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ABSTRACT

A bottleneck for computational lithography and optical metrology are long computational times for near field
simulations. For design, optimization, and inverse scatterometry usually the same basic layout has to be simulated
multiple times for different values of geometrical parameters.

The reduced basis method allows to split up the solution process of a parameterized model into an expensive
offline and a cheap online part. After constructing the reduced basis offline, the reduced model can be solved
online very fast in the order of seconds or below. Error estimators assure the reliability of the reduced basis
solution and are used for self adaptive construction of the reduced system.

We explain the idea of reduced basis and use the finite element solver JCMsuite constructing the reduced
basis system. We present a 3D optimization application from optical proximity correction (OPC).

Keywords: inspection, computational lithography, reduced basis, model order reduction, optical proximity
correction, scatterometry

1. INTRODUCTION

The importance of numerical simulations for design, optimization and metrology of photomasks has grown rapidly
over the last years due to the ongoing miniaturization of integrated curcuits.

A bottleneck for these many-query and real-time applications are long computational times for rigorous
simulations of the near field in the photomask. Usually the same basic layout has to be simulated multiple times
for different values of geometrical parameters, e.g. line width, absorber edge angle, etc.

The reduced basis method1–3 can be applied to this task. The solution process is decomposed into an
expensive offline and a cheap online step. In the offline step the reduced basis is built self-adaptively by solving
the underlying model rigorously several times. The full model is then projected onto the reduced basis. In the
online step the assembled reduced system can be solved in the order of seconds independent on the size of the
original problem. Furthermore methods from the well established field of a posteriori error estimation of finite
element methods4 can be applied to the reduced basis method to assure the reliability of the computed output
and also for construction of the reduced basis.5, 6 These are advantages in comparison to interpolation or table
based methods for output data.

In the following we first describe the basics of the reduced basis method and then apply it to an OPC
optimization problem of a contact hole array depicted in Fig. 1.
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Figure 1. (a) 3D mask model used for finite element computation. (b) Definition of OPC parameters used for optimiza-
tion.

2. INPUT-OUTPUT RELATIONSHIP

Before explaining the reduced basis method we first derive the mathematical setup for the scattering problem.
Suppose we have a photomask with a parameterized geometry as depicted in Fig. 1. In the following the free
geometrical parameters are denoted by a p-tuple ν in a bounded parameter space D ⊂ Rp. Fixing the input
parameters ν to the mask model, the scattering problem can be solved numerically with a Maxwell solver relying,
e.g. on the finite element method (FEM), and outputs of interest, e.g. diffraction orders, can be computed. Hence
the problem can be formulated as an input output relationship. In this example the input is a set of geometrical
parameters, the output are the diffraction orders. For notational convenience we consider a single output of
interest in the following. Mathematically the input-output relationship is given as follows:
Given geometrical parameters ν ∈ D determine the output of interest sN (ν):

sN (ν) = lo
(

uN (ν)
)

, (1)

where uN (ν) is the solution to following problem:
Find uN ∈ XN such that:

a
(

uN , v; ν
)

= f (v) , ∀v ∈ XN . (2)

The electromagnetic scattering problem (2) is stated in so called “weak form”7 . Roughly spoken the sesquilinear
form a (·, ·; ν) presents Maxwell’s equations and the linear functional f (·) the incoming field, e.g. a plane wave.
The finite element space XN ⊂ H(curl ,Ω) is the space in which the electric field solution uN (ν) is determined,
where Ω is the domain of interest. Since Maxwell’s equations and therewith the sesquilinear form are parameter
dependent, the solution uN is also parameter dependent. The output of interest, e.g. a diffraction mode in a
periodic setting, is described via a linear output functional applied to the electric field uN :

lo : XN →C,

uN (ν) 7→lo
(

uN (ν)
)

= sN (ν).
(3)

Hence lo ∈
(

XN
)′
, which is the dual space of XN .8 The discretized version of Maxwell’s equations (2) will

be referred to as “truth approximation”. Usually the truth approximation has to be solved several times for



different parameter values ν in design and optimization applications or inverse scatterometry. Typically N is
very large such that already a single solution process takes very long which prohibits many-query or real-time
application.

3. REDUCED BASIS METHOD

The purpose of the reduced basis method is to construct an approximative input-output relationship which can
be solved very fast. Furthermore it is important to construct error estimators which control and quantify the
quality and reliability of the reduced basis solution. Finally we want that computation of the reduced basis
solution and error estimation becomes independent on the number of finite element degrees of freedom N .

The idea of the reduced basis method is simple.9 Let us denote the manifold of all possible solutions of the
truth approximation (2) by:

MN =
{

uN (ν) is a solution to (2) | ν ∈ D
}

. (4)

Now suppose MN can be approximated by a low dimensional space XN ≈ MN , with

dimXN = N ≪ N . (5)

Then it is reasonable to assume that the following reduced basis approximation to the truth approximation will
give results of good quality:
Given geometrical parameters ν ∈ D determine the output of interest sN (ν):

sN (ν) = lo
(

uN (ν)
)

, (6)

where uN(ν) is the solution to following problem:
Find uN ∈ XN such that:

a
(

uN , v; ν
)

= f (v) , ∀v ∈ XN . (7)

The space XN is the reduced basis space and is a subspace of the finite element space XN .

3.1. Reduced basis space

An important question which arises is how to construct the reduced basis space XN such that it gives a good
approximation to the space of all possible solutions MN . To answer this question we first define a sequence of
hierarchical subsets of the parameter domain D. Let νi ∈ D , i = 1, . . . , Nmax. Then we define:

Si = {ν1, . . . , νi} , i = 1, . . . , Nmax. (8)

These sets have the following property:

S1 ⊂ S2 ⊂ · · · ⊂ SN ⊂ · · · ⊂ SNmax
. (9)

The Lagrange reduced basis space WN
N of dimension N is then defined by:

WN
N =span

{

uN (ν) is a solution to (2) | ν ∈ SN

}

, (10)

hence it is spanned by solutions to the truth approximation for fixed parameter values. These solutions are
called snapshot solutions. It is also possible to include first and higher derivatives of the field uN with respect
to parameters into the reduced basis space, which leads to so called Taylor and Hermite spaces. Here we notice
the expensive “offline” costs of the reduced basis method. For construction of a Lagrange reduced basis space
of dimension N the truth approximation, i.e. the full problem, has to be solved N times. However the reduced
basis space has only to be assembled once and in principle a parallelization of this process is possible since
computation of different snapshots is independent of each other.



3.2. Reduced basis system

In the following we construct the explicit form of the reduced basis system (7) which has to be solved in the
online phase. Suppose we have given a basis

BN
N =

{

ζNq | q = 1, . . . , N
}

(11)

of XN . Then we can expand the reduced basis solution into this basis:

uN(ν) =
N
∑

q=1

αq(ν)ζ
N
q . (12)

Online the parameter dependent coefficients αq(ν) have to be computed. Therefore we insert ansatz (12) into
the reduced basis system (7) and use the fact that if (7) holds for all v ∈ BN

N then it holds for all v ∈ XN :

N
∑

q=1

αq(ν)a
(

ζNq , ζNn ; ν
)

= f
(

ζNn
)

, n = 1, . . . , N, (13)

which gives a linear system of equations for the coefficients αq(ν). System (13) has to be assembled and solved
online. On the left hand side we have a parameter dependent matrix:

AN (ν) =
(

a
(

ζNq , ζNn ; ν
))

q,n=1,...,N
, (14)

and on the right hand side a parameter independent vector:

fN =
(

f
(

ζNn
))

n=1,...,N
. (15)

The vector fN can be assembled offline. However computation of each matrix entry:

a
(

ζNq , ζNn ; ν
)

depends on the dimension of ζNq , which is the number of finite element degrees of freedom N . Since this
assembling step has to be performed online we want to avoid any N dependence. In the following we explain
how we can perform an online-offline decomposition of the assembling step.

3.3. Online-offline decomposition

For online-offline decomposition of the assembling step (14) we need an affine decomposition of the system
sesquilinear form a (·, ·; ν), which is defined as follows:

a (v, u; ν) =

Q
∑

m=1

Θm(ν)am(v, u), (16)

where Θm(ν) are parameter dependent functions and am(·, ·) parameter independent sesquilinear forms. If we
can construct such a decomposition the following parameter independent matrices can be assembled offline:

AN
m =

(

am(ζNq , ζNn )
)

q,n=1,...,N
, m = 1, . . . , Q.

The parameter dependent system matrix (14) is then assembled online according to:

AN (ν) =

Q
∑

m=1

Θm(ν)AN
m.



The costs are O(N2Q), where N is the reduced basis dimension and Q the number of terms in the affine
decomposition (16). The solution of the reduced basis system has costs O(N3). For computation of the output
of interest we get the following decomposition:

sN (ν) =lo
(

uN (ν)
)

=lo

(

N
∑

q=1

αq(ν)ζ
N
q

)

=

N
∑

q=1

αq(ν)l
o
(

ζNq
)

, (17)

where the quantities lo
(

ζNq
)

can also be computed offline. For the output of interest we have costs O(N). Hence
with an affine decomposition (16) the costs of solving the reduced basis system are independent on N as desired.

In5 we show how an affine decomposition can be constructed for electromagnetic scattering problems.

3.4. Error estimation

Since the reduced basis method is an approximation technique it is important to be able to quantify the reliability
of the output. Let us define the error of the reduced basis solution by:

e = uN − uN . (18)

Then it can be shown2, 10 that this error is bounded by:

||e(ν)||XN ≤ ∆(ν),

with:

∆(ν) =
1

β(ν)

∣

∣

∣

∣rpr
(

·;uN ; ν
)
∣

∣

∣

∣

(XN )′
. (19)

Here rpr
(

·;uN ; ν
)

is the so called primal residuum of the reduced basis solution uN . The parameter dependent
constant β(ν) is the so called inf-sup constant of the sesquilinear form a (·, ·; ν). It is important to note that
all quantities of estimate (19) can be computed online2, 11 without knowing the true solution. An appropriate
online-offline decomposition furthermore makes computation of the bound independent on the number of finite
element degrees of freedom such that an error bound can be computed for each reduced basis output online.
Also this error estimator can be used in the offline construction of the reduced basis to explore the parameter
space and find regions, where the reduced basis approximation has to be improved further, which is explained
in the following section. This is a main advantage in comparison to interpolation methods. In12 we will explain
the subject of error estimation in more detail for electromagnetic scattering problems.

4. GREEDY CONSTRUCTION OF REDUCED BASIS SPACES

Before we apply the reduced basis method we comment on the construction of the Lagrange reduced basis space
XN = WN

N (10). How to choose the snapshot parameters νi in (8)? We use a greedy algorithm2 whose idea is
given in the following.

First we define a training set Ξtrain ∈ D of possible snapshot candidates. From this space we want to chose
a number N of snapshot parameters for construction of the reduced basis. The first parameter ν1 is chosen
randomly. Then we construct a one dimensional reduced basis approximation corresponding to the snapshot
uN(ν1). Now we evaluate the error estimator for this one dimensional reduced basis approximation on all
candidate snapshots in the training sample Ξtrain and include the parameter value with the maximum error into
the reduced basis because this is supposed to add a maximum of ”new information” into the reduced basis. Then
we have a two dimensional reduced basis and the process is continued iteratively. The process can be stopped
e.g. if a certain maximum dimension is reached or if the error estimator gives sufficiently small bounds over the
training set.
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Figure 2. (a) Top view of mask layout for imaging of contact hole. Absorber material is shown in blue. (b) Far field
image of contact hole shows corner rounding. (c) Position of incoming k-vectors used for conventional illumination.

5. NUMERICAL EXAMPLES

Figure 2 shows the aerial image of a rectangular contact hole. In the far field the sharp corners are washed out
which is refered to as corner rounding. Correction of this rounding can be achieved with OPC methods like the
introduction of serifs to the corners of the contact holes as depicted in Fig. 1. Our numerical example will be the
optimization of this OPC structure to obtain a structure on the wafer which is closest to the desired rectangular
shape.

The geometry of the contact hole is depicted in Fig. 1. The size of the computational domain is 2.5µm×2.5µm
with a total height of 90 nm including silica substrate and air. The height of the Chromium absorber is 50 nm
with a refractive index of:

nCr = 0.84− 1.65i

for a wavelength of λ = 193 nm.13 In x- and y-direction we apply periodic boundary conditions. The shape of
serifs which we want to optimize is described by 4 input parameters p1,x, p2,x, p1,y, and p2,y. The dimensions of
the contact hole itself are fixed at:

dx = 800 nm,

dy = 600 nm.

As incoming light we use conventional illumination13 which is modelled by a set of incoming plane waves whose
incoming angles lie within a cone up to a certain maximum angle. The source is visualized by a set of points
in the kx-ky-plane, as shown in Fig. 2(a). For each of these incoming directions we simulate two orthogonal
polarization states to mimic unpolarized light. This gives P = 74 sources in total. For each of the sources
we compute the near field and corresponding far field coefficients separately in order to determine a partially
coherent intensity distribution. The far field of the mask passes an optical system with 4 to 1 reduction.

The finite element discretization gives a system with N = 474720 unknowns. The for solution of the problem
is about 9, 300s (single CPU time). Hence optimization of this structure is extremely time using the truth
approximation.

Therefore we construct a reduced basis approximation of above problem. For the parameter domain D we
choose

p1x ∈ [145 nm; 315 nm],

p2x ∈ [100 nm; 200 nm],

p1y ∈ [45 nm; 205 nm],

p2y ∈ [100 nm; 210 nm].

(20)
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Figure 3. (a) Comparison of contour lines for different levels of σ. (b) Structure on wafer given as contour line of aerial
image at σ = 0.55, i.e. 55% of maximum intensity, with target structure and area defining error functional.

(a) (b)

Figure 4. (a) Mask layout after OPC optimization and (b) corresponding aerial image (red: high intensity, blue: low
intensity).
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Figure 5. (a) Comparison of structure on wafer without and with optimized mask layout obtained from reduced basis
computation. (b) Comparison of optimized reduced basis structure and corresponding structure obtained from truth
approximation.

The dimension of the constructed reduced basis is N = 40.

Despite the large number of sources and outputs of interest the reduced basis computation only takes 1.1s.
This gives a speed up factor of about 8000 compared to the truth approximation. Hence we can perform the
online part of the optimization at very low computational costs.

In order to perform the optimization we have to define a cost functional which is minimized. Let us denote
by γ(ν) the shape of the contact hole on the wafer at a certain threshold intensity σ . Here we use a contour line
of the aerial image for simplicity, see Fig. 3(a). We fix the threshold at σ = 0.55. Now we define Γ(ν) by the
area enclosed by the target shape γT (the rectangle) and γσ(ν), as depicted in Fig. 3(b). The cost functional is
then given by:

g(ν) = ||1||L1(Γ(ν)) , (21)

and we want to determine optimal parameters such that:

νmin = min
ν∈D

g(ν). (22)

Figure 4 shows the optimized geometry of the photomask and the corresponding aerial image.

The shape of the structure on the wafer without and with optimized serifs is depicted in Fig. 5(a). The
optimized structure shows good agreement to the target structure. Of course corner rounding can not be avoided
completely. Furthermore a comparison of the optimal structure computed with the reduced model and obtained
from the truth approximation is given in Fig. 5(b). We observe very good agreement. Largest deviations are
of the order of 1 nm below % of the hole CDs. These deviations will further decrease with higher reduced basis
dimension.

6. CONCLUSIONS

We use the reduced basis method for fast solution of geometrically parametrized electromagnetic scattering
problems. The reduced basis method is used to construct an approximative reduced system to a parameter
dependent finite element problem. Error estimators thereby assure the reliability of the reduced basis solution.

A challenging numerical optimization example from optical proximity correction demonstrates the perfor-
mance of the reduced basis method. A speed-up factor of about 8000 compared to the finite element simulation



was obtained, enabling a very fast optimization of the OPC structures of a contact hole. The obtained reduced
basis result agrees very well with the exact finite element simulation.
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