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ABSTRACT

Equilibrium statistical mechanics of two-dimensional flows provides an explanation and a prediction
for the self-organization of large scale coherent structures. This theory is applied in this paper
to the description of oceanic rings and jets, in the framework of a 1.5 layer quasi-geostrophic
model. The theory predicts the spontaneous formation of regions where the potential vorticity is
homogenized, with strong and localized jets at their interface. Mesoscale rings are shown to be
close to a statistical equilibrium: the theory accounts for their shape, their drift, and their ubiquity
in the ocean, independently of the underlying generation mechanism. At basin scale, inertial states
presenting mid basin eastward jets (and then different from the classical Fofonoff solution) are
described as marginally unstable states. In that case, considering a purely inertial limit is a first
step toward more comprehensive out of equilibrium studies that would take into account other
essential aspects, such as wind forcing.

1. Introduction

Large scale coherent structures are ubiquitous in the
ocean. Understanding the physical mechanism underlying
their formation and persistence remains a major theoretical
challenge.

At mesoscale, oceanic turbulence is mostly organized
into westward propagating rings, as revealed by altimetry
(Chelton et al. 2007), or comprehensive numerical ocean
models, e.g. (Hallberg and Gnanadesikan 2006). Since
typical eddy turnover times are much shorter than dissi-
pation and forcing time scales, these rings can be studied
in the inertial limit, for which forcing and dissipation are
neglected.

At basin scale, the dynamics are strongly influenced
by forcing and dissipation: wind forcing plays the leading
role in setting the gyre structures through the Sverdrup
balance, and the concomitant effect of planetary vorticity
gradients and dissipation explains their westward intensifi-
cation (Pedlosky 1998). Because none of these mechanisms
are conservative processes, the inertial approach does not
take these essential aspects into account. Conversely, ex-
isting theories give no clear explanation of the existence
of strong and robust eastward jets in the inertial part of
these currents. The classical wind driven ocean theory and
the inertial approach both give an incomplete picture, and
complement each other. A useful step towards a compre-
hensive non-equilibrium theory that would combine both

approaches is to study mid-basin eastward jets in the iner-
tial limit. Such is the focus of this paper.

On the one hand, the problem of the self-organization of
a turbulent flow involves a huge number of degrees of free-
dom coupled together via complex non-linear interactions.
This situation makes any deterministic approach illusory,
if not impossible. On the other hand, there can be abrupt
and drastic changes in the large scale flow structure when
varying a single parameter such as the energy of the flow,
or its circulation. It is then appealing to study this prob-
lem with a statistical mechanics approach, which reduces
the problem of large-scale organization of the flow to the
study of states depending on a few key parameters only.

There exists a theory, the Robert-Sommeria-Miller (RSM
hereafter) equilibrium statistical mechanics, that explains
the spontaneous organization of unforced and undissipated
two-dimensional and geophysical flows (Robert 1990; Miller
1990; Robert 1991; Robert and Sommeria 1991). From the
knowledge of the energy and the global distribution of po-
tential vorticity levels provided by an initial condition, this
theory predicts the large scale flow as the most probable
outcome of turbulent mixing.

The aim of this paper is to apply this theory in the
framework of an 1.5 layer quasi-geostrophic model. More
precisely, the following question is addressed: can rings and
jets be interpreted as statistical equilibria ?

The first attempt to use equilibrium statistical mechan-
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ics ideas to explain the self-organization of 2D turbulence
was performed by Onsager (1949) in the framework of the
point vortex model. In order to treat flows with continu-
ous vorticity fields, another approach has been proposed by
Kraichnan in the framework of the truncated Euler equa-
tions (Kraichnan and Montgomery 1980). The truncation
has a drastic consequence: only the energy and the en-
strophy are conserved quantities, while any function of
the vorticity is conserved for the Euler equation. This
work has inspired a quadratic-invariant statistical theory
for quasi-geostrophic flows over topography (Salmon et al.
1976), which is also equivalent to the phenomenological
approach of Bretherton and Haidvogel (1976), relying on
a minimum enstrophy principle. These theories all pre-
dict the emergence of a large scale flow characterized by
a linear relationship between streamfunction and potential
vorticity.

The existence of such a linear relation was assumed by
Fofonoff (1954) for analytical convenience, in earlier work
on inertial ocean circulation, independently of statistical
mechanics approaches. Fofonoff was able to compute ex-
plicitly an inertial solution in the low energy limit. The
emergence of such flows has then been observed in numer-
ical simulations of freely evolving quasi-geostrophic flows
(Zou and Holloway 1994; Wang and Vallis 1994) . Energy-
enstrophy theories have been proven successful to interpret
these Fofonoff flows as statistical equilibria, but they have
not been able to account for most of the observed iner-
tial features of oceanic flows, such as coherent rings and
mid-basin eastward jets.

For the Euler or quasi-geostrophic dynamics, a major
drawback of energy-enstrophy statistical theories is the loss
of the additional invariants of the dynamics, which has no
other justification except for being able to solve the math-
ematics. The generalization of Onsager’s ideas to the Eu-
ler and quasi-geostrophic equations with continuous vor-
ticity field, taking into account all invariants, has lead to
the RSM theory (Robert 1990; Miller 1990; Robert 1991;
Robert and Sommeria 1991).

The RSM theory has made possible an explanation of
the shape of the Red Great Spot of Jupiter (Bouchet and Sommeria
2002), as well as of its position in the Southern Hemisphere
(Turkington et al. 2001). The theory has also been ap-
plied by Prieto and Schubert (2001) in the context of atmo-
spheric dynamics to predic equilibrium states of the strato-
spheric polar vortex. In the oceanic context, RSM theory
has been applied to the description of self-organization phe-
nomena following deep convection events (Dibattista and Majda
2000; Dibattista et al. 2002), in the framework of the Heton
model of Hogg and Stommel (1985).

Several studies, among which are Abramov and Majda
(2003); Dubinkina and Frank (2010), have specifically ad-
dressed the importance of higher potential vorticity mo-
ments for the equilibrium states. Taking into account these

additional dynamical invariants provides a much richer va-
riety of equilibrium states than previous energy-enstrophy
theories. For instance, RSM theory predicts for some ini-
tial conditions a relationship between streamfunction and
potential vorticity close to a step function. Most solutions
fall in that case in the limit of small Rossby radius of defor-
mation and large energies (Bouchet 2001). Such relations
are associated with fronts between regions of homogenized
potential vorticity. It will be explained in this paper that
most interesting statistical equilibria in the oceanic context
(i.e. rings and jets) fall into this class of solutions. Comput-
ing a class of equilibrium states associated with specified
relations between potential vorticity and streamfunction
allows for more general results than an initial value prob-
lem, where one would compute the statistical equilibrium
state associated with a given, particular initial condition.

Most of oceanic coherent structures are surface inten-
sified, with most of their kinetic energy located above the
thermocline (around 1000 m depth). In addition, eastward
jets and rings are characterized by a jet width of the or-
der of the first baroclinic Rossby radius of deformation.
In this paper, we consider the simplest ocean model that
takes into account this vertical structure and this typical
horizontal length scale, namely an equivalent barotropic,
1.5 layer quasi-geostrophic model.

So far most oceanic applications of equilibrium statis-
tical mechanics have been adressed in the limit of infinite
Rossby radius of deformation, i.e. in the framework of
the barotropic quasi-geostrophic model, see e.g. Salmon
(1998). The novelty of the present paper is to consider the
other limit, when the Rossby radius of deformation is small,
which allows analytical computations of statistical equilib-
ria, following the work of Bouchet and Sommeria (2002).
This assumption provides important insights for more gen-
eral situations, even when such a scale separation does not
exist. This is also a first step before considering the shallow
water model, which is consistent with the scale separation
between the Rossby radius of deformation and the domain
scale.

In the limit of small Rossby radius of deformation, it
has been shown that the computation of RSM statistical
equilibria can be simplified into a Van-der-Walls Cahn-
Hilliard variational problem (Bouchet 2008). These vari-
ational problems explain the formation and the shape of
bubbles in thermodynamics. The existence of this formal
analogy between the formation of bubbles and the self-
organization of potential vorticity in geophysical flows has
been very fruitful in the description of Jovian vortices.

This paper puts forward this approach in the oceanic
context. It is organized as follows. Equilibrium statisti-
cal mechanics of the 1.5 layer quasi-geostrophic model is
presented in the first section. The method to compute an-
alytically statistical equilibrium states in the limit of small
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Rossby radius of deformation is presented on the second
section. It allows for a justification of the potential vor-
ticity homogenization theory of Rhines and Young (1982)
without invoking any dissipation mechanism. These ideas
are applied in the third section to the case of a zonal chan-
nel on a beta plane. It allows to interpret mesoscale rings
as statistical equilibrium states, and to account for their
observed drift. The case of mid basin eastward jets in a
closed domain is studied in a fourth section. It is shown
that such jets are critical points of the RSM theory: they
can be either global or local entropy maxima, minima or
saddle, depending on the parameters. Notations and sym-
bols are referenced in table 1.

2. Statistical mechanics of the 1.5 layer, equivalent
barotropic quasi-geostrophic model

a. The 1.5 layer quasi-geostrophic model, its dynamical invari-
ants and its dynamical equilibria

The simplest possible inertial mid-latitude ocean model
taking into account the stratification of the oceans and the
sphericity of the Earth is considered in this paper. This
is the unforced, undissipated, 1.5 layer quasi-geostrophic
model on a beta plane:

∂q

∂t
+ v · ∇q = 0, with v = ez ×∇ψ , (1)

and q = ∇2ψ − ψ

R2
+ βy . (2)

For the boundary conditions, two cases will be distin-
guished, depending on the domain geometry D. In the
case of a closed domain, there is an impermeability con-
straint (no flow across the boundary), which amounts to a
constant streamfunction along the boundary. To simplify
the presentation, the condition ψ = 0 at boundaries will be
considered1. In the case of a zonal channel, the streamfunc-
tion ψ is periodic in the x direction, and the impermeability
constraint applies on northern and southern boundaries. In
the remaining, length scales are nondimensionalized such
that the domain area |D| is equal to one.

According to Noether’s Theorem, each symmetry of the
system is associated with the existence of a dynamical in-
variant, see e.g. Salmon (1998). These invariants are cru-
cial quantities, because they provide strong constraints for
the flow evolution. Starting from (1), (2) and the afore-
mentioned boundary conditions one can prove that quasi-
geostrophic flows conserve the energy:

E =
1

2

∫

D

dr

[
(∇ψ)2 + ψ2

R2

]
= −1

2

∫

D

dr (q − βy)ψ. (3)

1The physically relevant boundary condition should be ψ = ψfr

where ψfr is determined by using the mass conservation constraint∫
dr ψ = 0 (ψ is proportional to interface variations). Taking ψ = 0

does not change quantitatively the solutions in the domain bulk, but
only the strength of boundary jets.

Additionally, the quasi-geostrophic dynamics (1) is a trans-
port by an incompressible flow, so that the area γ (σ) dσ
occupied by a given vorticity level σ is a dynamical invari-
ant. The quantity γ(σ) will be referred to as the global
distribution of potential vorticity. The conservation of the
distribution γ (σ) is equivalent to the conservation of any
moment of the potential vorticity

∫
D
dr qn, and is related to

particle relabelling symmetry Ripa (1981); Salmon (1998).

The stationary points of the quasi-geostrophic equa-
tions (1), referred to as dynamical equilibrium states, sat-
isfy v · ∇q = ∇ψ × ∇q = 0. It means that dynamical
equilibria are flows for which streamlines are isolines of po-
tential vorticity. Then, any state characterized by a q − ψ
functional relationship is a dynamical equilibrium.

At this point, we need a theory i) to support the idea
that the freely evolving flow dynamics will effectively self-
organize into a dynamical equilibrium state ii) to determine
the q−ψ relationship associated with this dynamical equi-
librium iii) to select the dynamical equilibria that are likely
to be observed. This is the goal and the achievement of
equilibrium statistical mechanics theory, presented in the
next subsection.

b. The equilibrium statistical mechanics of Robert-Sommeria-
Miller (RSM)

The RSM statistical theory (Robert 1990; Miller 1990;
Robert 1991; Robert and Sommeria 1991) is introduced on
a heuristic level in the following. There exist rigorous justi-
fications of the theory (Michel and Robert 1994; Ellis et al.
2004; Bouchet and Corvellec 2010).

A microscopic state is defined by its potential vortic-
ity field q(r). If taken as an initial condition, such a fine
grained field would evolve toward a state with filamenta-
tion at smaller and smaller scales, while keeping in general
a well defined large scale organization. Then, among all
the possible fine grained states, an overwhelming number
are characterized by these complicated small scale filamen-
tary structures. This phenomenology gives a strong in-
centive for a mean-field approach, in which the flow is de-
scribed at a coarse-grained level. For that purpose, the
probability ρ(σ, r)dσ is introduced to measure a poten-
tial vorticity level σ at a point r = (x, y). The proba-
bility density field ρ defines a macroscopic state of the sys-
tem. The corresponding averaged potential vorticity field,
also referred to as coarse-grained, or mean-field, is q (r) =∫
Σ
dσ σρ (σ, r), with the average streamfunction ψ̄ defined

by q = ∇2ψ̄ − ψ̄/R2 + βy, and where Σ =] − ∞, +∞[.
Many microscopic states can be associated with a given
macroscopic state. The cornerstone of the RSM statistical
theory is the computation of the most probable state ρeq,
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Table 1. Symbols and notations used in the text.

Symbol definition
ex,y,z unit vectors in the meridional (x), zonal (y) and vertical (z) direction
r = (x, y) coordinate of a point, with ∇ = (∂x, ∂y)
t time coordinate
R Rossby radius of deformation
f0 Coriolis parameter
β planetary vorticity gradient
D domain where the flow takes place (with |D| = 1)
u(r) velocity field
q(r, t) (fine grained) potential vorticity field
σ level of potential vorticity, with σ ∈ Σ =]−∞, +∞[

q, ψ (coarse grained) mean field potential vorticity and streamfunction
E a Energy of the flow
γ(σ) global distribution of potential vorticity levels
ρ(r, σ) probability distribution function
S[ρ] Mixing entropy
N [ρ] = N normalization constraint
Dσ[ρ] = γ(σ) constraint on global potential vorticity distribution
E [ρ] = E constraint on the energy
ζ(r) Lagrange multiplier associated with the normalization N
α(σ) Lagrange multiplier associated with the global vorticity distribution Dσ

λ Lagrange multiplier associated with the energy E
gα(λψ) q − ψ relation at equilibrium
φ = ψ/R2 rescaled streamfunction
F [φ], F Free energy functional and equilibrium free energy
f(φ) specific free energy
C = −λR2 rescaled Lagrange multiplier associated with the energy constraint
M =

∫
D
drφ constraint for φ

µ Lagrange parameter associated with M
φ1, φ2 values of φ in a given phase
q1, q2 values of q in a given phase
A1, A2 domain (and area) occupied by a given phase
L perimeter of the interface between phases
r curvature radius of the interface
η Lagrange multiplier associated with the constraint on A2 when minimizing L
τ = Rτ̃ coordinate across the interface
φjet(τ) jet profile
Ujet = (φ2 − φ1)R velocity of the jet
Fint = cRL(φ2 − φ1)

2 Free energy of the interface, with c ∼ 1

L[q] = Li = Lf constraint on the linear momentum (i : inital ; f : final )
yf , yjet latitude of the ring center of of jet latitude

β̃ = β/R2 rescaled beta coefficient
Fβ contribution of the beta term to the free energy
l(x) perturbation of the zonal interface
FR = Fint + Fβ First order corrections to the free energy
Lx, Ly zonal and meridional extension of the closed domain
Lring diameter of the ring
Ud constant zonal flow in the deep layer

that maximizes the Boltzmann-Gibbs (or mixing) entropy

S [ρ] ≡ −
∫

D

dr

∫

Σ

dσ ρ log ρ , (4)

while satisfying the constraints associated with each dy-
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namical invariant. The mixing entropy (4) is a quantifica-
tion of the number of microscopic states q corresponding
to a given macroscopic state ρ. The state ρeq is not only
the most probable one: an overwhelming number of mi-
crostates are effectively concentrated close to it (Michel and Robert
1994). This gives the physical explanation and the predic-
tion of the large scale organization of the flow.

In the remaining of this paper, the term global entropy

maximum or stable equilibrium state will be used for any
global maximizer ρ of the entropy (4) satisfying the con-
straints. The term local entropy maximum or metastable

equilibrium state will be used for any state ρ that is a lo-
cal maximizer of the entropy (4), satisfying the constraints.

To compute statistical equilibria, the constraints must
be expressed in term of the macroscopic state ρ:

• The local normalization N [ρ] (r) ≡
∫
Σ dσ ρ (σ, r) =

1,

• The global potential vorticity distribution Dσ [ρ] ≡∫
D
dr ρ (σ, r) = γ (σ),

• The energy E [ρ] ≡ − 1
2

∫
D
dr

∫
Σ
dσ ρ (σ − βy)ψ = E.

Because of the overwhelming number of states with only
small scale fluctuations around the mean field potential
vorticity, and because energy is a large scale quantity, con-
tributions of these fluctuations to the total energy are neg-
ligible with respect to the mean-field energy.

The first step toward computations of RSM equilibria is
to find critical points ρ of the mixing entropy (4). In order
to take into account the constraints, one needs to introduce
the Lagrange multipliers ζ(r), α(σ), and λ associated re-
spectively with the local normalization, the conservation of
the global vorticity distribution and of the energy. Critical
points are solutions of:

∀ δρ δS − λδE −
∫

Σ

dσ αδDσ −
∫

D

dr ζδN = 0 , (5)

where first variations are taken with respect to ρ. This
leads to ρ = N exp (λσψ (r)− α(σ)) where N is determined
by the normalization constraint

(∫
dσ ρ = 1

)
.

Statistical equilibria are dynamical equilibria charac-
terized by a functional relation between potential vorticity
and streamfunction:

q̄ =

∫
Σ dσ σeλσψ(r)−α(σ)∫
Σ
dσ eσλψ(r)−α(σ)

= gα
(
λψ̄

)
(6)

It can be shown that gα is a monotonic, increasing and
bounded function of λψ for any global distribution γ(σ)
and energy E. These critical points can either be entropy
minima, saddle or maxima. To find statistical equilibria,
one needs then to select the entropy maxima.

At this point, two different approaches could be fol-
lowed. The first one would be to consider a given small
scale distribution γ(σ) and energy E, and then to compute
the statistical equilibria corresponding to these parame-
ters. In practice, especially in the geophysical context, one
does not have empirically access to the fine grained vor-
ticity distribution, but rather to the q − ψ relation (6) of
the large scale flow. The second approach, followed in the
remaining of this paper, is to study statistical equilibria
corresponding to a given class of q − ψ relations.

More precisely, we will consider the class of q − ψ re-
lations that admit an inflexion point, as for instance tanh
functions (see figure 1 for a precise definition). It will be
shown in the following that the existence of an inflexion
point in the q − ψ relation allows for statistical equilib-
ria characterized by fronts of potential vorticity. In that
respect, this is the relevant class of q − ψ relations to de-
scribe either rings or zonal jets.

c. Simplification of the variational problem

In the general case, computing directly the entropy
maxima is not an easy program. A major difficulty comes
from the infinite number of constraints given by dynami-
cal invariants. Rather than dealing with such complicated
variational problem, a widely used method in statistical
mechanics is to consider a dual variational problem, which
has the same critical points as the initial one, but that is
less constrained: any solution of the less constrained (eas-
ier to solve) problem is a solution of the more constrained
problem, see e.g. Ellis et al. (2000).

Let us for instance consider the ensemble of rescaled
streamfunction fields φ = ψ/R2, that satisfy the constraint∫
D
dr φ = M . This constraint is equivalent to the conser-

vation of the first moment of potential vorticity
∫
D
dr q, at

leading order in R. Let us then look for the minimizers of
the free energy functional

F =

∫

D

dr

[
R2

2
(∇φ)2 + f (φ)− βφy

]
, (7)

where f(φ) is a specific free energy to be defined precisely
in the next paragraph. This provides a variational problem

F = min
φ

{
F [φ]

∣∣∣∣
∫

D

dr φ =M

}
, (8)

which is much simpler than the one of the RSM statistical
theory, since only one constraint is kept. Critical points of
this problem are solutions of δF − µ

∫
D
dr δφ = 0, for any

perturbation δφ, where α is the Lagrange multiplier asso-
ciated with the constraint. A part integration and the rela-
tion q = R2∇2φ−φ+βy give δF =

∫
dr (f ′(φ)− φ− q) δφ.

Critical points satisfy therefore the relation q = f ′ (φ)−φ−
µ. These critical points are the same as the RSM critical
points, given by equation (6), provided that

f ′ (φ) = gα(λR
2φ) + φ+ µ . (9)
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This relation defines the specific free energy f . One can
see that the tanh-like shape of gα with a sufficiently steep
slope at its inflection point (which implies λ < −C/R2,
where C is a sufficiently large constant of order one) leads
to a double-well shape for f , as illustrated on figure 1. This
double-well shape will be an important ingredient for the
computation of statistical equilibria in the following.

It has been proven by Bouchet (2008) that for each
minimizer φ of the variational problem (8), there exists a
set of constraints E, γ(σ) such that φ is the mean-field
streamfunction of the RMS statistical equilibrium state ρ
associated with the constraints E, γ(σ). In other words,
any local (global) free energy minimizer φ can be inter-
preted as a local (global) entropy maximum state of the
RMS theory. This result will be used in the remaining of
this paper to compute RSM statistical equilibria by solving
the variational problem (8).

3. Potential vorticity homogenization and jets as
statistical equilibria

Assuming that there is no beta effect (β = 0), that
f(φ) has a double-well shape, and considering the limit
R ≪ 1, the variational problem (8) becomes analogous to
the Van der Walls – Cahn – Hilliard model that describes
phase separation and phase coexistence in thermodynamics
(Bouchet 2001, 2008). This formal analogy provides then
an interesting physical interpretation of self-organization
phenomena in geostrophic turbulence.

a. Solutions of the Van der Walls – Cahn – Hilliard variational
problem

The remaining of this subsection is devoted to the res-
olution of this Van der Walls – Cahn – Hilliard variational
problem, with heuristic considerations. There exist rigor-
ous mathematical justifications of these physical arguments
(Modica 1987; Bouchet 2001).

At zeroth order in R, the function f (φ) plays the dom-
inant role in the free energy functional F given by (7). In
order to minimize F , the streamfunction φ must therefore
be equal to one of the two minima of the specific free en-
ergy f(φ) (the points φ1 and φ2 on figure 1). Each of these
minima corresponds to one phase. Without the constraint∫
D
drφ = M , one of the two uniform solutions φ = φ1 or

φ = φ2 would minimize F : the system would have only one
phase. But in order to satisfy the constraint

∫
D
dr φ =M ,

the system has to split into sub-domains: part of it with
phase φ = φ1 and part of it with phase φ = φ2. In terms
of free energy minimization, the coexistence of these two
phases is possible only if f(φ1) = f(φ2). Using equation
(9), one can always choose the Lagrange parameter µ to
satisfy this condition, see figure 1 for a graphical interpre-
tation. In physical space, the area occupied by each of
the phases is denoted A1 and A2 respectively, see figure

q

q

φ φ

φφ

a)

b)
f

2

1

1 2

21

Fig. 1. a) In this paper, we consider the class of functions
gα, defined by equation (6), that have a tanh-like shape,
namely i) increasing with λψ ii) bounded for ψ → ±∞ iii)
with a single inflection point. In addition, we assume that
λ < −C/R2, where Cg′α > 1 at the inflexion point, so that
the q−φ relation (with φ = ψ/R2), represented as a plain
line, is decreasing and cross three times the dashed line
q = −φ− µ. b) The double-well shape of the specific free
energy f (φ) appearing in the expression of the free energy
functional (7). This function is related to the q−ψ relation
through equation (9). The Lagrange parameter µ is chosen
such that the specific free energy of the two minima are the
same (f(φ1) = f(φ2)), which allows phase coexistence.

2. These values are fixed by the constraint
∫
D
dr φ = M ,

which gives at leading order φ1A1 +φ2A2 =M and by the
geometrical constraint A1 +A2 = 1 (where 1 is the area of
the domain).

The interface between the sub-domains characterized
by φ1 and φ2 corresponds to an abrupt variation of stream-
function. The term R2 (∇φ)2 in the expression (7) of the
free energy F is negligible everywhere except around this
interface, on a typical width of order R. The interface
is therefore associated with a strong and localized jet di-
rected along this interface, with a typical velocity Ujet =
(φ1 − φ2)R, and a typical width R.

The actual jet profile is computed in Appendix A, by
minimizing the free energy associated with this profile. It is
shown in this Appendix that the jet gives always a positive

6



a) b) c)Formation of two phasesInitial condition Interface minimization

2φ
q 2

A2

q 1
1φ

A1
2φ

q 2

A2

q 1
1φ

A1

L L

Fig. 2. Resolution of the Van der Walls variational problem (8). a) Example of an initial condition for the potential
vorticity field. Note that this initial condition could as well have many levels of potential vorticity. b) At zeroth order
in R, φ takes two values φ1, φ2 on two sub-domains A1 and A2 corresponding to the coexistence of two phases of
homogenized potential vorticity q1, q2. These sub-domains are separated by strong jets of typical width ljet = R and
velocity Ujet = (φ2 − φ1)R. c) The actual shape of the structure, or equivalently the position of the jets, is obtained by
minimizing its perimeter L for a fixed value of A2.

contribution to the free energy:

Fint = c (φ2 − φ1)
2
RL , with c ∼ 1 . (10)

In order to minimize this interfacial free energy, the perime-
ter of the jet L must be minimal, taking into account the
constraints given by the fixed areas A1 and A2. We thus
look for the curve with the minimal length that bounds a
given surface. The solution of this classical problem is that
the interface is either a circle or a straight line.

To conclude, the computation of the statistical equi-
libria predicts i) the formation of two phases of constant
streamfunction, with strong and localized jets at these in-
terface ii) the structure of these jets iii) the shape of these
jets, which is determined by an isoperimetrical problem:
the minimization of the interface length for a fixed enclosed
area.

b. Link with potential vorticity homogenization theories

The class of equilibria described above corresponds to
those characterized by a q − ψ relation with a single in-
flection point (a tanh-like shape), and with a sufficiently
steep derivative at this inflexion point in order to ensure a
double-well shape for the specific free energy f(φ). These
q−ψ relations imply that sub-domains of constant stream-
function are also sub-domains of constant coarse grained
potential vorticity. It means that the potential vorticity is
homogenized in these sub-domains.

Statistical mechanics provides therefore a physical ex-
planation for the potential homogenization theory of Rhines and Young
(1982), without invoking any dissipation mechanism. Po-
tential vorticity homogenization is now a widely used con-
cept in geophysical fluid dynamics, with, among others, ap-
plication to thermocline theory (Rhines and Young 1982)
or stratospheric polar vortex dynamics (McIntyre and Palmer

1983).
In the case of freely evolving 1.5 layer quasi-geostrophic

dynamics, statistical mechanics predicts not only the spon-
taneous formation of regions where potential vorticity is
homogenized at a coarse grained level, but also the shape
of the interface between these regions, corresponding to
jets, where vorticity gradients are confined. The formation
of regions with different values of coarse grained potential
vorticity is essential to insure conservation of the total en-
ergy. Importantly, such states could not be achieved with
eddy parameterization based on local down-gradient diffu-
sivities: this term would lead to the formation of a single
phase of homogenized potential vorticity, which would in
general not statisfy the energy constraint.

Statistical mechanics arguments also account for the
irreversible nature of mixing: an overwhelming number of
fine grained microscale are associated with a given coarse
grained equilibrium state. The only effect of a weak small
scale dissipation process would be to smooth out locally
fine-grained fluctuations of potential vorticity, leaving un-
changed its coarse-grained structure.

These results are complementary to previous work fo-
cusing on the dynamics of potential vorticity mixing, using
chaotic advection theory (Pierrehumbert 1991). Chaotic
advection theory has been proven successful to account for
many observed feature of potential vorticity mixing, but
unlike statistical mechanics, it provides in general no pre-
diction for the final state of the large scale flow, especially
when there is no scale separation between mean and eddies
in the initial condition.

We discuss in the following how this tendency toward
formation of subdomains with homogenized potential vor-
ticity generalizes in presence of β effect, and we apply these
results to the description of some features of geostrophic
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turbulence in the ocean.

4. Application to oceanic rings

Observations show that mesoscale oceanic rings exist
everywhere in the ocean, and particularly near western
boundary currents, where high levels of eddy kinetic en-
ergy levels are largely associated with their presence, see
e.g. Olson (1991) for a review and Morrow et al. (2004);
Chelton et al. (2007) for recent altimetry measurements.
Both cyclonic and anticyclonic rings propagate westward
at speed βR2. They also present an additional small merid-
ional drift, poleward for cyclonic rings and equatorward for
anti-cyclonic rings.

Among others, contributions of Nof (1981), of Flierl
(1987) and of Cushman-Roisin et al. (1990) have provided
insights on the dynamics and on the mechanisms responsi-
ble for the generation of the rings, in a large class of mod-
els and configurations. Various dynamical mechanisms ac-
counting for the formation of the rings have been pointed
out: vortex sheding above topography, pinch off process
during the non-linear evolution of a meandering jet, bound-
ary layer separation, or large scale organization of initially
small turbulent disturbances. Despite these very differ-
ent generation mechanisms, the striking ressemblance be-
tween observed oceanic rings in very different regions of
the ocean, which has long been recognized as a surprising

result (Olson 1991), suggests that at least some aspect of
these coherent structures can be studied independently of
their generation mechanism.

This is precisely the interest of statistical mechanics,
which accounts for spontaneous formation of circular struc-
tures surrounded by a jet, i.e. the self-organization of
mesoscale turbulence into rings. Many studies have been
devoted to the study of the dynamics of an isolated mesoscale
vortex with a prescribed shape. Statistical mechanics gives
a complelentary point of view by predicting the shape of
the vortex itself.

a. The westward drift of the rings

To show that westward propagating circular rings can
be interpreted as equilibrium states, two important ingre-
dients must be taken into account: i) the beta effect βy
ii) a domain invariant by translation in the zonal direc-
tion. A drifting ring could not exist as statistical equilibria
in a closed domain, since it would be destroyed when ar-
riving on the western boundary. The zonal translational
invariance of the problem has important consequences. It
is shown in Appendix B that a change of Galilean reference
frame in the zonal direction translates as a beta effect in
the expression of potential vorticity. Moreover, in a refer-
ence frame moving at velocity −βR2ex, the beta effect is
exactly canceled out.

We conclude that in a domain invariant by transla-

tion in the zonal direction, statistical equilibria obtained
by the minimization of the Van-Der-Walls Cahn Hilliard
variational problem (8) without beta effect are also statis-
tical equilibria with beta effect, but drifting westward at
speed V = −βR2. A flow configuration with drifting disks
(the rings) of homogenized potential vorticity evolving in a
background flow made of homogenized potential vorticity
(with a different value than for the rings) is a statistical
equilibrium.

b. The poleward drift of cyclones and the equatorward drift of
anticyclones

If the flow actually reaches a local statistical equilib-
rium, then not only the ring is composed of an homoge-
nized region of potential vorticity, but also the background
flow. In figure 3 is represented the case of an isolated patch
of potential vorticity (q = qi within the ring of area Ai cen-
tered on y = 0) on a beta plane (q = βy elsewhere). This
situation is common in the ocean, for instance when Agul-
has rings arrive in quiescent regions of the Atlantic ocean.
This state is not a statistical equilibrium state, the back-
ground potential vorticity is not homogenized.

It is shown in the following that the observed asymmet-
ric small meridional drift of cyclonic and anticyclonic rings
can be understood as a tendency for the system to reach
the statistical equilibrium. One needs for that purpose to
consider the conservation of the linear momentum:

L =

∫

D

dr qy ,

which is the dynamical invariant associated with the zonal
translational symmetry. The linear momentum of the ini-
tial condition is, at lowest order in R:

Li ≈ β

∫

D

dr y2 − β

∫

Ai

dr y2 ,

where Ai is the initial area of the ring. Considering the
limit of small rings compared to the domain size, the first
term of the right hand side dominates the second one, and
Li ≈ βLxL

3
y/24. Assuming the statistical equilibrium is

reached in the final state, the flow is made of two phases
of homogenized potential vorticity: the background phase,
with value q = qb, and the ring’s phase of area Af , centered
at latitude y = yf , with value q = qf (same sign as qi) and
with |qf | > |qb|. The linear momentum of this final state
is

Lf ≈ qb

∫

D

dr y − (qf − qb)

∫

Af

dr y .

Finally, the linear momentum conservation Li = Lf gives

β

24
LxL

3
y ≈ − (qf − qb) yfAf .

Physically, this means that for statistical mechanics reason,
the background potential vorticity has to be homogenized.
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This leads to a loss of linear momentum that must be com-
pensated by a latitude shift of the ring center. Rings with
negative potential vorticity ((qf − qb) < 0) decrease their
latitude (yf < 0), while rings with positive potential vor-
ticity (qf − qb) > 0 increase their latitude (yf > 0). Then,
in order to reach the statistical equilibrium, the ring has
to drift northward if it is made of an initial positive poten-
tial vorticity patch, and southward if it is made of an initial
negative potential vorticity patch. This corresponds always
to a poleward drift for cyclonic structures and an equator-
ward drift for for anticyclonic structures, just as what is re-
ported from altimetry measurements (Morrow et al. 2004;
Chelton et al. 2007).

We emphasize that these statistical mechanics argu-
ments are complementary to previous work: the dynam-
ics of the beta drift problem has for instance been widely
studied numerically, see e.g. McWilliams and Flierl (1979);
Sai-Lap Lam and Dritschel (2001) and references therein.
It has for instance been shown that the ring obeys a com-
plicated dynamics during its earlier evolution. The ring
must indeed cedes part of its energy in order to homoge-
nize the background potential vorticity. An efficient way
to do so is by pulsations of the rings that generate Rossby
waves. Such Rossby waves then propagate away, interact
in a complicated way with the ring and eventually break
and mix the background potential vorticity.

In the previous analysis, it has been implicitly assumed
that the energy of the initial ring was greater than the en-
ergy required to mix the background potential vorticity.
This minimal energy required to mix the background flow
is given by the potential energy associated with a zonal
current compensating the beta effect. This assumption
amounts to say that the energy of the system is high enough
to have a double-well shape for the specific free energy f(φ),
and then to allow for the formation of an equilibrium state
with phase separation between two regions of homogenized
potential vorticity. If this would not be the case, the ini-
tial ring would lose its cohesion, and its potential vorticity
would spread on the whole domain.

c. Conclusion: oceanic rings are local statistical equilibria

In the ocean, the scale separation between the size of
the rings and the Rossby radius of deformation is satis-
fied only to a limited extent. This scale separation has
been assumed for technical reasons only: it allows for ex-
plicit analytical computations of the equilibria. The results
obtained in this limit actually apply for far more general
situations. This is confirmed by numerical computations of
RSM equilibria, in which rings are obtained as local equi-
libria even when the scale separation is not satisfied, see
e.g. figure 4.

To conclude, the quasi-circular shape of oceanic rings
and their westward propagation suggest that these coher-

Fig. 4. Circular vortex as a statistical equilibrium of the
quasi-geostrophic model, with R < Lring. Although ana-
lytical computations are carried in the limit R ≪ Lring,
the results are expected to hold when this scale separa-
tion does not exit. It is a circular patch of (homogenized)
potential vorticity in a background of homogenized poten-
tial vorticity, with two different values. The velocity field
(right panel) has a ring structure. The width of the jet sur-
rounding the ring has the order of magnitude of the Rossby
radius of deformation R.

ent structures can be interpreted as local statistical equilib-
ria. The existence of a meridional drift shows a departure
from the prediction of the equilibrium theory. However,
the fact that this drift can be interpreted as a tendency
to reach to equilibrium state shows that these structures
remain close to an equilibrium state.

Rings are local (metastable), and not global statisti-
cal equilibria of the equivalent barotropic model: a global
equilibria would imply the coalescence of all existing rings
into a single large scale vortex, in order to minimize the to-
tal interface between the different regions of homogenized
potential vorticity.

5. Application to mid-basin eastward jets

Another region of the ocean where strong jets of typical
width given by the Rossby radius of deformation R are lo-
calized along an interface separating two regions of homog-
enized potential vorticity is the inertial part of mid-latitude
eastward jets, as the Kuroshio or the Gulf stream currents.
The inertial part of these currents is located in the regions
where the western boundary currents separate from the
coastline and self-organize downstream into a strong east-
ward jet. Because mid-basin eastward jets fill a large part
of oceanic basins, and because the existence of a western
boundary is an essential ingredient for their formation, one
must look for statistical equilibria in a close domain in that
case.

We ask in this section whether mid-basin eastward jets
in a closed domain are statistical equilibria.
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Statistical equilibrium 

L y

y f

y f

iq=q

q=qi

fq=q

i   A

   A i

f   A

   A f

bq=q

bq=q
xL

fq=q

βq =   y

βq =   y

Fig. 3. Explanation of the meridional drift of rings, as a tendency to reach the statistical equilibria. On the left, initial
conditions, with a white disk of positive potential vorticity in the upper panel, and a black disk of negative potential
vorticity in the lower panel. In both cases the disk evolves on an initial beta plane with no background flow. On the
right, the corresponding statistical equilibrium.

In view of the applications to mid-basin ocean jets,
we assume a situation in which the global distribution
of potential vorticity is symmetric: two phases character-
ized by symmetric values of streamfunction (φ1 = −φ2 =
Ujet/(2R)), each of them filling half the domain area (A1 =
A2 = 1/2) We do not report the computations for the non
symmetric case, but the main results obtained in this sim-
pler case remain unchanged.

a. Without beta effect, mid basin eastward jets are statistical
equilibria of the quasi-geostrophic model

The value φ = φ1,2 for the two coexisting phases is not
compatible with the boundary condition φ = 0. As a con-
sequence, there exists a boundary jet in order to match a
uniform phase φ = φ1,2 to the boundary conditions. Just
like interior jets, treated in section 3, these jets contribute
to the first order free energy, which gives the boundary

jet structure and shape. The symmetry of the problem
(φ1 = −φ2) implies that boundary jets of each phase give
the same contribution to the free energy. Because the
boundary length is a fixed quantity, the free energy min-
imization amounts to the minimization of the interior jet
length only, just as in previous subsections. The interior
jet position and shape is thus given by the minimization of
the interior jet length with fixed area A2 = 1/2.

The jet has to be straight or circular. There are three
possible interface configurations with straight or circular
jets: i) the zonal jet configuration (jet along the x axis)
with L = Lx, ii) the meridional jet configuration (jet along
the y axis) with L = Ly, iii) and an interior circular vortex,
with L =

√
2π . The case i) of a zonal jet is a global

interface minimum (and then a global equilibrium state)
if and only if the aspect ratio satisfies Lx/Ly < 1. For
Lx/Ly > 1, these solutions become metastable states (local
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φ  < 0
11q  

φ  > 0
22q  

φ  > 0
22q  

φ  < 0
11q  

a) b) c)

l(x)

Fig. 5. a) Eastward jet configuration b) Westward jet configuration c) Perturbation of the interface for the eastward
jet configuration, to determine when this solution is a local equilibrium. Without beta effect, both the eastward and the
westward configurations are entropy maxima. With positive beta effect the westward jet becomes the the global entropy
maximum, and the eastward jet becomes metastable provided that beta is small enough.

Lx

Ly

Fig. 6. Streamfunction of the solution presenting an east-
ward jet with beta effect (red: positive values, blue: neg-
ative values), associated with case (a) of figure 5. The jet
width is of order R. This solution is a statistical equilib-
rium for Lx < π(Ujet/β)

1/2.

entropy maximum).
We conclude that without beta effect, mid-latitude east-

ward jets are statistical equilibria. Because of the symme-
try φ1 = −φ2, solutions presenting eastward and westward
jets are equivalent: westward jets are also statistical equi-
libria.

b. With beta effect, eastward jets becomes metastable or unsta-
ble

Contrary to the case of the zonal channel, the beta
effect can not be cancelled out by a change of Galilean

reference frame in the case of a closed domain. One can
therefore not avoid taking into account this term in the
computation of the equilibrium free energy.

One can readily see on the expression (7) of the free
energy, that when β 6= 0, the additional term

Fβ = −β
∫

D

dr φy

breaks the symmetry ±q. The westward jet case (with
φ < 0 on the southern part of the domain and φ > 0 on
the northern part) is more favorable in terms of free energy
minimization than the eastward jet case (with φ > 0 in the
southern part of the domain and φ < 0 in the northern
part): westward jets become the only global equilibria for
β > 0 and aspect ratio Lx/Ly > 1.

Let us be more precise by considering the limit of small
beta effect, with the scaling β ∼ Rβ̃. With that scaling,
the equivalent topography does not play any role at zeroth
order in the variational problem (8). We thus still con-
clude that phase separation occurs, with sub-domains of
fixed areas A1 and A2, separated by jets whose transverse
structure is described in Appendix A.

It is shown in this same Appendix that the interface
gives a contribution Fint = cRL (φ2 − φ1)

2
. Let us now

compute the first order contribution of the additional term
Fβ. Using the zeroth order result φ = φ1 on sub-domain
A1 and φ = φ2 on sub-domain A2, one obtains

Fβ = − (φ2 − φ1)β

∫

A2

dr y ,

plus an unimportant constant. Finally, the total first order
contribution to the free energy is

FR = cR (φ2 − φ1)
2
L− (φ2 − φ1)β

∫

A2

dr y . (11)
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Recalling that first variations of the length are propor-
tional to the inverse of the curvature radius r of the in-
terface (Gelfand and S.V. 1967), the minimization of (11),
with fixed area A2 gives

(φ2 − φ1)Rβ̃y + η =
cR (φ2 − φ1)

2

r
, (12)

where η is a Lagrange parameter associated with the con-
servation of the area A2.

We conclude that zonal jets (i.e. an interface at latitude
y = yjet, with infinite curvature radius r) are solutions to

this equation for η = −R (φ2 − φ1) β̃yjet. This shows that
eastward and westward jets described in the previous sec-
tion are therefore still critical points of entropy maximiza-
tion.

The eastward jet configuration is the one with the re-
gion A2 below the line y = 0 at the center of the do-
main. To determine if this configuration is a local sta-
tistical equilibria, let us consider perturbations of this in-
terface (given by the line y = l(x)), while keeping constant
the area occupied by both phases, see figure 5. There are
two contributions competing with each other in the ex-
pression (11) of the free energy FR. Any perturbation in-

creases the jet length L =
∫
dx

√
1 + (l′)2, where l′ =

dl/dx, and then increases the first term of the free energy

(11) by δFint = cR (φ2 − φ1)
2 ∫

dx (l′)
2
. Any perturba-

tion decreases the second term of the free energy (11) by

δFβ = −R (φ2 − φ1) β̃
∫
dx l2. If the eastward jet solution

is not a free energy minimum, it exists a perturbation of
the interface leading to negative variations of the free en-
ergy δFR = δFint + δFβ. Let us consider the particular
case l = lk sin (kπx/Lx) where k ≥ 1 is an integer. Using

Ujet = (φ2 − φ1)R and β = Rβ̃, the condition δFR < 0

gives β > cUjet (kπ/Lx)
2. The most unfavorable case is for

the smallest value of k2, i.e. k2 = 1.
It leads to the necessary condition β > cUjetπ

2/L2
x for

the eastward jet solution to be unstable (in term of sta-
tistical mechanics). It can actually be shown, using less
straightforward considerations, that it is also a sufficient
condition for instability. The destabilizing effect of in-
creasing values of β contrasts with its stabilizing effect in
classical criteria for barotropic instability, see e.g. Vallis
(2006). It has actually been shown that such eastward jet
solutions can simultaneously be unstable for statistical me-
chanics, and stable for non-linear perturbations (Venaille
2008; Venaille et al. 2010).

For a fixed value of β, eastward jets are local free en-
ergy maxima if the domain zonal extension is smaller than

a critical value: Lx < π (cUjet/β)
1/2

. The streamfunction
of such a state is presented in figure 6. For jets like the
Gulf Stream, Ujet ≈ 1 m.s−1 and β ≈ 10−11 m−1.s−1.
Using c ∼ 1, the critical domain length scale upon which

eastward jet become unstable is Lx ≈ 300 km. This length
is smaller than the typical zonal extension of the inertial
part of the Kuroshio or Gulf Stream currents (around 1000
km), but not by an order of magnitude, which suggests
that these structures are marginally unstable. The insta-
bility is consistent with the fact that strong meanders and
pinch off process occurs downstream of oceanic eastward
jets. But the marginal nature of this instability is also
consistent with the overall robustness of the global struc-
ture of the flow, which becomes a statistical equilibrium
when the extension of the jet is small enough.

Note also that the beta effect can be compensated by
assuming the existence of a prescribed deep zonal flow Ud.
This would add a term −Ud/R2y to the potential vorticity,
i.e. on the right hand side of equation (2), that could com-
pensate or even overcome the beta term. More precisely,
for an eastward deep flow satisfying Ud > βR2, the solution
presenting an eastward jet becomes the global equilibrium
state.

6. Conclusion and prospects

The aim of this paper was to present a point of view
complementary to existing approaches that deal with co-
herent structures in the ocean. It was shown that the
RSM statistical mechanics provides a unified framework
that may be useful to study mesoscale and basin scale in-
ertial flows.

The theory gives a physical explanation and a predic-
tion for the self-organization of large scale oceanic coher-
ent structure, independently of the underlying generation
mechanism. It predicts the formation of subdomains of
homogenized potential vorticity, with intense jets at the
interface. Mesoscale rings can be interpreted as local equi-
librium states of the RSM theory. Their shape and their
drift can be understood in this framework. Mid-basin east-
ward jets are found marginally unstable states of the RSM
theory, consistently with observations of these jets.

The interest of this approach relies on its generality (it
does not depends on a particular flow configuration) and
on its ability to describe qualitatively different observed
regimes of self-organization, such as rings and zonal jets.
The present study was achieved in the framework of a 1.5
layer quasi-geostrophic model, which is too simplistic to
describe oceanic eddies quantitatively; however, generaliza-
tions and further investigations in the framework of more
complex models can be built upon these results.

For instance, the flow was supposed to be confined in an
upper active layer, which does not allow for vertical energy
transfers. The next step will be to study predictions of
RMS theory for the vertical structure itself.

A caveat of the present approach is that forcing and dis-
sipation are not taken into account in the framework of the
equilibrium theory: the input of the RSM theory is given

12



by the dynamical invariants. In the case of mesoscale rings,
even if the dynamics can be considered close to an equilib-
rium state, forcing and dissipation play an important role
in setting these dynamical invariants. In the case of basin
scale jets, their marginal instability suggest that one can
not avoid taking into account forcing and dissipation mech-
anisms to explain these structures. So far the inertial part
of wind driven circulation has been mostly studied from
the point of view of bifurcation theory, starting from a
highly dissipated ocean and decreasing progressively fric-
tional parameters, see e.g. Dijkstra and Ghil (2005). We
argue that this problem can be tackled with another point
of view, starting from the purely inertial limit (this pa-
per), and adding small forcing and dissipation (future work
built upon Bouchet and Simonnet (2009)). These two ap-
proaches are complementary and may be combined in the
future in a more comprehensive non-equilibrium theory.

APPENDIX A

Computation of the jet profile

At leading order, minimization of the free energy leads
to the formation of subdomains of constant streamfunction
φ = φ1 and φ = φ2. The interface between these subdo-
mains are associated with strong and localized jets. Let us
assume that the curvature radius of the interface is much
larger than R, which allows us to neglect what happens
along the interface at leading order. Calling τ = Rτ̃ the
coordinate in a direction along the normal to the interface,
the jet profile φjet(τ) across the interface must be such
that it minimizes its contribution to the total free energy
(7). The jet profile is therefore determined by solving a
one dimensional variational problem:

Fint = LR min
φjet

{∫ +∞

−∞

dτ̃

[
1

2

(
dφjet
dτ̃

)2

+ f(φjet)

]}
,

(A1)
where L is the perimeter of the jet and Fint the free energy
associated with the existence of this interfacial jet. Critical
points of this variational problem are states that cancel the
first variations of the free energy with respect to φint. They
are solutions of

d2φjet
dτ̃2

=
df

dφjet
. (A2)

Making an analogy with mechanics, if φjet would be a par-
ticle position, τ would be the time, equation (A2) would
describe the conservative motion of the particle in a po-
tential −f . In order to connect the two different phases in
the bulk, on each side of the interface, one has to consider
solutions with boundary conditions φ → φ1 for τ → −∞
and φ → φ2 for τ → +∞. It exists a unique trajectory
with such limit conditions. In the particle analogy, it is

the trajectory connecting the two unstable fixed points φ1
and φ2, corresponding to the two bumps of the potential
−f (see figure 1).

The energy (dφjet/dτ)
2
/2 − f(φjet) is conserved dur-

ing the evolution of φ with time τ . Using this conser-
vation property and the boundary condition φ → φ2 for
τ → +∞, one obtains f(φjet) = (dφjet/dτ)

2
/2, plus an

unimportant constant. Injecting this expression into the
variational problem (A1), one obtains

Fint = LR

∫ +∞

−∞

(dφjet/dτ)
2 dτ = cRL (φ2 − φ1)

2 ,

with c ∼ 1. An important physical consequence is that the
jet at the interface always gives a positive contribution to
the free energy of the equilibrium state, which is of order
R and proportional to the interface length L.

APPENDIX B

Galilean invariance and beta effect

In the case of a zonal channel, the quasi-geostrophic
equations (1) are invariant over a Galilean transformation
in the zonal direction

x→ x′ = x− V t , y → y′ = y , t→ t′ = t .

The velocity is transformed as v → v′ = v − V ex, which,
using the relation v = ez × ∇ψ, gives the transformation
law for the streamfunction ψ → ψ′ = ψ − V y. From the
expression q = ∆ψ − ψ/R2 + βy, one obtains finally the
transformation law for the potential vorticity q → q′ =
q + V y/R2. Thus the expression for the dynamics in the
new reference frame is

∂q′

∂t′
+ v′ · ∇′q′ = 0, with v′ = ez ×∇′ψ′ ,

and q′ = ∇′2ψ′ − ψ′

R2
+

(
β +

V

R2

)
y′ .
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