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ON SAGITTARIUS A*

THEORY AND OBSERVATIONS

ANGELO LOINGER AND TIZIANA MARSICO

Abstract. Massive and supermassive “dust” spheres (with a zero in-
ternal pressure) collapse to “full globes” of finite volumes, whose surfaces
have the properties of the event horizon around a mass-point. This fact
explains the observational data concerning Sagittarius A* (SgrA*). By
virtue of Hilbert’s repulsive effect, both the event horizon of a mass-point
and the event horizon of a “full globe” cannot “swallow” anything.

Summary – 1, 2. Some observational data about SgrA*. – 3. The geodesics of
Schwarzschild’s manifold created by a point-mass and the gravitational repulsion. –
3bis. Inadequacy of the proper time as evolution parameter of the geodesic motions
in a Schwarzschild’s manifold. – 4. Kerr’s manifold and gravitational repulsion. –
5, 5bis. A ‘dust” sphere collapses to a ‘full globe” of a finite volume; et cetera. –
6. Explanation of the observational data about SgrA*. – Appendix A: On celestial
objects endowed with a magnetic moment. – Appendix B : Attraction and repulsion
in Hilbert’s and Droste’s treatments. –

PACS 04.20 – General relativity.

1. – In the paper “The event horizon of Sagittarius A*” by Broderick et

al. [1], the authors affirm that recent millimeter and infrared observations
of the supermassive centre SgrA* of the Milky Way require the existence of
the ideal surface of an event horizon. In the present paper we show that the
observational data of [1] are perfectly consistent with the existence of a real,
peculiar surface, which has all the properties of the above event horizon.
Remark that the horizons have no “swallowing” property – a fact which is
commonly ignored.

2. – According to Broderick et al. [1], by virtue of its relative proximity
SgrA* is the best candidate to the possession of the ideal surface of an event
horizon.

Observations of massive stars in its vicinity have given the following val-
ues for its mass and its distance: mass M = (4.5 ± 0.4) × 106 solar masses;

1

http://arxiv.org/abs/1011.2600v1


2 ANGELO LOINGER AND TIZIANA MARSICO

distance D = (8.4 ± 0.4) kpc; SgrA* is confined within 40AU. The radia-
tive emission (luminosity of 1036 erg s−1) is strongly non-thermal, and is
distributed from the radio to the γ-rays.

The substance of the arguments of Broderick et al. [1] is admirably sum-
marized in the first paragraph of the final sect.4, which we report literally:
“Recent infrared and mm-VLBI observations imply that if the matter ac-
creting onto Sgr A* comes to rest in a region visible to distant observers,
the luminosity associated with the surface emission from this region satisfies
Lsurf/Lacc . 0.003. Equivalently, these observations require that 99.6% of
the gravitational binding energy liberated during infall is radiated in some
form prior to finally settling. These numbers are inconsistent by orders
of magnitude with our present understanding of the radiative properties of
Sgr A*’s accretion flow specifically and relativistic accretion flows generally.
Therefore, it is all but certain that no such surface can be present, i.e., an
event horizon must exist.”

Now, if we take into account the decisive role of the Hilbertian gravita-
tional repulsion [2], [3], which is neglected by our authors [1], the picture
changes drastically, and the above inequality Lsurf/Lacc . 0.003 becomes
quite comprehensible, as we shall see in the sequel.

3. – For the computation of the geodesics of the Schwarzschild manifold
created by a material point, Hilbert [2] starts from the standard (Hilbert-
Droste-Weyl) form of the interval ds:

(1) ds2 =
r

r − α
dr2+r2dϑ2+r2 sin2 ϑ dϕ2− r − α

r
dt2 ; (c = G = 1) ,

where α ≡ 2m, and m is the mass of the gravitating point – if M is the
mass in CGS units, we haveM = c2m/G. (The original Schwarzschild’s form

of ds2 can be obtained from eq. (1) with the substitution r → (r3+α3)1/3.)
It is easy to see that there are only plane trajectories, and therefore it

suffices to consider only one value for ϑ, e.g. π/2. Eq. (1) has as an
evident consequence the following first integrals of the geodesic motions,
where A,B,C are constants with respect to the affine parameter p:

(2)
r

r − α

(

dr

dp

)2

+ r2
(

dϕ

dp

)2

− r − α

r

(

dt

dp

)2

= A ;

(3) r2
dϕ

dp
= B ;

(4)
r − α

r

dt

dp
= C .

Clearly, A is negative for the test-particles and zero for the light-rays.
With a suitable choice of p, we can put C = 1. Then, by eliminating t and
p from eqs. (2)–(3)–(4), we obtain the general formula of all the geodesic
lines:
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(5)

(

d̺

dϕ

)2

=
1 +A

B2
− Aα

B2
̺− ̺2 + α̺3

[

=

(

dr

dp

)2 1

B2

]

,

where ̺ ≡ 1/r. Remark that the coordinate r in eq. (5) must satisfy the
condition r > α, because the progenitor eqs. (2) and (4) do not hold for
r ≤ α. Remark that by substituting dp = [(r − α)/r] dt in eqs. (2)–(3) one
obtains two first integrals with respect to the evolution parameter t.

Circular and radial orbits are evidently possible; however, for the circular
motions it is necessary to use also the Lagrangean equation of motion for r:

(6)
d

dp

(

2r

r − α

dr

dp

)

+
α

(r − α)2

(

dr

dp

)2

− 2r

(

dϕ

dp

)2

+
α

r2

(

dt

dp

)2

= 0 ,

since, when dr/dp = 0, this equation is not an analytical consequence of
eqs. (2)–(3)–(4).

One finds that the velocity v = r dϕ/dt on a circular orbit is given by

(7) v2 =

(

r dϕ

dt

)2

=
α

2r
;

for the test-particles we have that

(8) v <
1√
3

,

and

(9) r >
3α

2
,

a clear example of the existence of a gravitational repulsion ; for the
light-rays there is a unique circular trajectory, for which

(10) v =
1√
3

,

(11) r =
3α

2
,

and we see that also the light “feels” the gravitational repulsion . Of
course, the inequalities (9) and (11) can be proved with the use of both the
evolution parameters, t and p. (And also with the proper time s on the
circular geodetics for relation (9)).

For the radial trajectories of the geodesic motions there is gravitational
attraction where

(12)

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

<
1√
3

r − α

r
,

and gravitational repulsion where
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(13)

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

>
1√
3

r − α

r
.

If r∗ is the value of r for which d2r/dt2 = 0 – attraction and repulsion
counterbalance each other –, the velocity dr/dt has its maximal value at
r = r∗:

(14)

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

max

=
1√
3

r∗ − α

r∗
.

For the light-rays we have from ds2 = 0:

(15)

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

=
r − α

r
:

the light is repulsed everywhere by the gravitating point-mass m; its
velocity increases from zero at r = α to 1 at r = ∞.

Test-particles and light-rays arrive at r = α with dr/dt = 0 and d2r/dt2 =
0: the spatial surface r = α represents for them an insuperable barrier.

This basic fact can be also illustrated starting from eq. (5). We consider
the instance of the light-rays (A = 0); for the test-particles (A < 0) the
results are qualitatively the same. The general orbit of the light-rays is
given by

(5′)

(

d̺

dϕ

)2

=
1

B2
− ̺2 + α̺3 , (̺ ≡ 1/r) ;

this equation has for B = 3
√
3α/2 the circle r = 3α/2 as Poincaré’s “cy-

cle” [2]. Let us characterize a ray with the segment B – see Fig. 1 –, which
gives at infinity its distance from the vertical radial line. Fig. 1 represents
intuitively some integral curves of eq. (5′) obtained with Poincaré’s cycle

theory [3]. When B < 3
√
3α/2, the light-ray arrives at r = α and ends

there. When B = 3
√
3α/2, it comes near asymptotically by spiralling to the

circle r = 3α/2. When B > 3
√
3α/2, the ray performs, in general, several

revolutions round this circle, and then goes to infinity. Fig. 1 shows three
rays of the last kind, one of them performs a revolution. Clearly, the vertical
line is characterized by the limit B → 0 – and therefore it ends at r = α.

Droste [4] makes a detailed investigation of eq. (5), whose solution is
given by Weierstraß’ elliptic function. He emphasizes that eq. (1), and all
the formulae that are a consequence of this ds2, are valid only for r > α. In
reality, the modification (− + ++) for r < α of the signature (+ + +−) of
eq. (1) – with interchanged roles of r and t – is an absurdity. Not always
does geometry coincide with physics.

In sect.7 of [4] we find a study of the conditions under which there is gravi-
tational attraction or gravitational repulsion in the radial geodetic motions.
Droste’s treatment is a little different from that of Hilbert [2], because he

uses a velocity dδ/dt = (dr/dt)(1 − αr−1)−1/2, which is the time derivative
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Figure 1. See von Laue [3] – This Author writes M in lieu of
our m, and ∆ in lieu of our B.

of the metric distance δ of the generic point (r, ϑ, ϕ) from r = α. In App. B

we give a comparison between Hilbert’s and Droste’s treatments.

3bis. – In sect.3 we have emphasized that the geodesic lines for which
B < 3

√
3α/2 arrive at r = α and end there. A result which generalizes

the previous conclusion that for the radial geodesics we have dr/dt = 0 =
d2r/dt2 at r = α.

Some theoreticians do not like the use of the “Systemzeit” t; they prefer
the proper time of the test-particles (and an affine parameter for the light-
rays). However, in the present context the use of the proper time is not
reasonable. Indeed, let us consider the analogues of the first integrals (2)–
(3)–(4) with the proper time s in lieu of the affine parameter p; we have:

(16)
r

r − α

(

dr

ds

)2

+ r2
(

dϕ

ds

)2

− r − α

r

(

dt

ds

)2

= −1 ;

(17) r2
dϕ

ds
= L ;

(18)
r − α

r

dt

ds
= E ,

where L and E are two constants. Formal deductions from (16)–(17)–(18)
yield:
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(19)

(

dr

ds

)2

= E2 − r − α

r3
L2 − r − α

r
;

(20)
d2r

ds2
=

L2

2

(

2

r3
− 3α

r4

)

− α

2r2
;

from which, when r = α:

(21)

(

dr

ds

)2

r=α

= E2 ;

(22)

(

d2r

ds2

)

r=α

=
1

2

(

L2

α3
− 1

α

)

;

However, eqs. (21) and (22) are actually meaningless: when r = α, ds2 =
∞. (In his memoir [2] Hilbert did not use s as an evolution parameter!) –
Obviously, computations with an affine parameter p as evolution parameter
would give finite, but p-dependent values for (dr/dp)2r=α and (d2r/dp2)r=α.

All the geodesic lines of the light-rays satisfy the equation ds2 = 0, from
which it is very natural to infer that

(23)

(

dr

dt

)2

+ r (r − α)

(

dϕ

dt

)2

=

(

r − α

r

)2

,

(24)

(

dr

dt

)2

r=α

= 0 ;

(25)

(

d2r

dt2

)

r=α

= 0 .

But also for the test-particles the “Systemzeit” t is the unique evolution
parameter which gives always real physical results.

A last remark. In the Schwarzschildian original form of ds2 ((r3 +α3)1/3

in lieu of r in eq. (1)), or in Brillouin’s form (r + α in lieu of r in eq. (1)),
the spatial region 0 ≤ r < α is absent. The manifold is maximally extended.
Of course, all the physical results which can be derived from eq. (1) can be
obtained also with Schwarzschild’s and Brillouin’s metric forms. In particu-
lar, the gravitational repulsion is a phenomenon of invariant character, i.e.
independent of the space-time reference frame.

4. – “It si widely believed that the gravitational field of any electrically
neutral collapsing body will eventually approach [by virtue of an assumed
rotation] the Kerr form.” (Weinberg [5]).

Now, we have proved that a test-particle, or a light-ray, moving through
the Kerr manifold along a radial geodesic in the negative direction of the
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radial coordinate arrive at the “stationary-limit”surface with a zero three-
velocity and a positive, or zero, three-acceleration: a clear instance of a
Hilbert’s repulsive effect, whose action we have computed for a generic value
of the ϑ-coordinate [6].

5. – In a recent paper [7] we have proved that if one takes into account the
Hilbertian gravitational repulsion, even a “dust” sphere with an internal zero
pressure collapses to a body of a finite volume. Precisely, the collapse ends
when the mass m of the sphere has filled up the spatial region 0 ≤ r ≤ α(≡
2m). It follows that the gravitational field for r > α of this (relatively small)
spherical body coincides with the field of a point-massm. Both these objects
have the physical property that – by virtue of the Hilbertian repulsion – they

are incapable of “swallowing” anything, light or material corpuscles. (N.B.
– For the adjustment of the internal to the external solution we assume for

simplicity that the radius of the “full globe” is equal to 2m + ε, with an

arbitrary small ε > 0).
Of course, the Euclidean formula for a spherical volume V = (4/3)πr3

does not hold for the volume U of the “full globe”; the difference between
V and U becomes larger and larger with the increase of the mass m.

It is instructive to give a generalization for B 6= 0 of the equations
(dr/dt)r=α = 0 = (d2r/dt2)r=α, which we have previously recalled for the
radial geodesics (B = 0).

We get from eqs. (5) and (3) (with C = 1):

(26)

(

dr

dt

)2

= B2

(

r − α

r

)2 (

1 +A

B2
− Aα

B2

1

r
− 1

r2
+

α

r3

)

,

from which, when B = 0:

(26′)

(

dr

dt

)2

B=0

=

(

r − α

r

)2 (

1 +A
r − α

r

)

.

For r = α eqs. (26) and (26′) give:

(27)

(

dr

dt

)

r=α

=

(

d2r

dt2

)

r=α

= 0 .

And from eq. (26):

(28) ± B dt =
r

r − α

dr

{[(1 +A)/B2]− (Aα/B2r)− 1/r2 + α/r3}1/2 ,

which tells us that test-particles and light-rays reach r = α after an infi-
nitely long time: a result that is universally known, but whose real meaning
is usually neglected, because of the preference given to the proper time s.
However, this preference is here mathematically baseless, as we have proved
in sect. 3bis.



8 ANGELO LOINGER AND TIZIANA MARSICO

Remark that if you put in eq. (28) r = (9/8)α, e.g., instead of r = α, you
get a reasonable time interval ∆t.

5bis. – Under given conditions, the Hilbertian gravitational repulsion in
Schwarzschild’s and Kerr’s manifolds manifests itself in all the geodesic
paths, in particular in the circular orbits and in the trajectories which arrive
on the spatial surface r = 2m. Due to an undue preference for the proper
time with respect to the coordinate-time (i.e., the time of the system), only
the circular orbits are commonly believed to be subjected to Hilbert’s re-
pulsive action. This limitation is quite illogical: indeed, it is clear that
the gravitational repulsion does not suspend its action for the non-circular
geodesics, in primis for the geodesics which “strike” the surface r = 2m.

6. – Back to the paper by Broderick et al. [1]. The spherically-symmetric
point-mass m (sect.3) and the “full globe” 0 ≤ r ≤ 2m (sect.5) create
an identical gravitational field in the external region r > 2m – and both
these gravitating objects give a gravitational repulsion under the illustrated
conditions. For a diagram of some geodesics of light-rays, see Fig.1, that
represents a correct mathematical counterpart (in a generic plane) of Fig.1-
[1], which is reproduced with its legend in the following Fig.2. We emphasize
that the authors restrict the gravitational repulsion to the unique circular
orbit of the light-rays.

By virtue of the Hilbertian repulsive effect, the materials of the accre-
tion flow arrive at r = 2m with a zero velocity and a zero acceleration.
Accordingly, the “hollow globe” r < 2m around the point-mass m cannot
“swallow” anything. The accretion materials (matter fragments and light)
perform a very soft landing on the ideal surface ℑ of the “hollow globe”,
or on the physical surface

∑
of the “full globe” 0 ≤ r ≤ 2m. It seems to

us that these facts explain the observational data of [1]; in particular, it is
obvious that the surfaces ℑ and

∑
have a low luminosity.

Quite generally, the effects of the Hilbertian gravitational repulsion suffice
to cancel all the widespread (and less widespread) convictions about the
exotic properties of the ideal surface r = 2m.
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Figure 2. (From Broderick et al. [1]). Rays launched isotropi-
cally (every 10◦) in the locally flat, stationary frame are lensed in a
Schwarzschild spacetime. Those rays that are initially moving in-
wards, tangentially and outwards are shown in red, green and blue,
respectively. Additionally, those that are launched initially moving
outwards and are subsequently captured are red-blue dashed. For
reference the horizon and photon orbit are shown. Generically, the
fraction of rays that escape to infinity decreases as the emission
point is moved towards the black hole, dropping below 50% at the
photon orbit and dropping all the way to 0% at the horizon. As a
consequence of this strong lensing, emitting objects that are con-
tained within the photon orbit approximate the canonical pin-hole
cavity example of a blackbody, becoming a perfect blackbody in
the limit that the surface redshift goes to ∞.

APPENDIX A

In recent years, some authors have emphasized that there are observational
proofs of the existence of intrinsic magnetic moments in BH-candidates –
both of stellar masses and AGN-masses –, for instance in SgrA*. Now, the
existence of a magnetic moment (of an appreciable magnitude) forbids the
existence of the event horizon around a point-mass. The above authors have
developed a sophisticated model of the collapse of massive and supermassive
magnetic bodies with the purpose to offer an alternative explanation of the
data by Broderick et al.; in particular, they give a special prominence to
the action of a magnetic propeller driven outflow for explaining the low
bolometric luminosity of SgrA*.

We think, however, that the reliability of this model (a heterogeneous
offspring of GR and QED) is not evident.
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APPENDIX B

It is useful to compare Droste’s [4] and Hilbert’s [2] treatments about at-
traction and repulsion in the radial geodesic motions through Schwarzschild
manifold.

Droste starts from this definition of radial geodesic velocity:

(B1)
dδ

dt
:=

dr

dt

(

1− α

r

)

−1/2
, (α ≡ 2m) ,

which is suggested by the metric radial interval dδ := dr(1 − αr−1)−1/2.
Eq. (2) of sect.3 gives the first integral

(B2)

(

dr

dt

)2

=
(

1− α

r

)2 [

1 +A
(

1− α

r

)]

,

from which

(B3)

(

dδ

dt

)2

=
(

1− α

r

) [

1 +A
(

1− α

r

)]

.

As a consequence of

(B4)
d2r

dt2
=

3α

2r (r − α)

(

dr

dt

)2

− α (r − α)

2r3
,

which can be easily derived from eqs. (4) and (6) of sect.3, Droste arrives
at the following expression for his acceleration d2δ/dt2:

(B5)
d2δ

dt2
= − α

2r2







(

1− α

r

)1/2
− 2 (dδ/dt)2

(

1− α
r

)1/2






.

Let us call r∗ the value of r for which d2δ/dt2 = 0 (attraction counterba-
lances repulsion); we have:

(B6)

∣

∣

∣

∣

dδ

dt

∣

∣

∣

∣

r=r∗

=
1√
2

(

1− α

r∗

)1/2

,

from which:

(B7)

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

r=r∗

=
1√
2

(

1− α

r∗

)

;

but if r∗ is the value of r for which d2r/dt2 = 0, we have with Hilbert [2]:

(B8)

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

r=r∗
=

1√
3

(

1− α

r∗

)

;

we see that there is a non-negligible difference between Droste’s B.(6)–
(B.7) and Hilbert’s (B.8) maximal velocities.
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We think that Hilbert’s treatment must be preferred, for the following
reason.

The metric distance δ of the point (r, ϑ, ϕ) from r = α is:

(B9)

δ =

∫ r

α

(

1− α

r′

)

−1/2
dr′ = r

(

1− α

r

)1/2
+ α ln

∣

∣

∣

∣

( r

α
− 1

)1/2
+

( r

α

)1/2
∣

∣

∣

∣

;

by virtue of the arbitrariness in the choice of the coordinates, in particular
of the radial coordinate, if we put f(r) := δ(r)+α, and perform in eq. (1) of
sect.3 the substitution r → f(r), we get a ds2 which is physically equivalent
to the one of eq. (1). From the mathematical standpoint, this new expression
of the ds2 is diffeomorphic to that of eq. (1) for r > α. Now, let us choose a
definition à la Hilbert for the radial velocity: we have df(r)/dt = dδ(r)/dt,
i.e. Droste’s definition (B.1).

However, all the consequences coincide now with those of Hilbert’s treat-
ment; in particular, d2δ(r)/dt2 is now equal to zero if and only if d2r/dt2 = 0.
We see that a ds2 expressed in toto with the metric coordinate f(r) =
δ(r) + α gives the same results of the ds2 of eq. (1) in Hilbert’s procedure.
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