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Genetic Backgrounds of Asthma and
COPD
Nobuyuki Hizawa1

ABSTRACT
Asthma and COPD are complex diseases with strong genetic and environmental components. These common
pulmonary diseases have both different and similar clinical features. Molecular genetic techniques are being
used to improve understanding of these common late onset disorders. Recently, several genes and genetic loci
associated with increased susceptibility to asthma and COPD have been described. Many of these genes are
expressed in the lung tissues, indicating that events in lung tissues might drive disease processes. Lung tis-
sues are rich sources of innate danger signals, and an increased understanding of how the lung tissues com-
municate with the immune system to maintain healthy tissue might provide new insights into the pathogenesis
of chronic inflammatory lung diseases in which injury and repair are in disequilibrium. Given that the innate im-
mune system is at the interface between the airways and environmental insults, genetic polymorphisms in
genes related to the innate immune system are likely to affect susceptibility to both asthma and COPD. In addi-
tion, some findings from genetic studies provide molecular support for the point of view proposed in the Dutch
hypothesis regarding the relationship between asthma and COPD, which highlights the complexity of the path-
ways that can induce small airway disease and suggests that there is a continuum between asthma and
COPD.
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INTRODUCTION
Both asthma and chronic obstructive pulmonary dis-
ease (COPD) are characterized by airflow limitation,
airway remodeling and chronic inflammation.1,2 Ge-
netic factors play an important role in the develop-
ment of these diseases, which has prompted much re-
search to identify the underlying disease susceptibil-
ity genes. Genetics provides a unique tool for study-
ing the pathophysiology of asthma and COPD. Tradi-
tional candidate gene studies may focus on a single
gene or on a few genes in combination, with these
genes identified based on prior knowledge or sus-
pected mechanisms of disease pathogenesis. In con-
trast, genome-wide linkage and association studies al-
low for the comprehensive evaluation of the entire
genome without prior assumptions regarding disease
pathobiology. Nonetheless, elucidating the genetics
of these disorders is severely hampered by genetic
heterogeneity, the low penetrance of individual dis-

ease alleles, and the potential for gene-gene and
gene-environment interactions. Hence, it is likely that
many different susceptibility alleles contribute to
each disease, each of which has only a modest ef-
fect.3

The primary value of genetic mapping is not risk
prediction, but providing novel insights into patho-
genesis of disease. Although the significance of asso-
ciation signals have yet to be translated into a full un-
derstanding of the genes or genetic elements that
mediate disease susceptibility at particular loci, these
studies may lead to the identification of novel candi-
date genes, which can be subjected to further in vitro
or in vivo experimentation. These genes may identify
novel pathogenic pathways, which will be targets for
therapies or biomarkers for the diagnosis and follow-
up of patients with asthma or COPD.3 Genetic studies
also indicate that particular molecular pathways seem
to underlie the pathogenesis of both asthma and
COPD, which confirms the suggestion that shared
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Fig. 1 Susceptibility genes for asthma and asthma-related traits. Summary of the genes that were found to be associ-
ated with asthma and/or asthma-related phenotypes in at least five independent reports of candidate-gene association or 
positional-cloning studies. Adapted from reference 3.
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molecular mechanisms that are due to common ge-
netic variants contribute to a spectrum of diseases.

Susceptibility genes almost certainly interact with
multiple environmental exposures or stimuli that are
important in the etiology of a disease, and these inter-
actions may vary with age, sex, and from one popula-
tion to another. It is clear that inter-individual vari-
ation in response to a given exposure exists across an
individual lifetime. Therefore, identification of the
host factors that may influence susceptibility to envi-
ronmental exposures remains an important issue. In
terms of asthma and COPD, innate immunity is par-
ticularly interesting, as it provides links to environ-
mental triggers of disease and might provide new
tools for disease prevention at host environmental in-
terfaces. We therefore can consider the interactions
between susceptibility genes and viral infection, ciga-
rette smoking, and allergen exposure as an opportu-
nity to better characterize the plasticity of genetic
programs, and to understand how the environment
modifies disease susceptibility.

This review discusses the contribution of genetics
to the understanding of asthma and COPD and spe-
cifically focuses on the hypothesis that asthma and
COPD share some pathogenic mechanisms as origi-
nally proposed in 1960 in a theory that has since be-

come known as the Dutch Hypothesis.4

GENETICS OF ASTHMA
The search for asthma susceptibility genes has been
an area of intense investigation. Two general ap-
proaches have been widely used to study the genetics
of asthma: candidate gene association studies and,
more recently, genomewide linkage or association
studies followed by positional cloning.3 Using candi-
date gene association studies, more than 100 candi-
date genes have been studied because their biologi-
cal function suggests that they could play a role in the
pathogenesis of asthma3 (Fig. 1). Until recently, most
of the association studies in asthma and allergy were
based on genes involved in T-cell signaling and the
adaptive immune responses. Although much of the
evidence demonstrates continuous involvement of
Th2-type T-cell-mediated processes in established
disease, it is clear that many other processes contrib-
ute to disease pathology, and the disease probably ex-
hibits several heterogeneous phenotypes.5 Overall,
genome-wide linkage and association analyses have
kept their promise. Indeed, their results have re-
newed the interest of asthma researchers in host en-
vironmental interfaces such as the epithelium, the
smooth muscle, and the fibroblast, which are at the
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core of the organ-specific component of asthma
pathogenesis, but had been neglected by association
studies. For example, DPP10 and GPRA, two genes
that have been positionally cloned for asthma, are
strongly expressed in the respiratory epithelium, indi-
cating that the importance of epithelial defense in the
pathogenesis of asthma.6,7

The results of the first, and so far only, genome-
wide association study for asthma were published in
2007.8 In the discovery phase of the study, 317,000
single nucleotide polymorphisms (SNPs) were typed
in 994 patients with childhood-onset asthma, result-
ing in the identification of a novel locus on chromo-
some 17q12-q21 containing multiple genes and asso-
ciated markers. The association between the 17q21
locus and diagnosis of childhood asthma was inde-
pendently replicated in 2,320 subjects from a cohort
of German children and in 3,301 subjects from the
British 1958 birth cohort.8 The region of association
on chromosome 17q21.1 spanned 206 kb and in-
cluded 19 annotated genes. Expression analysis in
lymphoblastoid cell lines revealed that ORMDL3 ex-
pression was strongly correlated with asthma-
associated variants in the region, leading the authors
to conclude that it was the most likely candidate gene
at this locus. Another large, family-based genetic
study that included extensive phenotypic and envi-
ronmental data showed that the increased risk of
asthma conferred by 17q21 is restricted to early-onset
asthma and that the risk is further increased by early-
life exposure to environmental tobacco smoke.9 In a
Japanese population, a significant association was
also found between susceptibility to childhood
asthma and the polymorphism regulating ORMDL3
expression.10 It is of note that these studies consis-
tently failed to find a significant association between
the ORMDL3 SNPs and atopy or total serum IgE lev-
els.11 This disjunction implies that atopy does not
drive the underlying disease process of asthma, even
in early childhood. In contrast, in normal human lung
fibroblasts, the expression level of ORMDL3 was
strongly induced by stimulation with polyinosine-
polycytidylic acid [Poly (I: C)]. These findings sug-
gest an important role of the highly induced
ORMDL3 in viral respiratory infections10; in suscepti-
ble individuals, some viruses may elicit an aberrant or
disproportional response of fibroblasts, resulting in
significant airway pathology in the host.

GENETICS OF COPD
COPD is also influenced by multiple genetic determi-
nants, but severe α1-antitrypsin deficiency is the only
proven genetic risk factor.12 Given the clear role of
smoking in this disease and the inter-individual differ-
ences in response to cigarette smoke,13 COPD etiol-
ogy is expected to include gene-environment interac-
tions.

Numerous candidate genes that could be linked to

disease pathogenesis have been implicated in COPD
genetics.14 These studies have provided evidence for
the possible role of many inflammatory mediators
and their receptors, proteases, antiproteases, and an-
tioxidant and xenobiotic genes in COPD pathophysi-
ology. For example, a systematic review of the litera-
ture characterized the evidence that genes coding for
antioxidant enzymes contribute to the etiology of
COPD and related traits; the strongest and most con-
sistent effects were in the genes encoding glutamate-
cysteine ligase (GCL), glutathione S-transferase M1
(GSTM1), glutathione S-transferase P1 (GSTP1), and
superoxide dismutase 3 (SOD3).14,15

Genome-wide association studies offer the prospect
of identifying new genes involved in COPD suscepti-
bility and genetic modifiers of disease phenotypes.
Genomewide linkage analysis of the Boston Early-
Onset COPD Study families using pulmonary func-
tion phenotypes demonstrated a significant linkage
peak on chromosome 2q.16-18 Using expression-array
analysis of murine and human lung tissues, Serpin
peptidase inhibitor, clade E (nexin, plasminogen acti-
vator inhibitor type 1), member 2 (SERPINE2) has
been identified as a novel candidate COPD-
susceptibility gene on chromosome 2q.19 SERPINE2
was expressed highly in the developing mouse lung
during alveogenesis, and that it was also expressed in
airway epithelial cells and vascular adventitia of adult
human lungs,19 implying that this molecule may be
involved in the pathways of lung development, tissue
remodeling, and repair in the lungs.

THE DUTCH HYPOTHESIS
Asthma and COPD show similarities, transitions, and
substantial differences1,2; a significant number of pa-
tients with obstructive airway disease exhibit physi-
ologic and pathologic characteristics of both classical
asthma and COPD. Although these common diseases
may occur concurrently in some patients, this might
reflect common mechanisms between asthma and
COPD that are related to intrinsic determinants of
disease pathogenesis.20

The Dutch hypothesis considers asthma and
COPD a single entity whose pathogenesis involves
environmental and host factors.21 It suggests that ge-
netic factors (eg, airway hyperresponsiveness and
atopy),22 endogenous factors (eg, sex and age), and
exogenous factors (eg, allergens, infections, and
smoking) all play a role in the pathogenesis of
chronic nonspecific lung disease. A simple model is
that exposure to environmental risk factors in a ge-
netically susceptible host leads to a disease. A par-
ticular combination of genetic and environmental risk
factors leads to one disease, and another combination
of factors leads to a different disease.

The innate immune axis is activated in the lungs of
humans with chronic airway disease due to asthma or
COPD,23,24 demonstrating the importance of the ex-
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ternal environment such as infectious agents, air-
borne oxidant gases, and particulates. Infections and
occupational and environmental stimuli (allergic and
nonallergic) cause repeated bouts of inflammation
and contiguous repetitive engagement of different
components of the immune system in the lung. The
resulting interactions with genotype may give rise
both to distinct disease phenotypes and to individual
variations in disease presentation and progression.
For example, abnormal phenotypes of cytokine gen-
eration and responsiveness to inflammatory insults of
airway epithelium and smooth muscle in asthma or
COPD can result from many underlying genetic fac-
tors influencing the macrophage, epithelium, and
smooth muscle. Alterations in the proportions of tis-
sues and innate immune cells available to respond to
stimuli, as well as their temporal and spatial location
within the airways, will further influence differential
responses to repeated insults.

The genetic association of the same common poly-
morphisms with asthma and COPD points to a
shared molecular cause. In the following section,
three genes are discussed as examples of shared ge-
netic components for both asthma and COPD, includ-
ing genes encoding ADAM33, CCL5, and IL17F.

ADAM33
A disintegrin and metalloproteinase 33 (ADAM33) is
the first positionally cloned asthma gene.25 The link-
age analysis that led to the identification of ADAM33
as an asthma susceptibility gene was conducted on
460 affected Caucasian families from the United King-
dom and United States. Significant linkage to asthma
and bronchial hyperresponsiveness was identified in
chromosome 20p. Further high-resolution SNP analy-
ses identified ADAM33 as the source of the linkage
signal. The association of ADAM33 with asthma and
lung function has been confirmed in multiple popula-
tions with distinct ethnic backgrounds.26 ADAM33 is
expressed by lung fibroblasts and bronchial smooth-
muscle cells, but not by bronchial epithelial cells or
immune cells, pointing to potentially new pathoge-
netic pathways for asthma. ADAM33 is also preferen-
tially expressed during branching morphogenesis in
mouse and human lungs, suggesting a function
linked to the role of the epithelial-mesenchymal
trophic unit in lung development.27

Airway hyperresponsiveness (AHR) is a risk factor
for an accelerated decline in forced expiratory vol-
ume in 1 second (FEV1) and the development of
asthma and COPD, irrespective of atopic status.22 In-
deed, some of the SNPs of ADAM33 were shown to
be significantly associated with the development of
COPD and annual lung function decline in a general
population.28,29 Thus, genetic factors driving AHR
may allow for the development of asthma and COPD,
proving the existence of genetic links between these
two diseases.

Based on the findings of ADAM33 (and also SER-
PINE2), it is conceivable that a program of lung
structure maintenance of critical importance during
lung development is retained along with preserved
architectural building principles, and that, later in life,
elements of this developmental program are used to
protect the lung against attacks by the innate immune
system activated by infections, tissue damage, and
antioxidants. Genetic susceptibility to the dysregula-
tion of this program may lead to repair failure, under-
lying the pathogenesis of asthma and COPD.

CCL5
We previously reported that the gain-of-function-28 G
allele of the promoter SNP (rs2280788: −28C > G) in
the CC chemokine ligand 5 gene (CCL5) was associ-
ated with susceptibility to late-onset asthma in pa-
tients who developed asthma at age >40 years.30 In
general, late-onset asthma is not strongly associated
with specific allergen sensitisation. Rather, infections,
including respiratory viruses, may be more likely to
be involved in the pathophysiology of late-onset
asthma through host response mechanisms.31 Viral
infections are associated with most exacerbations of
asthma and COPD,32-36 and the most prominent as-
pect of the epithelial immune response toward viral
respiratory infections consists of the production and
release of CCL5.37-40 Indeed, exacerbation of mild
COPD is associated with the up-regulation of CCL5 in
both inflammatory and epithelial cells of the bron-
chial mucosa.39,41 Given that accumulation of inflam-
matory immune cells and airway wall remodeling
processes are common characteristics in the small
airways of patients with asthma and COPD,42 a com-
mon genetic susceptibility may be present, with la-
tent viral infections predisposing some patients to ex-
perience increased airway inflammation.

CCL5 may be involved in the pathogenesis of epi-
thelial remodeling and chronic hyper-reactivity in re-
sponse to viral infections. We therefore investigated
whether CCL5 has a genetic impact on the variable
expression of emphysema in patients with COPD.43 A
total of 267 patients with COPD were studied. All pa-
tients underwent pulmonary high resolution com-
puted tomography (CT), and visual scoring (CT
score) was performed to determine emphysema se-
verity. Three SNPs of CCL5 were genotyped, includ-
ing rs2107538 (−403 G > A), rs280788 (−28C > G), and
rs2280789 (375T > C). A significant difference was
found in CT score according to CCL5 genotype: the −
28 G allele was inversely associated with CT score (p
= 0.00038). When the analysis was confined to 180 pa-
tients with bronchial reversibility <15%, even stronger
evidence for this association was noted (p = 0.00002).

The chronic airflow limitation associated with
COPD is caused by a mixture of small airway disease
and emphysema, the relative contributions of which
vary from person to person.44 These phenotypic vari-
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ations of COPD may be influenced by several innate
susceptibility factors to environmental stimuli, includ-
ing tobacco smoking and viral respiratory infections.
These phenotypes (small airway disease and emphy-
sema) show independent aggregation within families
of individuals with COPD, suggesting that different
genetic factors influence these disease processes.45

CT scans of the chest can be used to confirm the
presence and to grade the severity of emphysema,
and COPD patients with milder emphysema, despite
severe airflow limitation, could be considered as hav-
ing predominantly small airway disease. Within the
context of the previous finding that the −28 G allele
was associated with late-onset asthma, the observa-
tion of an inverse association between the −28 G al-
lele and CT score in patients with COPD leads to a
specific hypothesis that increased severity of small
airway disease caused by a gain effect of the −28 G al-
lele may underlie the chronic inflammation and re-
modeling of the small airways of late-onset asthma
and COPD with milder emphysema. The chronic acti-
vation of innate immunity to virus infections may also
be a part of a common pathway in the pathogenesis of
late-onset asthma and COPD with milder emphy-
sema.

IL17F
IL-17 family members belong to a distinct category of
cytokines that coordinate local tissue inflammation by
inducing the release of pro-inflammatory and
neutrophil-mobilizing cytokines. IL-17F is a recently
discovered member of the IL-17 family that has a
number of biological activities through induction of
various cytokines, chemokines, and mediators. IL-
17A, the founding member of the IL-17 family, and IL-
17F are produced by several inflammatory cells, in-
cluding activated T cells, in response to infectious
and antigenic stimuli. Recent progress in molecular
and functional studies of IL-17F has provided evi-
dence for its role in pulmonary neutrophilia through
the induction of CXC chemokines.46

As the diseases progress and higher doses of corti-
costeroids are required, the inflammatory patterns of
asthma and COPD become harder to distinguish
from one another. Increased infiltration of the airway
with neutrophils characterizes lung inflammation in
COPD and severe asthma47-49 and, not surprisingly,
neutrophilia is often associated with disease sever-
ity50 and chronic airway narrowing.49 Neutrophils are
believed to contribute to tissue damage through the
release of granule proteins and reactive oxygen me-
tabolites, as well as pro-inflammatory and pro-fibrotic
cytokines. In addition to causing direct tissue dam-
age, neutrophil-derived pro-inflammatory mediators
can perpetuate inflammation, resulting in chronic
changes in airway function.51

To investigate the role of IL-17F in asthma patho-
genesis, we conducted genetic analyses of the asso-

ciation of asthma with the common variants of IL17F,
using 867 unrelated Japanese subjects.52 Five poly-
morphisms were studied, including the coding-region
sequence variant SNP rs763780 (7488T > C), which
causes a His-to-Arg substitution at amino acid 161
(H161R). A genotype-based χ2 association analysis
indicated a significant association between the H161R
variant and asthma (p = 0.0028). Importantly, none of
the asthmatic subjects were homozygous for H161R.
The odds ratio (OR) for asthma was 0.06 (95% confi-
dence interval, 0.01-0.43, p = 0.0039) among H161R
homozygotes compared with wild-type homozygotes.
We then combined bronchial asthma and COPD into
a single category to examine whether association of
this variant with the chronic inflammatory airway dis-
ease would be found. When the results were stratified
according to atopic status, the H161R variant was sig-
nificantly associated with the combined disease
status, especially among atopic subjects (p < 0.005).53

In atopic patients with asthma, pre-bronchodilator
baseline FEV1�forced vital capacity (FVC) values
also showed a significant association with the H161R
variant (p = 0.00083).53

In vitro functional studies further demonstrated
that, compared with wild-type IL-17F, the H161R vari-
ant is unable to activate MAP kinase, as well as cy-
tokine and chemokine production, in bronchial epi-
thelial cells (Fig. 2). Of significance, the H161R vari-
ant inhibits induction of IL-8 by wild-type IL-17F.
These findings suggest a potential mechanism under-
lying the significant association observed between
the IL-17F H161R variant and asthma and COPD. As
chronic inflammation is thought to play a crucial role
in deteriorating lung function, IL-17F may serve as a
target for ameliorating the effects of neutrophil-
mediated chronic airway inflammation.

The impact of a viral infection in atopic subjects on
airway inflammation may be influenced by the pres-
ence of H161R. A previous study54 demonstrated in-
creased airway epithelial mucus production among
pre-sensitized RSV-infected (OVA�RSV) mice, com-
pared with OVA mice 14 days after infection, whereas
almost no mucus production was observed in mice
that were only RSV infected. Although they did not
find an increase in type 2 cytokine production in
OVA�RSV mice compared with OVA mice, they
found a significant association between increased
gob-5 and Muc5ac expression in OVA�RSV mice and
increased IL-17A levels in the lung. Infectious agents
can induce inflammatory lung disease akin to asthma
and COPD, which include airway inflammation, mu-
cus hypersecretion, and laborious breathing. Virus in-
fection may be the additional event that is required
for atopic sensitization to progress to asthma. More-
over, because cigarette smoke induces alterations in
the innate immune response to viral infection,55

chronic virus infection may also determine which
smokers are at risk for obstructive airway disease, as
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Fig. 2 Proposed functional consequences of the IL17F H161R variant. 
Mutant IL-17F was unable to activate the Raf1-MEK1/2-ERK1/2 pathway, 
but antagonized wild-type IL-17F activity, suggesting that IL-17F is able to 
bind the receptor, but not activate the signalling pathway. Adapted from ref-
erence 53.
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COPD develops in only a minority (15 to 20%) of cur-
rent smokers. Thus, our findings regarding the
IL17F gene may have identified another gene in a
common pathway mediating the development of
asthma and COPD.

CONCLUSIONS AND FUTURE PERSPEC-
TIVES
The completion of the Human Genome Project, the
HapMap project, technological advances in SNP
genotyping, and the potential of genome-wide asso-
ciation analysis will allow the identification of suscep-
tibility genes for asthma and COPD. The genetic pre-
disposition to impairment of a certain pathway might
help define clinical subgroups of disease and priori-
tize patient groups for a specific therapy. This review
described 3 susceptibility genes that are common for
asthma and COPD. These genes support the model
of shared genetic risk factors for asthma and COPD
and may also help identify previously unexpected bio-
logic pathways that link these two diseases.

The innate immune system can be activated by sig-
nals from cells exposed to pathogens, environmental
stimuli, or mechanical tissue damage. The presumed
function of stress immunosurveillance is to contribute
to tissue repair and maintenance by eliminating
stressed or damaged cells and facilitating the restora-
tion of healthy cells. In the context of asthma and
COPD, the local pulmonary immune system appears
to be chronically activated as if it recognizes products
of damaged tissues, virus-infected, or smoking-
stressed cells. Considering recent results of genetic
studies of asthma and COPD, the emerging picture is
that aberrant activation of the innate immune system
accounts for the findings that inflammation persists

and lung function continues to decline in patients
with asthma and COPD.

Future research will increase our understanding of
both the cellular and molecular mechanisms at work
during normal lung function and under conditions in
which the lung is exposed to environmental stress.
Objective assessment of comprehensive genetic pro-
files will help identify susceptible individuals who
might develop persistent airway inflammation under-
lying asthma and COPD. Patients with different dis-
eases but overlapping pathways might benefit from
the same treatment, which could lead to the develop-
ment of new and shared therapeutic prospects. Given
that many of the clinical and pathological features of
these two conditions overlap, the ability to stratify pa-
tients by genotype or biological pathway rather than
just by disease label, that is, asthma or COPD, may
reveal differences in therapeutic response in clinical
trials. Genetics may also increase the efficiency of
outcome trials by focusing on patients at higher ge-
netic risk of having chronic airway inflammation and
tissue remodeling in response to certain exogenous
stresses.
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