielectric structures, looking thus at the lower branch of
the dispersion curve. Our approach predicts the behavior
of the system on the entire spectrum, namely the lower
polariton branch, the stop band and the upper polariton
branch. Last we show that the approach applies as well
for transverse electric (TE) fields. The structure works
then as a simple metal for which we compute explicitly
the high frequency dielectric constant and the (tunable)
plasma effective frequency.
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II. MAIN RESULT

From now on, all frequencies are normalized to the
plasma frequency ωp the wave numbers to kp = ωp/c,
the lengths to k−1

p (including spatial variables) and time

to ω−1
p . Moreover we name frequency the actual angular

frequency, units rad · s−1, and all dielectric constants are
the relative ones. The doped semiconductor working as
a metal, we use a Drude model with optical index n(ω)
and thus the final index profile n(z, ω) of the periodic
array can be written in the elementary cell as

n2(z, ω) =







ε
1
, z ∈ [−b, 0],

ε
(

1− 1

ω(ω + iγ)

)

, z ∈ [0, a].
(1)

The damping coefficient γ is also dimensionless and
scaled to ωp.
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FIG. 1. (color online) LEFT: scheme of the nanostructure,
infinitely periodic in direction z and infinite in direction y.
RIGHT: example of the SPP dispersion law ω(q). The pa-
rameter values are given in Eq.(4). The red and blue curves
are the true dispersion relation solutions of Eqs. (10) and
(11) respectively, the black curves (almost indistinguishable
from the red curves) are the plot of the ionic crystal disper-
sion law (12). The dashed line is the light line in the passive
semiconductor.

We shall demonstrate that, under TM irradiation, in
the long wave limit, the resulting metamaterial is equiv-
alent to a single layer having the following effective di-
electric function

ε
eff

= ε̃
ω(ω + iγ)− 1

ω(ω + iγ)− ω2
r

, (2)

with the resonant dimensionless eigenfrequency ωr and
high frequency dielectric constant ε̃ given by

ω2
r =

bε

aε
1
+ bε

, ε̃ =
(a+ b)ε

1
ε

aε
1
+ bε

. (3)

Eq.(2) is identical to the dielectric function of an ionic
crystal with relative high frequency dielectric constant ε̃,
characteristic transverse frequency ωr, and longitudinal
frequency ωp = 1 (by normalization). As a matter of fact,

Fig.1 displays an example of the exact dispersion relation
for the anti-symmetric modes (red curves) compared to
the ionic crystal dispersion law ω = q/

√
ε
eff

(plotted with
γ = 0 as black curves). The blue curve corresponds to
the symmetric modes as explained in Sec.IV.

III. SIMULATIONS

We perform numerical simulations of a realistic sys-
tem submitted to TM normal incidence and calculate the
reflection and transmission coefficients. The presented
spectra are simulated with the commercial software pack-
age running finite difference time domain20. We shall
illustrate our task by using InAs for both semiconduc-
tors (high-frequency dielectric constants ε

1
= ε = 11.7),

doping with silicon (Si) at a density of 1020 that pro-
duces a plasma frequency ωp = 3.42 1014 rad/s and hence
kp = 1.14 rad/µm19. The dimensions of the nanostruc-
ture and the damping factor are taken as

a = b = 0.2µm, h = 1µm, γ = 1013 rad/s, (4)

which means normalized quantities a = b = 0.23, h =
1.14 and γ = 0.03.

FIG. 2. (color online) Plots of the reflectance (black curve)
and transmittance (red curve) obtained (a) from simulations
of the structure at normal incidence. and (b) by the effec-
tive dielectric function (2) with formulas (13). The resonant
frequency ωr given in (3) defines the stop band [ωr, 1].
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Fig.2 shows the result of a simulation where transmit-
tance and reflectance are plotted in terms of the fre-
quency of the incident TM plane wave at normal inci-
dence. It is then quite remarkable that the spectra are
almost identical, which evidences our main claim, though
Fig.2b has been obtained with two major approxima-
tions: the ionic-crystal dielectric function (2) and the
effective layer modelization.
The obtained normalized stop band [ωr, 1] can then be

easily broadened by playing with the dimensions of the
nanostructure, the plasma frequency ωp, and the ma-
terials. For example changing the passive semiconduc-
tor from InAs to GaSb (dielectric constant ε

1
= 14.4)

increases the stop band from 29% to 33% for a depth
h = 1µm. Last, in order to confirm that the stop band is
not the result of a Bragg scattering, we made a series of
simulations with an incident angle varying from 0 to 15
degrees, and with layer thicknesses up to a = b = 0.7µm,
without any noticeable change in the spectra.

FIG. 3. (color online) Reflectance (black curve) and transmit-
tance (red curve) obtained as in Fig.2 now with a = 0.3µm

and b = 0.1µm, the other parameters being the same.

Another example is displayed in Fig.3 where we have
modified only the geometry of the structure by increas-
ing the width a of the doped semiconductor to 0.3µm
and reducing the width b of the passive semiconductor to
0.1µm. The size of the stop band then reaches 50% of
ωp. Small discrepancies appear in the lower end of the
spectrum, related to the long-wave approximation which,
in the cases a 6= b, is less accurate. We found that the

lower branch of the dispersion relation (12) is for a 6= b
less close to the actual branch given by the solution of
(10).
It is now worth understanding the field intensity dis-

tribution for some representative points of the spectrum.
In the lower branch of the dispersion curve, the graph
(1) of Fig.4 shows that transmission is accomplished by
means of surface plasmons (in that case both k and k1 are
pure imaginary numbers) and that the peak of transmis-
sion is due to a stationary mode along Ox pinned at the
interfaces and living essentially inside the passive semi-
conductor. The next graph (2) is plotted for a frequency
inside the stop band and shows a field exponentially de-
creasing along Ox, as indeed q is now a pure imaginary
number. The last graph (3) is taken for a frequency in
the upper branch of the dispersion curve. It shows a
transmission essentially inside the doped semiconductor
(again with a stationary mode along Ox). This transmis-
sion can be understood by noting that, at this frequency,
the index of the doped semiconductor is smaller than the
index ε

1
of the passive semiconductor.

FIG. 4. (color online) Field intensity plots for the parame-
ter values used in Fig.1, reproduced in the first graph where
numbers indicate the 3 values of the frequencies which then
index the corresponding intensity plots.

With all these simulations in hand, it is time to demon-
strate now the essential result, namely to derive the ex-
pression of the effective dielectric function (2). This is
done in the following section simply by using Maxwell’s
equations and continuity conditions for an infinitely pe-
riodic structure.

IV. TM FIELD: THE POLARITON MACHINE

We thus calculate the dispersion relations and the re-
sulting reflection coefficient by assuming the nanostruc-
ture to act as a single layer with an effective dielectric
function. This is done to show first that the optical
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properties of the metamaterial indeed result from SPP
generation. Second, it allows us to study the long wave
limit and demonstrate that the dielectric function has the
explicit simple approximate expression (2).
Considering an infinitely periodic nanostructure, we

may extract the elementary cell z ∈ [−b, a] and connect
the interfaces z = −b to z = a by usual continuity rela-
tions. As we expect to excite surface waves at the inter-
faces, we first consider TM field and seek solutions

E(x, z, t) =





E(z)
0

F (z)



 ei(ωt−qx), (5)

as the continuity of the tangential components readily im-
plies that the x-component q of the wave vector assumes
the same values in either region. In the Drude model, the
Maxwell equation reduces to the usual Helmoltz equation
for E(z), together with an explicit expression for F (z),
with the optical index function (1), namely

∂2E

∂z2
+ [n2(z, ω)ω2 − q2]E = 0, (6)

[n2(z, ω)ω2 − q2]F = −iq
∂E

∂z
. (7)

According to Eq.(1) we may define the eigenvalues k1 and
k in each region by

z ∈ [−b, 0] : k21 = ε
1
ω2 − q2,

z ∈ [0, a] : k2 = εω2(1 − 1

ωω′
)− q2, (8)

where we define ω′ = ω + iγ. Solutions to (6) are then
sought under the form

z ∈ [−b, 0] E1(z) = A1e
ik1z +B1e

−ik1z,

z ∈ [0, a] E(z) = Aeikz +Be−ikz . (9)

Continuity relations in z = 0 and z = a, −b for E(z)
and F (z) then result in an algebraic homogeneous lin-
ear system whose solvability condition produces a 4 × 4
determinant. It actually factorizes in two terms which
can be directly retrieved by assuming first the sub-case
E(a) = −E(0), which gives

ε
1
k tan(ak/2) + εk1(1 −

1

ωω′
) tan(bk1/2) = 0. (10)

This case is called anti-symmetric because, due to re-
lation (7), the transverse field component F (z) is anti-
symmetric on the elementary cell [−b, a]. Then the sym-
metric case is obtained for E(a) = E(0) for which

εk1(1−
1

ωω′
) tan(ak/2) + ε

1
k tan(bk1/2) = 0. (11)

Note that the complete electric field is neither symmet-
ric nor anti-symmetric because of relation (7), still the
dominant term is played by the transverse component

F (z) which has a defined symmetry. The above two
equations must be read with the definitions (8) as re-
lations between ω and q. As usual these are implicit
expressions solved numerically which, for the dispersion
relation ω(q), furnishes the graph of Fig.1 where the red
curve corresponds to the modes (10) and the blue curve
(almost a straight line) shows the modes obtained from
Eq.(11). These graphs are obtained as usual by assuming
γ = 0 to deal with real-valued expressions.
We consider now the long-wave limit where a and b,

which are scaled to k−1
p , are small quantities such as

to allow the Taylor expansions tan(ak/2) ∼ ak/2 and
tan(bk1/2) ∼ bk1/2. Note that such approximations are
valid in a finite wave number domain. Then the disper-
sion relation (10) written for the wave number q is easily
demonstrated to become, with help of definitions (8),

q2 = ε̃ ω2 ω(ω + iγ)− 1

ω(ω + iγ)− ω2
r

= ε
eff
ω2, (12)

with the dimensionless resonant frequency ωr and dielec-
tric constant ε̃ given in (3). The same treatment being
applied to relation (11) shows that the wave numbers
k and k1 cancel out and the relation simply reduces to
ωω′ = ω2

t where ωt is defined below in Eq.(21), and which
for a = b reduces to ωr. This explains why the blue curve
of Fig.1 tends to the straight line ωr (within the chosen
wave number range).
Therefore we can state that the nanostructure consid-

ered here behaves, at least in the long-wave limit, as a sin-
gle layer of active medium with effective dielectric func-
tion ε

eff
, which from (12) gives our fundamental result

(2). This result can be used to evaluate reflectance and
transmittance of a layer of depth h as21

R(ω) =

∣

∣

∣

∣

r1 + r2 exp[2iωhneff
]

1 + r1r2 exp[2iωhneff
]

∣

∣

∣

∣

2

,

T (ω) =
n3

n0

∣

∣

∣

∣

t1t2 exp[iωhneff
]

1 + r1r2 exp[2iωhneff
]

∣

∣

∣

∣

2

, (13)

with the following definitions (Fresnel formulas) at nor-
mal incidence

r1 =
n

eff
− n0

n
eff

+ n0
, r2 =

n3 − n
eff

n3 + n
eff

,

t1 =
2n0

n
eff

+ n0
, t2 =

2n
eff

n3 + n
eff

, (14)

when the layer lies on a substrate with optical index n3,
when n0 is the index of the medium in the incident re-
gion and where n

eff
=

√
ε
eff

is given by the approximate
expression (2). The graphs (b) of Figs. 2 and 3 show
the plots of the above reflectance and transmittance (13)
with n0 = n3 = 1. Comparison with corresponding
graphs (a) shows the accuracy of such a simple mod-
elization.
One may also compute from the relations (10) and (11)

the dispersion laws ω(k) inside the doped semiconductor
and ω(k1) outside. In the long-wave approximation, one
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obtains that k is a pure imaginary number outside the
stop band [ωr, 1] while k1 is a pure imaginary number
below the resonant frequency ωr. This is why the lower
branch of the dispersion relation ω(q) < ωr represents a
surface plasmon: the field is exponentially located at the
interfaces.

V. TE FIELD: A SIMPLE METAL

It is interesting to consider the case of incident trans-
verse electric (TE) fields for which we demonstrate now
that the system behaves as an effective metal with a
Drude-like dielectric function. Therefore the system il-
luminated with TE fields does not give rise to polaritons,
i.e. does not behave as a ionic-crystal, which is related
to the fact that generation of surface waves on a metal-
dielectric interface occurs only with TM fields.
The Maxwell equation for the following TE field struc-

ture (again the wave number q in the x-direction is the
same in both regions by continuity)

E1 =





0
E1(z)
0



 ei(ωt−qx), E =





0
E(z)
0



 ei(ωt−qx),

(15)
reduces to the Helmoltz equation (6). In that case the set
of continuity relations has to be completed with the mag-
netic field calculated by means of ∇×E = −∂tB, namely

B =
1

ω





−i∂zE
0
qE



 ei(ωt−qx), (16)

and similarly for B1. As in the preceding section, a solu-
tion is sought under the expressions (9) but now the two
sets of continuity relations at each interface are those ob-
tained from (E−E1)×n = 0 and from (B−B1)×n = 0,
where n is the unit vector in the direction Oz normal to
the interfaces. These sets are thus

E(0) = E1(0), E(a) = E1(−b),

∂zE(0) = ∂zE1(0), ∂zE(a) = ∂zE1(−b). (17)

It is then a simple task to express the above relations and,
as before, consider separately the two sub-cases E(a) =
E(0) and E(a) = −E(0) for which we obtain respectively

k tan(ak/2) + k1 tan(bk1/2) = 0, (18)

k1 tan(ak/2) + k tan(bk1/2) = 0. (19)

The wave vectors k and k1 are defined in Eq. (8), there-
fore the above relation furnish the dispersion relation
ω(q) in each case.
We consider then the long-wave approximation for

which the system is seen as a single layer, and for which
the resulting effective dielectric function can be explic-
itly computed. In the limit tan(ak/2) ∼ ak/2 and

tan(bk1/2) ∼ bk1/2, the relation (18) can eventually be
expressed as

q2 = ε
eff
ω2, ε

eff
= ε

∞

(

1− ω2
t

ω(ω + iγ)

)

, (20)

ε
∞

=
aε+ bε

1

a+ b
, ω2

t =
aε

aε+ bε
1

. (21)

It is a Drude-like dispersion relation with a new ε
∞

and
a new plasma frequency ωt (normalized to ωp). Thus
the effective equivalent material behaves just as a metal
for TE modes. Reflectance and transmittance are given
by formulas (13) with, for normal incidence only, Fresnel
expressions (14), and now with ε

eff
= n2

eff
given in Eq.

(20). This result is compared with numerical simulations
on Fig.5 with the same striking efficiency as in the TM
cases.

FIG. 5. (color online) Reflectance (black curve) and trans-
mittance (red curve) obtained with a = b = 0.2µm for a
TE incident field with parameters (4). The structure indeed
works as a metallic effective layer with the effective dielectric
function defined in Eq.(20).

Note finally that the long-wave limit for the second
relation (19) reduces to the two solutions k = 0 and k1 =
0 associated with the trivial dispersion laws obtained out
of Eq. (8). Correspondingly, the TE field in that case
results to be a constant (along z) and therefore simply
vanishes due to the symmetry condition E(a) = −E(0).
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VI. COMMENTS AND CONCLUSION

When the long-wave limit is not accurate enough, one
might think of solving numerically the dispersion rela-
tions (10) and (11) to calculate ε

eff
. However, beyond

the long-wave approximation, the main effect to take into
account is the occurrence of guided modes, primarily in-
side the undoped semiconductor. In that case one must
reconsider the problem since the method of the effective
layer would simply fail.
The presence of two types of modes makes it uneasy

to define in general the stop band which is not always
[ωr, 1]. By looking at the dispersion relations, close to
the long-wave limit, we found that the stop band is the
interval [ωr, 1] when a < b, but becomes [ωt, 1] when
a > b. However in that case, the interval [ωr, ωt] is filled
with symmetric modes which are not excited under nor-
mal incidence, the effective stop band being then still
[ωr, 1]. Note that when a = b, the 2 frequencies ωr and
ωt coincide, and the interval [ωr, 1] is a gap also at oblique

incidence.

By comparing realistic numerical simulations with the-
oretical considerations, we have shown that the nanos-
tructure described in Fig.1 works in TM regime as a sin-
gle layer with the effective dielectric function (2), repre-
sentative of SPP generation. This result provides a com-
prehensive understanding of the system as a whole, on
the entire spectrum, to show that it behaves as a ionic-
crystal material. Moreover our result provides a powerful
tool to explore the possibilities offered by such a meta-
material, e.g. by varying the sizes, the materials and the
doping level, with the opportunity to reach the visible
range.

Note finally that, in view of experimental realization,
different techniques can be adopted as e.g., epitaxy, de-
position, etching or implantation. Although these are
well proved techniques, the resulting optical properties
of the structure will be affected by imperfections such as
interface roughness, diffusion, geometrical defects, which
requires further studies.

1 H. Raether, Surface Plasmons, Springer Tracts in Modern
Physics Vol. 111 (Springer, Berlin, 1988).

2 A.V. Zayatsa, I.I. Smolyaninovb, A.A. Maradudinc, Phys.
Rep. 408 (2005) 131.

3 S.A. Maier, Plasmonics, fundamentals and applications,
Springer (2007) New-York

4 K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, S. Sevel’ev, F.
Nori, Rev. Mod. Phys. 80 (2008) 1201.

5 D.K. Gramotnev, S.I. Bozhevolnyi, Nature Photonics 4
(2010) 83.

6 S. C. Kitson, W. L. Barnes, and J. R. Sambles,Phys. Rev.
Lett. 77 (1996) 2670.

7 S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skov-
gaard, J.M. Hvam, Phys. Rev. Lett. 86 (2001) 3008.

8 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and
P.A. Wolff, Nature 391 (1998) 667.

9 S. Collin, G. Vincent, R. Häıdar, N. Bardou, S. Rom-
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