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Abstract

We apply the conformal gravity theory to a sample of 110 spiral galaxies whose rotation curve

data points extend well beyond the optical disk. With no free parameters other than galactic mass

to light ratios, the theory is able to account for the systematics that is observed in this entire set of

rotation curves without the need for any dark matter at all. In previous applications of the theory

a central role was played by a universal linear potential term V (r) = γ0c
2r/2 that is generated

through the effect of cosmology on individual galaxies, with the coefficient γ0 = 3.06× 10−30cm−1

being of cosmological magnitude. Because the current sample is so big and encompasses some

specific galaxies whose data points go out to quite substantial distances from galactic centers,

we are able to identify an additional globally induced universal term in the data, a quadratic

V (r) = −κc2r2/2 term that is induced by inhomogeneities in the cosmic background. With κ

being found to be of magnitude κ = 9.54 × 10−54 cm−2, through study of the motions of particles

contained within galaxies we are thus able to both detect the presence of a global de Sitter-like

component and provide a specific value for its strength. Our study suggests that invoking dark

matter may be nothing more than an attempt to describe global physics effects such as these in

purely local galactic terms.
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I. INTRODUCTION

Observational studies of spiral galaxies have repeatedly established that galactic rota-

tional velocities look nothing like the velocities that would be produced by the Newtonian

gravitational potentials associated with the luminous matter in the galaxies. In consequence,

it is quite widely thought that such velocity discrepancies are to be explained by the presence

of copious amounts of non-luminous or dark matter in galaxies. Since the case for the pres-

ence of such dark matter rests solely on the assumption that wisdom acquired from studies

on solar system distance scales can be extrapolated without modification to the much larger

galactic distance scales, a few authors have ventured to suggest (see e.g. [1] for a recent

review) that dark matter may not actually exist and that instead it is the standard New-

tonian description that needs modifying. In this work we apply one particular candidate

alternative theory, namely conformal gravity, to a large and comprehensive sample of 110

galactic rotation curves. With only one free parameter per galaxy, the galactic mass to light

ratio, we find that the conformal theory provides for a good accounting of the data without

the need for any dark matter at all. Moreover, because our sample is so large, through our

fitting we are able to find evidence in the data for the presence of a universal quadratic

potential term that the conformal theory possesses.

As a theory, conformal gravity (see e.g. [1]) is a completely covariant metric theory

of gravity that possesses all the general coordinate invariance and equivalence principle

structure of standard Einstein gravity, but which in addition possesses a local conformal

invariance in which the action is left invariant under local metric transformations of the

form gµν(x) → e2α(x)gµν(x) with any arbitrary local phase α(x). As a symmetry, confor-

mal invariance forbids the presence of any fundamental cosmological constant term in the

gravitational action, with the action being uniquely prescribed by the Weyl action

IW = −αg

∫

d4x(−g)1/2CλµνκC
λµνκ = −2αg

∫

d4x(−g)1/2
[

RµκR
µκ

− (1/3)(Rα
α)

2
]

, (1)

where

Cλµνκ = Rλµνκ −
1

2
(gλνRµκ − gλκRµν − gµνRλκ + gµκRλν) +

1

6
Rα

α (gλνgµκ − gλκgµν) (2)

is the conformal Weyl tensor and the gravitational coupling constant αg is dimensionless.

Thus, unlike the standard Einstein-Hilbert action IEH = −(1/16πG)
∫

d4x(−g)1/2Rα
α, which
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can be augmented to include a
∫

d4x(−g)1/2Λ term, the conformal theory has a control over

the cosmological constant that the standard Einstein theory does not, and through this

control one is able to both address and resolve the cosmological constant problem [2, 3].

II. LOCAL CONSIDERATIONS

For the Weyl action the equations of motion take the form [1]

4αgW
µν = 4αg

[

2Cµλνκ
;λ;κ − CµλνκRλκ

]

= 4αg

[

W µν
(2) −

1

3
W µν

(1)

]

= T µν , (3)

where

W µν
(1) = 2gµν(Rα

α)
;β
;β − 2(Rα

α)
;µ;ν

− 2Rα
αR

µν +
1

2
gµν(Rα

α)
2,

W µν
(2) =

1

2
gµν(Rα

α)
;β
;β +Rµν;β

;β −Rµβ;ν
;β − Rνβ;µ

;β − 2RµβRν
β +

1

2
gµνRαβR

αβ . (4)

Thus, since W µν vanishes when Rµν vanishes, we see that, as well as being a vacuum solu-

tion to Einstein gravity, the Schwarzschild solution is also a vacuum solution to conformal

gravity. The conformal theory thus recovers all the standard solar system Schwarzschild

metric phenomenology, just as is needed for any metric theory of gravity.

However since the vanishing of W µν could potentially be achieved without Rµν needing

to vanish, the conformal theory could also have some non-Schwarzschild solutions as well.

To determine what such solutions might look like, Mannheim and Kazanas solved for the

metric outside a static, spherically symmetric source of radius r0. They found [4] that in

the conformal theory the exact, all-order classical line element is given by ds2 = −B(r)dt2+

dr2/B(r) + r2dΩ2 where the exterior metric coefficient B(r > r0) is given by

B(r > r0) = 1−
2β

r
+ γr − kr2. (5)

In (5) the presence of the three integration constants β, γ and k is due to the fact that

unlike the standard second-order derivative Einstein theory, the conformal theory is instead

based on fourth-order derivative equations, to thus contain two additional terms. With

the emergence of the 1 − 2β/r term we see that the conformal gravity metric contains

the familiar general-relativistic Schwarzschild metric solution (and thus its non-relativistic

Newtonian gravitational limit as well), while departing from it only at large r, i.e. departing

from it in precisely the kinematic region where the dark matter problem is first encountered.
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In seeking to relate the various integration constants in (5) to properties of the energy-

momentum tensor Tµν of the source, Mannheim and Kazanas found [5] that in terms of the

general source function f(r) = (3/4αgB(r))(T 0
0 − T r

r), the exact fourth-order equation of

motion given in (3) reduced to the remarkably simple form

3

B(r)
(W 0

0 −W r
r) = ∇

4B = B′′′′ +
4B′′′

r
=

(rB)′′′

r
= f(r), (6)

without any approximation whatsoever. (The primes here denote derivatives with respect

to r.) Since ∇4(r2) vanishes identically everywhere while ∇4(1/r) and ∇4(r) evaluate to

delta functions and their derivatives, we see that of the constants given in (5), only β and

γ can be associated with properties of a local source of radius r0; with the matching of the

interior and exterior metrics yielding [5]

γ = −
1

2

∫ r0

0
dr′r′2f(r′), 2β =

1

6

∫ r0

0
dr′r′4f(r′). (7)

Since the −kr2 term in (5) is a trivial solution to (6), as such it is not associated with any

matter source, and so there is no basis for considering it further. However, since the β and

γ terms do couple to the source, we that in conformal gravity a given local gravitational

source generates a gravitational potential

V ∗(r) = −
β∗c2

r
+

γ∗c2r

2
(8)

per unit solar mass, with β∗ being given by the familiar M⊙G/c2 = 1.48× 105 cm, and with

the numerical value of the solar γ∗ needing to be determined by data fitting.

In conformal gravity the visible local material in a given galaxy would generate a net

local gravitational potential VLOC(r) given by integrating V ∗(r) over the visible galactic

mass distribution. Typically, the luminous material in a disk galaxy is distributed with a

surface brightness Σ(R) = Σ0e
−R/R0 with scale length R0 and total luminosity L = 2πΣ0R

2
0,

with most of the surface brightness being concentrated in the R ≤ 4R0 or so optical disk

region. For a galactic mass to light ratio M/L, one can define the total number of solar

mass units N∗ in the galaxy via (M/L)L = M = N∗M⊙. Then, on integrating V ∗(r) over

this visible matter distribution, one obtains [1] the net local luminous contribution

v2LOC

R
=

N∗β∗c2R

2R3
0

[

I0

(

R

2R0

)

K0

(

R

2R0

)

− I1

(

R

2R0

)

K1

(

R

2R0

)]

+
N∗γ∗c2R

2R0
I1

(

R

2R0

)

K1

(

R

2R0

)

(9)
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for the centripetal accelerations of particles orbiting in the plane of the galactic disk. In the

R ≫ R0 limit this expression simplifies to

v2LOC

R
→

N∗β∗c2

R2

(

1 +
9R2

0

2R2

)

+
N∗γ∗c2

2

(

1−
3R2

0

2R2
−

45R4
0

8R4

)

→
N∗β∗c2

R2
+

N∗γ∗c2

2
, (10)

with entire galaxy acting as if it were a point source located at the galactic center. With

the surface brightness of the optical disk region essentially becoming negligible by R = 4R0

or so, (10) can be expected to be a good approximation to (9) at points with R > 4R0.

III. GLOBAL CONSIDERATIONS

Unlike the situation that obtains in standard second-order gravity, one cannot simply use

(9) as is to fit galactic rotation curve data, as one must take into consideration the effect

of the rest of the material in the universe as well. Specifically, we recall that for standard

gravity, the solution to the second order Poisson equation ∇2φ(r) = g(r) for a general static,

spherically symmetric source g(r) is given by

φ(r) = −
1

r

∫ r

0
dr′r′2g(r′)−

∫

∞

r
dr′r′g(r′), (11)

with derivative
dφ(r)

dr
=

1

r2

∫ r

0
dr′r′2g(r′). (12)

As such, the import of (12) is that even though g(r) could continue globally all the way

to infinity, the force at any radial point r is determined only by the material in the local

0 < r′ < r region. In this sense Newtonian gravity is local, since to explain a gravitational

effect in some local region one only needs to consider the material in that region. Thus in

Newtonian gravity, if one wishes to explain the behavior of galactic rotation curves through

the use of dark matter, one must locate the dark matter where the problem is and not

elsewhere. Since the discrepancy problem in galaxies occurs primarily in the region beyond

the optical disk, one must thus locate galactic dark matter in precisely the region in galaxies

where there is little or no visible matter.

Despite the fact that the force in (12) is not sensitive to any material beyond the radial

point of interest, this local character to Newtonian gravity is not a generic property of any

gravitational potential. In particular for the fourth-order Poisson equation ∇4φ(r) = h(r) =
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f(r)c2/2 of interest to conformal gravity, the general solution is of the form

φ(r) = −
r

2

∫ r

0
dr′r′2h(r′)−

1

6r

∫ r

0
dr′r′4h(r′)−

1

2

∫

∞

r
dr′r′3h(r′)−

r2

6

∫

∞

r
dr′r′h(r′). (13)

With the derivative of the potential evaluating to

dφ(r)

dr
= −

1

2

∫ r

0
dr′r′2h(r′) +

1

6r2

∫ r

0
dr′r′4h(r′)−

r

3

∫

∞

r
dr′r′h(r′), (14)

this time we find a contribution to the force coming from material that is beyond the

radial point of interest. Thus in the third integral in (14) we recognize a potential global

contribution to local motions, with a test particle in orbit in a galaxy being able to sample

both the local field due to the matter in the galaxy and the global field due to the material in

the rest of the universe as well. In conformal gravity then, to determine motions of particles

inside of galaxies one cannot ignore the effect of the material outside of them.

In order to determine the effect that material exterior to galaxies might have on galaxies,

we note that there are actually two global effects that we need to take into consideration.

Specifically, we need to consider the effects of both the homogeneous background cosmology

and the inhomogeneities that are present in it. Moreover, in the conformal theory, these ef-

fects have very different geometric structures. The global background cosmology is described

by a comoving Robertson-Walker (RW) geometry. Since an RW geometry is homogeneous

and isotropic, its metric is conformal to flat. Thus in an RW geometry both the Weyl tensor

andW µν vanish identically. However, since by their very nature inhomogeneities can localize

in space, they are associated with a geometries in which neither the Weyl tensor norW µν can

vanish. Indeed, in the derivation of (6) given in [5], it was found that in a static, spherically

symmetric geometry the quantity (3/B(r)) (W 0
0 −W r

r) evaluates exactly to ∇4B(r), with

some components of W µν necessarily being non-zero in any configuration in which ∇4B(r)

is non-zero. Thus it is only inhomogeneities that contribute to the third integral in (14). As

regards the cosmological background, we note that since the background is associated with

W µν = 0, it too will contribute to the solution to ∇4B(r) = f(r). However, it will do so not

as part of the particular integral solution given in (14) but as part of the complementary so-

lution to ∇4B = 0 instead. The background cosmology can thus have physical consequences

for galactic motions provided it causes W µν to vanish non-trivially, i.e. provided it causes

T µν to vanish non-trivially in (3). We thus recall [1, 6] that in conformal gravity one can

indeed construct cosmologies in which T µν does vanish non-trivially, and in them the scale
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factor R(t) and the 3-curvature K of the RW metric are related to the cosmological matter

content, with K being found [1] to be negative.

With the Hubble flow being described in comoving coordinates and galactic rotational

velocities being measured in a coordinate system in which a galaxy is at rest, to determine the

effect of the Hubble flow on galactic motions we need to transform the RW metric to a static

coordinate system. To this end, we recall [4] that the general coordinate transformation

ρ =
4r

2(1 + γ0r − kr2)1/2 + 2 + γ0r
, τ =

∫

dtR(t) (15)

effects the metric transformation

−(1 + γ0r − kr2)c2dt2 +
dr2

(1 + γ0r − kr2)
+ r2dΩ2 =

1

R2(τ)

[1− γ2
0ρ

2/16− kρ2/4]2

[(1− γ0ρ/4)2 + kρ2/4]2

[

−c2dτ 2 +
R2(τ)

[1− (γ2
0/16 + k/4)ρ2]2

(

dρ2 + ρ2dΩ2

)

]

.(16)

With the transformed metric being written compactly as

ds2 = e2α(τ,ρ)
[

−c2dτ 2 +
R2(τ)

[1 +Kρ2/4]2

(

dρ2 + ρ2dΩ2

)

]

, (17)

we see that the transformed metric is conformally equivalent to a comoving RW metric as

written in spatially isotropic coordinates with spatial 3-curvature K = −γ2
0/4− k. Since an

RW geometry is conformal to flat and since it remains so under a conformal transformation,

we see that when written in a static coordinate system a comoving conformal cosmology

looks just like a static metric with universal linear and quadratic terms.

Since the decomposition of just one RW scale (viz. K) into two static scales (γ0 and

k) is somewhat artificial, one could just as easily leave out the k term in the coordinate

transformation, and replace (15) and (16) by

ρ =
4r

2(1 + γ0r)1/2 + 2 + γ0r
, τ =

∫

dtR(t) (18)

and

−(1 + γ0r)c
2dt2 +

dr2

(1 + γ0r)
+ r2dΩ2 =

1

R2(τ)

(

1 + γ0ρ/4

1− γ0ρ/4

)2 [

−c2dτ 2 +
R2(τ)

[1− γ2
0ρ

2/16]2

(

dρ2 + ρ2dΩ2

)

]

. (19)

While the kr2 term is not playing a crucial role in the above and can therefore be ignored (but

see [7] for a possible application of the transformation in (15)), one is not able to dispense
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with the γ0r term since there would otherwise be no transformation at all. Without the

k term the RW 3-curvature is given by K = −γ2
0/4, to then unambiguously be negative.

Since the only way to make K be positive would be to have complex γ0, and the only way

to make K be zero would be to have γ0 = 0, we see that in the rest frame of a comoving

galaxy (i.e. one with no peculiar velocity with respect to the Hubble flow), a topologically

open comoving cosmology (viz. just the one found in [1]), and only a topologically open one,

looks just like a universal linear potential, with a strength that is given by γ0/2 = (−K)1/2.

In the conformal theory then we recognize not one but two linear potential terms, a local

N∗γ∗ dependent one associated with the matter within a galaxy and a global cosmological

one γ0c
2r/2 associated with the cosmological background. Thus in [8] it was noted that in

the weak gravity limit one could add the two potentials, with the total velocity vTOT then

being given by
v2TOT

R
=

v2LOC

R
+

γ0c
2

2
, (20)

with asymptotic limit
v2TOT

R
→

N∗β∗c2

R2
+

N∗γ∗c2

2
+

γ0c
2

2
. (21)

In [8] (20) was used to fit the galactic rotation curve data of a sample of 11 galaxies, and

good fits were found, with the two universal linear potential parameters being found to be

given by

γ∗ = 5.42× 10−41cm−1, γ0 = 3.06× 10−30cm−1. (22)

The value obtained for γ∗ entails that the linear potential of the Sun is so small that there

are no modifications to standard solar system phenomenology, with the values obtained for

N∗γ∗ and γ0 being so small that one has to go all the way to galactic systems before their

effects can become as big as the Newtonian contribution. Moreover, the value obtained for

γ0 shows that it is indeed of cosmological magnitude, just as desired.

While the analysis described above provides no definitive reason for including any pos-

sible quadratic potential term in (20), valid justification for considering it is obtained by

considering not the homogeneous cosmological background, but rather the inhomogeneities

in it. On large scales these inhomogeneities would typically be in the form of clusters and

superclusters and would be associated with distance scales between 1 Mpc and 100 Mpc or

so. Without knowing anything other than that about them, we see from (13) that for calcu-

lating potentials at galactic distance scales the inhomogeneities would contribute constant
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and quadratic terms multiplied by integrals that are evaluated between fixed end points, to

thus be constants. (I.e. all that we require of the −(r2/6)
∫

∞

r dr′r′h(r′) integral in (13) is

that it begin at some minimum cluster-sized radius that is outside the galaxy and indepen-

dent of it.) Thus given the quadratic term in (13), then again up to peculiar velocity effects,

for weak gravity we can augment (20) and (21) to

v2TOT

R
=

v2LOC

R
+

γ0c
2

2
− κc2R, (23)

with asymptotic limit

v2TOT

R
→

N∗β∗c2

R2
+

N∗γ∗c2

2
+

γ0c
2

2
− κc2R. (24)

As such, (23) can be derived from a metric with a term B(r) = −κr2, and thus has a de

Sitter-like form. However, it is not associated with an explicit de Sitter geometry per se since

the inhomogeneities that give rise to it are not distributed in a maximally 4-symmetric way.

Nonetheless, a particle in orbit in a galaxy would be affected by the quadratic term, and

thus behave in exactly the same way as if it had been embedded in a de Sitter background.

Equation (23) with its universal κ is our main theoretical result, and so we proceed now to

apply it to galactic rotation curve data.

IV. CONFORMAL GRAVITY DATA FITTING

Since successful rotation curve fitting to an 11 galaxy sample was obtained in [8] via

the use of (20), one would initially anticipate that even if the −κc2R term in (23) were to

be present in principle, in practice it would be too small to have any effect. However, the

sample we study here is much larger (110 galaxies) and it contains some galaxies whose data

points extend to far larger distances from galactic centers than had been the case for the

11 galaxy sample originally studied in [8]. As reported in [9], it is through fitting 20 such

highly extended galaxies that we were able to uncover a role for the −κc2R term and extract

a value for κ given by κ = 9.54 × 10−54 cm−2. In the fitting to the full 110 galaxy sample

we shall use this value for κ and the values for γ∗ and γ0 as given above in (22). For the

fitting then there is just one free parameter per galaxy, namely the galactic mass to light

ratio, and thus our fitting is highly constrained.

With the stars in galaxies lying within the optical disk region, to fully explore the rotation

curves of galaxies one needs to study the HI gas spectra as it is only the gas in galaxies that
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extends well beyond the optical disk region. To get velocity measurements that are free of

projection concerns one wants galaxies to be close to edge on along our line of sight, and

to be able to model the gravitational contribution of the luminous disk one needs good disk

photometry. Given these criteria there is a now quite substantial number of galaxies for

which one can do modeling, with the 110 galaxy set that we use being a large, very varied

and representative sample that contains both high surface brightness (HSB) galaxies where

both N∗ and Σ0 are large, and low surface brightness galaxies with small Σ0 and dwarf

galaxies with small N∗ (collectively referred to here as LSB galaxies since many small N∗

galaxies have small Σ0 and vice versa).

Having this broad a variety of galaxies turns out to be very instructive since one of the

most interesting aspects of (20) and (23) is that there are situations in which departures from

the luminous Newtonian prediction can be very pronounced. One situation is when N∗ is

small, since then the net Newtonian contribution cannot compete with the fixed magnitude

γ0 and κ terms. Another situation is when the quantity N∗/R2
0 ∼ Σ0 is small. Specifically,

since the Newtonian contribution in (9) (the β∗ dependent I0K0 − I1K1 term) numerically

peaks at around R = 2.2R0, the strength of the Newtonian term at the peak will be set

by the magnitude of N∗/R2
0, and when small will not be able to compete with the fixed

magnitude γ0 and κ terms. Since the linear term dominates over the quadratic one until the

largest distances, in both small N∗ and/or small Σ0 galaxies one should expect the rotation

curves to start rising immediately, just as is systematically seen in the data sample. The

case where the luminous Newtonian contribution is not suppressed is in HSB galaxies, and

here the falling Newtonian contribution can compete with the rising linear term to give a

region of approximate flatness before any rise could set in, again just as is systematically

seen in the data sample. Thus we see that the simple formula given in (23) directly captures

the essence of the data, and as the fits show, the formula captures not just the qualitative

trend but the actual quantitative numerical values of the velocities as well. Finally, we note

that for all galaxies the quadratic term will eventually take over, to then arrest the rising

linear potential terms and cause all rotation velocities to ultimately fall. Moreover, since v2

cannot go negative, beyond a distance R of order γ0/κ ∼ 3 × 1023 cm or so there could no

longer be any bound galactic orbits, with galaxies thus having a natural way of terminating,

and with the allowable sizes of galaxies being determined by an interplay between galaxies

and the global structure of the universe.
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For the actual fitting we have predominantly used galaxies that were studied in large

surveys. In particular for the rotation curves we have used 18 galaxies from THINGS:

The HI Nearby Galaxy Survey (as detailed in Table (1)), 30 galaxies from a study of the

Ursa Major Cluster of Galaxies (Table (2)), 20 galaxies from a study of LSB galaxies, as

augmented by an extended distance study of UGC 128 (Table (3)), 21 galaxies from a second

study of LSB galaxies (Table (4)), and also included some 21 miscellaneous galaxies (Table

(5)), with this last set containing many of the galaxies that played a significant historical

role in establishing that there actually was a galactic missing mass problem in the first place.

The sample we use contains all the 11 galaxies that were studied in [8] (DDO 154, DDO

170, NGC 1560, NGC 3109, UGC 2259, NGC 6503, NGC 2403, NGC 3198, NGC 2903,

NGC 7331, and NGC 2841), with a few of them having undergone significant updates since

then. Of the 110 galaxies in our sample, the 20 that extend the furthest in radial distance

were reported in [9], and for completeness we also include them here. In order of increasing

largest radial distance these 20 galaxies are NGC 3726, NGC 3769, NGC 4013, NGC 3521,

NGC 2683, UGC 1230, NGC 3198, NGC 5371, NGC 2998, NGC 5055, NGC 5033, NGC

801, NGC 5907, NGC 3992, NGC 2841, UGC 128, NGC 5533, NGC 6674, UGC 6614 and

UGC 2885.

For the fits we have taken photometric luminosities, optical disk scale lengths and HI gas

masses from Refs. [10] through [64]. The values we use are listed in Tables (1) – (5). In

the last column in each of these Tables each set of four references gives the data sources for

rotation velocities (v), luminosities (L), disk scale lengths (R0) and HI gas mass (HI).

As described in the Appendix, for ten of the galaxies (NGC 801, NGC 2998, NGC 5033,

NGC 5055, NGC 5371, NGC 5533, NGC 5907, NGC 6674, UGC 2885 and ESO 1440040),

we have also included the contribution of a central spherical bulge. For the HI gas we have

modeled the gas profile as a single exponential disk with a scale length four times that of the

optical disk. Also we have multiplied the overall HI gas contribution by 1.4 to account for

primordial Helium. (When an HI gas mass was not available, the HI gas mass is listed as NA

in the Tables.) In the fits the gas contribution is anyway never that significant. Specifically,

in the HSB galaxies the mass in stars is much greater than the mass in gas, while in the

LSB galaxies, neither the gas nor the stars are able to compete with the universal γ0 and κ

terms. In the fits we followed the discussion in [55] and required that M/L not be less than

0.2M⊙/L⊙. In the Tables we have listed the fitted stellar mass to light ratios (M/L) that we
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have obtained from our fitting, with the (M/L)stars values quoted in the Tables representing

the total stellar disk plus bulge masses divided by the total blue galactic luminosity in those

cases where we have included a galactic bulge. In almost all cases the mass to light ratios

that we obtain are reasonably close to the solar mass to light ratio, just as one would want.

In those cases where optical scale lengths have been measured in many wavelengths, by

and large we have used the scale lengths as measured in the longest available wavelength

band (usually the K band) and have systematically done so for the entire 30 galaxy Ursa

Major sample. For seven of the galaxies (NGC 7137, UGC 477, ESO 840411, ESO 1200211,

ESO 3020120, ESO 3050090 and ESO 4880490) little or no surface photometry is available

at all. As described in the Appendix, for these particular galaxies we have had to estimate

scale lengths, with the sources for the scale lengths for these galaxies accordingly being listed

as ES in the Tables.

The place in our theory where there is the most sensitivity to parameters is in the adopted

distances to the individual galaxies, since the parameters γ∗, γ0 and κ that appear in (23) are

given as absolute quantities. To establish a common baseline for determining adopted dis-

tances, for all the galaxies in our sample we have used the distances listed in the NASA/IPAC

Extragalactic Database (NED). In this database distances are obtained either via direct vi-

sual measurements (typically Cepheids or the Tully-Fisher relation) or indirectly via redshift

measurements. For the directly determined distances a world average mean value and its

one standard deviation uncertainty are listed. The redshift-based determinations depend

on how one models both the peculiar velocity with respect to the Hubble flow of the Milky

Way Galaxy and the peculiar velocity of the galaxy of interest. Five different such models

are provided in the NED, and with each one giving a mean value and uncertainty, taken

together the five determinations and their uncertainties provide a spread in values. For

definitiveness, for redshift-based distance determinations we have opted to use the mean

value associated with the galactocentric distance determination. For our entire set of 110

galaxies there was only a handful of 10 galaxies for which using the visually-determined

mean or the redshift-determined galactocentric mean did not immediately give a reasonable

fit. For IC 2574, NGC 2403, NGC 3621, NGC 7793 and NGC 3109 we found it advantageous

to use adopted distances up to one standard deviation above the NED mean, while for NGC

2841, DDO 170, NGC 5033 and NGC 5533 we allowed up to one standard deviation below

the NED mean. (For NGC 2841 the adopted distance we used coincides with the one given
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by Cepheid data alone, with Tully-Fisher based determinations yielding a somewhat higher

value.) For NGC 6674 we used the smallest allowed distance value within the redshift deter-

mined spread in values. Thus for no less than 100 of the galaxies in our sample our theory

captured the essence of the rotation curve data using the NED preferred distances as is. And

moreover, despite the fact that the sensitivity to adopted distance is the most pronounced

in the 20 large galaxy sample, for only four of them (NGC 5033, NGC 2841, NGC 5533 and

NGC 6674) did we even need to consider not using the NED mean values as is. The fact

that our fits work so well at the NED distances is thus a noteworthy achievement for our

theory. In the Tables we have listed the specific adopted distances that we have used.

In regard to some specific galaxies within our 110 galaxy sample, we should note that

we have some difficulty fitting NGC 7793, with the shape of its rotation curve not readily

lending itself to a fit based on smooth functions. Since the HI data for this galaxy only

go out to six optical disk scale lengths or so, the fits are very sensitive to any inner region

structure that would not be modeled by a single exponential disk. For the galaxy NGC

3109 we should note that we followed [65] and scaled up the HI gas mass by a factor of

1.67 to allow for loss of flux in the original radio observations of the galaxy given in [58].

Even with this rescaling, at the one standard deviation NED distance of 1.5 Mpc our fit

still falls a little below the observed velocities at the largest radial distances. However, as

noted in our earlier fit to this galaxy [8], the fit falls right on the data at the slightly larger

adopted distance of 1.7 Mpc. For the galaxy NGC 4736 the surface brightness profile was

found [10] to decompose into a two-disk structure, a small disk with scale length 0.3 kpc

that is operative in the inner 80′′ = 1.9 kpc region where the first 13 of the 82 rotation curve

data points reported in [10] are located, together with a large disk with scale length 2.1 kpc

scale length that is operative in the region greater than 80′′. For simplicity we opted not to

truncate either of the two disks so that we could use (9) as is for each of them. In the fitting

the inner region disk was found to have a fitted mass 0.708× 1010 M⊙, while the dominant

primary disk was found to have a mass 1.630 × 1010 M⊙. In Table (1) the reported value

for (M/L)stars for this galaxy is the total stellar mass of the two disks combined divided by

the total blue luminosity of the galaxy. The galaxy NGC 2976 is also reported to have a

two-disk structure [16], with an effective R0 = 79′′ = 1.4 kpc in the less than 100′′ radial

region and an effective R0 = 34′′ = 0.6 kpc in the greater than 100′′ radial region. With the

rotation curve data of [10] ending at 147′′, and with 28 of the reported 42 rotation curve
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data points lying in the less than 100′′ region, for the fitting we have approximated the two

disks by a single disk with a blended scale length R0 = 1.2 kpc. The galaxy NGC 4826 is

a highly unusual galaxy in which the inner 10 of the 89 rotation curve data points reported

in [10] are counter-rotating with respect to the outer 79. With the two regions being well

segregated (the inner points lie within 50′′ of the center of the galaxy while the outer region

points lie beyond 130′′), we provide a fit to the 79 outer region points alone.

Of the galaxies in the 20 large galaxy sample (the region were we are maximally sensitive

to distance determinations) there were only three galaxies whose fitting we found challenging,

viz. NGC 5533, NGC 6674 and UGC 2885, each a galaxy with a bulge. However, the fitting

difficulties were mainly in the inner region where one has to make a bulge/disk decomposition

of the luminosity, and not in the asymptotic region where the quadratic term contribution

was still readily able to universally cancel the linear potential term contribution. Since the

NED determination of the adopted distance for NGC 5533 is given as 47.7 ± 5.7 to one

standard deviation, we found that using 42.0 Mpc as the adopted distance gave the tightest

fit. For NGC 6674 only a redshift-based adopted distance is available, and it lies in the

range 42.0 to 57.0 Mpc. For this galaxy the fitting again preferred the smallest adopted

distance value. For UGC 2885 we found that the fitting could be improved if, as described

in the appendix, we used a bulge scale length somewhat larger than the one reported in the

literature. For NGC 5533 and NGC 6674 we recall [55] that NGC 5533 has significant side-

to-side asymmetries and kinematic evidence for a warp, while NGC 6674 has a large scale

non-axisymmetric structure and a substantial inner region bar [45]. Consequently we should

not anticipate being able to do more than fit the general trend for these two galaxies in the

inner region. Nonetheless, none of these inner region luminosity structure issues affect the

outer region where all the various luminous components consolidate to produce one effective

N∗ in the asymptotic (24) that then readily controls the outer region.

In Figures (1) – (5) we present the rotational velocities with their quoted errors (in

km sec−1) for all of the galaxies in the 110 galaxy sample as plotted as functions of radial

distances from galactic centers (in kpc). For each galaxy we have exhibited the contribution

due to the luminous Newtonian term alone (dashed curve), the contribution from the two

linear terms alone (dot dashed curve), the contribution from the two linear terms and the

quadratic terms combined (dotted curve), with the full curve showing the total contribution.

As we see, the tightly constrained (23) captures the essence of the data, and does so without
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needing any dark matter whatsoever.

One of the most interesting aspects of the fits is that in the galaxies that go out to

the largest radial distances the contribution of the linear potential (dot dashed curve) would

actually lead to an overshoot of the data, but as the Figures show this overshoot is completely

arrested by the quadratic potential term (dotted curve). Since the quadratic term would

eventually cause rotation velocities to fall, to illustrate the effect, for the very small DDO

154 and for the very large UGC 128 in Figure (6) we have plotted the expectation of our

model over an extended distance range. The anticipated ultimate fall in rotation velocities

is thus a significant falsifiable diagnostic of the theory presented here. For DDO 154 we note

that there actually have been some suggestions of a possible fall in the literature. However,

the small fall at the end of the rotation curve that had originally been reported in [66] is

not apparent in the more recent THINGS survey of the galaxy. Additionally, in [67] it was

suggested that there might be a fall in the rotation curve at distances beyond those currently

available. (The authors are indebted to Dr. M. Milgrom for alerting them to this reference.)

However, the fall discussed in [67] is thought to set in well before the one predicted here.

Of particular interest in the sample are the HSB galaxies NGC 3992, NGC 3198, NGC

2841 and UGC 2885, all four of which were also in the 20 large galaxy sample. While NGC

3992 is part of the Ursa Major cluster study, its NED distance of 25.6 Mpc puts it well

beyond the 15.5 - 18.6 Mpc distance range that the Ursa Major cluster is thought to lie

within, and yet even at this much larger distance our theory is still able to accommodate it.

Both the NGC 3198 and NGC 2841 galaxies were in the 11 galaxy sample considered in [8],

and the rotation curves shown here are of precisely the same shape as they had been then.

However, in the interim the adopted distances to both of these galaxies have been revised

upwards by as much as 50 per cent. With the linear term contribution to v2 being of the

form γ0c
2R/2, it is extremely sensitive to distance determinations since γ0 is given in (22) as

an absolute quantity. Consequently, as the Figures show, the linear potential terms would

now be requiring the NGC 3198 and NGC 2841 rotation curves to rise. That no rise is seen

is due entirely to the quadratic term, with the currently observed flatness of these rotation

curves being due to a natural interplay of all the various terms involved.

While the rotation curves of all of the galaxies in the sample are obtained from HI radio

studies that extend beyond the optical disk region, the rotation curve of UGC 2885 had

originally been obtained from HII optical studies [68] that were thus restricted to the optical
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disk region where hot stars can ionize hydrogen gas. Now even though the UGC 2885 HII

rotation curve data were found to quickly rise to flat (to thereby immediately suggest a

missing mass problem), because the optical disk is highly extended, within the optical disk

it is actually possible to fit the UGC 2885 HII rotation curve data using only the Newtonian

contributions of the luminous disk and bulge and visible HI gas, without the need to invoke

dark matter or alternate gravity at all [53]. Such a fit would have to be a maximum disk fit

in which the luminous disk N∗ is taken to be as large as it possibly can be in (9), with optical

disk region flatness thus not necessarily being an indicator of any failure of the luminous

Newtonian expectation. However, because the UGC 2885 optical disk region does go out

so far (not relatively in disk scale lengths but absolutely in kpc), the inner region rotation

curve is sensitive to the linear and quadratic terms in (23), and as is seen in our fit to UGC

2885, they force the normalization of the Newtonian disk term to be less than maximal. Our

work here thus supports the notion that the UGC 2885 optical disk region HII data do in

fact serve as an indicator of the failure of the luminous Newtonian expectation.

In total, our fits here and in [9] are noteworthy in that the universal γ0 and κ terms

have no dependence on individual galactic properties whatsoever and yet have to work in

every single case. Our fits are also noteworthy in that we have captured the essence of the

rotation curve data even though we have imposed some rather strong constraints on the input

parameters. For adopted distances we have used NED mean values. We have not used actual

surface brightness distributions or actual gas profiles but have treated these distributions

simply as single exponentials. Moreover, for the optical disk scale lengths we have mainly

used those associated with the longest wavelength bands available, and have taken gas scale

lengths to be four times disk scale lengths. Additionally, we have not included the effects of

a disk thickness or taken any galactic inclination angle uncertainties into consideration. On

the theoretical side our fits are noteworthy in that (23) is not simply a phenomenological or

empirical formula that was extracted solely from consideration of the systematics of galactic

rotation curves. Rather, (23) was explicitly derived from first principles in a fundamental,

uniquely prescribed metric-based theory of gravity, namely conformal gravity. Moreover,

conformal gravity itself was not even advanced for the purposes of addressing the dark matter

problem. Rather, before it was known what its static, spherically symmetric solutions might

even look like, it was advanced by one of us [69] simply because it had a symmetry that

could control the cosmological constant. Our fitting is thus quite non-trivial.

16



V. GENERAL COMMENTS

While beyond the scope of the present paper, we note that since the scale we find for κ is

of order 1/(100 Mpc)2, our work potentially has some interesting implications for clusters of

galaxies. For clusters one can make measurements using either interior or exterior probes.

The interior probe involves measuring cluster velocity dispersions, while the exterior probe

involves measuring lensing by clusters. For the interior case we need to use (14) for points

within the cluster, and for lensing we need to use (13) for points exterior to the cluster.

Thus given the quadratic term, a study of clusters could be instructive.

It is of interest to compare our work with some other alternate theories that have been

proposed. Of them, two other non-dark-matter theories have also had success when applied

to large samples of galaxies. One is the Modified Newtonian Dynamics (MOND) theory of

Milgrom [70], and the other is the Metric Skew Tensor Gravity (MSTG) theory of Moffat

[71]. In MOND one modifies the connection between acceleration and force by setting

µ
(

a

a0

)

v2

r
=

dφ

dr
(25)

where a = v2/r is the ordinary centripetal acceleration, dφ/dr is the standard Newtonian

gravitational force, and µ(a/a0) is the modification as defined in terms of some new universal

parameter a0 with the dimensions of acceleration. Milgrom introduced this modification

because of his empirical discovery that in all those cases where the standard Newtonian

theory needed dark matter, the measured centripetal accelerations were found to fall below

a common value a0 = 1.2× 10−8 cm.sec−2. Through use of the simple expression

µ(x) =
x

(1 + x2)1/2
(26)

for the function µ(x), Milgrom was able to construct a function that interpolated between

standard Newton-Kepler behavior at a ≫ a0 and departures from it in the a ≪ a0 MOND

regime where it led to asymptotically flat rotation velocities. In the years since Milgrom

first introduced MOND many rotation curves of many different varieties of galaxy have been

measured, and to a remarkable degree (see e.g. [20, 55, 65, 72, 73] and references therein)

they have been successfully fitted by (26) without the need to include any dark matter at

all.

In Moffat’s MSTG theory a skew-symmetric tensor field is coupled to Einstein gravity,

17



with the centripetal accelerations that result being given by the simple formula

v2

r
=

GM

r2

{

1 +
(

M0

M

)1/2 [

1−
(

1 +
r

r0

)

exp
(

−
r

r0

)]

}

(27)

for a galaxy of mass M . In (27) the universal parameters M0 and r0 are given by M0 =

9.60× 1011M⊙ and r0 = 4.30× 1022 cm; and together they combine with Newton’s constant

G to give a universal acceleration parameter GM0/r
2
0 = 6.90 × 10−8 cm.sec−2. In (27) the

velocity obeys v2 = GM/r for r ≪ r0 and obeys v2 = GM [1 + (M0/M)1/2]/r for r ≫ r0,

to thus be Kepler in both limits, albeit with different effective Newton constants. Via (27)

successful fitting to a wide variety of galaxies has been obtained without dark matter [74].

That conformal gravity, MOND and MSTG can all succeed in fitting the data is because

not only does each one of them possess a universal (i.e. galaxy independent) parameter with

the dimensions of an inverse length (viz. a0/c
2 = 1.33×10−29 cm−1 for MOND,G0M0/r

2
0c

2 =

7.67× 10−29 cm−1 for MSTG, and γ0 = 3.06× 10−30 cm−1 for conformal gravity), the data

do too. Specifically, in the Tables we have listed the value of the quantity (v2/c2R)last at the

last data point for each of the galaxies in the sample. As we see, despite the huge variation in

luminosity and central surface brightness across the sample, within one order of magnitude

all the (v2/c2R)last values cluster around a value of 3×10−30 cm−1 or so. (In all the galaxies

where (v2/c2R)last is greater than 10 × 10−30 cm−1, the luminous Newtonian contribution

is dominating v2last, with those galaxies not being asymptotic enough to be in the region

where the universal linear potential γ0 term would dominate.) Now different theories cannot

agree for ever, and since (23), (25) and (27) predict differing behaviors at large R, study of

rotation curves at large enough R could enable us to distinguish between them.

As regards the near universality of (v2/c2R)last, we should note that this is an empirical

property of the raw data themselves. Moreover, while there may be some uncertainties in

the adopted distances to the galaxies, such uncertainties are never more than a factor of

two or so. With the velocities being uncertain to no more than 10 to 20 per cent or so, the

near universality of (v2/c2R)last is thus a genuine property of the data. It should thus be

regarded as an important empirical clue for galactic dynamics.

It is important to recognize that the fits provided by conformal gravity (and likewise by

MOND and MSTG) are predictions. Specifically, for all these theories the only input one

needs is the optical data, and the only free parameter is the M/L ratio for each given galaxy,

with rotation velocities then being determined. Moreover, theM/L ratios are constrained by
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the need to not overshoot the data in the inner rotation curve region, and as the Tables show,

are all by and large found to be of order the solar M⊙/L⊙ ratio, just as one would want. It is

important to stress this point since dark matter fitting to galactic data works very differently.

There one first needs to know the velocities so that one can then ascertain the needed amount

of dark matter, i.e. in its current formulation dark matter is only a parametrization of the

velocity discrepancies that are observed and is not a prediction of them. Dark matter theory

has yet to develop to the point where it is able to predict rotation velocities given a knowledge

of the luminous distribution alone (or explain the near universality found for (v2/c2R)last).

Thus dark matter theories, and in particular those theories that produce dark matter halos

in the early universe, are currently unable to make an a priori determination as to which

halo is to go with which particular luminous matter distribution, and need to fine-tune halo

parameters to luminous parameters galaxy by galaxy. (In the FNW CDM simulations [75]

for instance, one finds generic spherical halo profiles close in form to σ(r) = σ0/[r(r + r0)
2]

(as then cut off at cr0), but with the halo parameters needing to be fixed galaxy by galaxy.)

No such fine-tuning shortcomings appear in conformal gravity, and if standard gravity is

to be the correct description of gravity, then a universal formula akin to the one given in

(23) would need to be derived by dark matter theory. However, since our study establishes

that global physics has an influence on local galactic motions, the invoking of dark matter

in galaxies could potentially be nothing more than an attempt to describe global physics

effects in purely local galactic terms.

The authors wish to thank Dr. J. R. Brownstein, Dr. W. J. G. de Blok, Dr. J. W. Mof-

fat, and Dr. S. S. McGaugh for helpful communications, and especially for providing their

galactic data bases. This research has made use of the NASA/IPAC Extragalactic Database

(NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technol-

ogy, under contract with the National Aeronautics and Space Administration.

Appendix A: Galaxies with Bulges or without Photometry

1. Spherical Bulge Formalism

For a spherically symmetric matter distribution with radial matter number density σ(r)

and N = 4π
∫

dr′r′2σ(r′) stars, as follows directly from (12) and (14) the rotational velocities
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associated with the Newtonian and linear potentials are given by

v2β(r) =
4πβ∗c2

r

∫ r

0
dr′σ(r′)r′2,

v2γ(r) =
2πγ∗c2

3r

∫ r

0
dr′σ(r′)(3r2r′2 − r′4) +

4πγ∗c2r2

3

∫

∞

r
dr′σ(r′)r′. (A1)

Ordinarily it is not the 3-dimensional σ(r) which is directly measured in spherical astronom-

ical systems. Rather, it is only the two-dimensional surface matter distribution I(R) which

is measured, with σ(r) having to be extracted from it via an Abel transform

σ(r) = −
1

π

∫

∞

r
dR

I ′(R)

(R2 − r2)1/2
, I(R) = 2

∫

∞

R
dr

σ(r)r

(r2 −R2)1/2
. (A2)

In terms of I(R) the Newtonian integral in (A1) can be rewritten as [53]

v2β(r) =
2πβ∗c2

r

∫ r

0
dRRI(R) +

4β∗c2

r

∫

∞

r
dRRI(R)

[

arcsin
(

r

R

)

−
r

(R2 − r2)1/2

]

, (A3)

while the linear potential integral reduces to [1]

v2γ(r) =
γ∗c2π

2r

∫ r

0
dRRI(R)(2r2 − R2)

+
γ∗c2

r

∫

∞

r
dRRI(R)

[

(2r2 − R2)arcsin
(

r

R

)

+ r(R2
− r2)1/2

]

. (A4)

For the very convenient exponential surface density

I(R) =
N

2πt2
e−R/t (A5)

considered in [76], the Abel transform can be performed analytically, to yield

σ(r) =
N

2π2t3
K0(r/t). (A6)

For particles orbiting such a spherical bulge at radius r we immediately obtain circular

velocities of the form

v2β(r) =
2Nβ∗c2

πr

∫ r/t

0
dzz2K0(z) (A7)

v2γ(r) =
Nγ∗c2r

π

∫ r/t

0
dzz2K0(z)

−
Nγ∗c2t2

3πr

∫ r/t

0
dzz4K0(z) +

2Nγ∗c2r2

3πt

∫

∞

r/t
dzzK0(z)

=
Nγ∗c2r

π

∫ r/t

0
dzz2K0(z)

−
Nγ∗c2t2

3πr

∫ r/t

0
dzz4K0(z) +

2Nγ∗c2r3

3πt2
K1(r/t). (A8)
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2. Applications to Galaxies with Spherical Bulges

We considered bulges for 10 galaxies. At our adopted distances the measured bulge scale

lengths for NGC 801 and NGC 2998 are t = 0.9 kpc and t = 0.9 kpc [55, 76], for NGC 5371,

NGC 5533 and NGC 6674 the measured values are t = 0.9 kpc, t = 1.3 kpc, and t = 0.9

kpc [55], and for ESO 0140040 t = 1.36 kpc [42]. For NGC 5033, NGC 5055 and NGC 5907

we determined respective best values of t = 1.73 kpc, t = 0.35 kpc and t = 1.84 kpc from

fitting the rotation curve themselves. The fitting could generally accommodate fairly broad

ranges around these particular fitted values, and could do so while only affecting the fitting

in the inner rotation curve region. (The expression for v2β(r) given in (A7) peaks at around

r = 2.7t and becomes Keplerian by about r = 5t. Thus for all but the innermost of the

points on the rotation curve, v2β(r) acts just like a point Newtonian source at the center of

the galaxy. In addition, just like a linear potential point source, in the innermost region the

contribution of the v2γ(r) term given in (A8) is negligible.) For UGC 2885, we could readily

fit the outer 16 of the 19 rotation curve data points using the t = 0.6 kpc scale length given

in [55, 76]. Given the uncertainties inherent in bulge/disk decompositions, we can vary the

bulge scale length somewhat, to find that we can improve the fit for the innermost three

points while still being able to account for the other 16 points. In the Figures we report

the fit with t = 1.0 kpc. In the fitting we obtained fitted bulge masses for the 10 galaxies

that are respectively given by 4.29, 1.93, 2.38, 11.12, 10.44, 3.52, 9.75, 0.73, 7.71, and 8.72

(in units of 1010M⊙). While there may be some uncertainties in bulge/disk decompositions,

these uncertainties only affect the inner rotation curve region and do not impact on the

behavior of rotation curves at the largest radial distances where the missing mass problem

is the most pronounced and where the linear and quadratic potential terms are dominant.

3. Treatment of Galaxies with no Photometry

For four of the galaxies in our sample (NGC 7137, UGC 477, ESO 840411 and ESO

1200211) there appears to be no surface photometry reported in the literature, while for

three of them (ESO 3020120, ESO 3050090 and ESO 4880490) there is only a minimal

amount. In the absence of any surface brightness photometry our strategy is to assume

that the surface brightness can be described as a disk with exponential Σ(R) = Σ0e
−R/R0 ,
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and simply do a fit to the rotation curve data using R0 and N∗ as two free parameters.

To constrain such fits we follow [55] and require that M/L not be less than 0.2M⊙/L⊙.

Additionally, we require that R0 be less than the measured value of Rlast at the last data

point. On imposing these constraints, we will regard a fit as acceptable, though of course

only indicative, if we can find a range of such constrained values of R0 and N∗ for which

the fitting is reasonable. Interestingly, this prescription is found to work for all seven of the

galaxies, with there being a range of allowed values in each case. In the Tables we present

some typical fitted values within the allowed ranges for each of the seven galaxies, and then

use these values to generate the associated Figures. Just as with the spherical bulges, we

should note that none of these photometry concerns affect the outer region rotation curve

fitting.

To support the R0 values that we obtained this way, we note that for

three of the galaxies some limited surface brightness data actually are avail-

able. Specifically, in the ESO Lauberts-Valentijn Archive (as accessed at

http://archive.eso.org/wdb/wdb/eso/esolv/form) both a red band total apparent magnitude

mT and a red band mean central surface brightness m̄0 (in magnitudes per square arc second)

are listed for each of the ESO 3020120 and ESO 4880490 galaxies, while a red band mean

central surface brightness is listed for ESO 3050090. The quantity m̄0 is not precisely the

apparent central surface brightness m0 itself, but rather the average apparent surface bright-

ness in a 10 arc second circular aperture. If we nonetheless now approximate m0 by m̄0, then

from 2.5log10(2πR
2
0) = m0 −mT (a quantity that conveniently is not affected by extinction

corrections) we can extract an approximate value for R0 in arc seconds. Doing this is found

to yield red band scale lengths R0(ESO 3020120) = 13.5′′ and R0(ESO 4880490) = 11.1′′,

and thus R0(ESO 3020120) = 4.6 kpc and R0(ESO 4880490) = 1.6 kpc at the adopted

distances listed in the Tables. For ESO 3050090 only a blue band total apparent magnitude

of 13.08 is listed. Taking the red band total apparent magnitude to be equal to 13.5, 13.0

and 12.5 (i.e. to be within 0.5 magnitudes of the blue band value, a reasonable enough

expectation) respectively yield R0(ESO 3050090) = 15.9′′, R0(ESO 3050090) = 20.0′′ and

R0(ESO 3050090) = 25′′, with the 20′′ value corresponding to R0(ESO 3050090) = 1.3 kpc

at the adopted distance listed in the Tables. For all three of these galaxies then, the R0

values nicely fall within the allowed ranges of values for R0 that we found from fitting the

rotation curves.
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4. Double-Counting in the Bulge-Disk Overlap Region

Since bulges and disks of spiral galaxies overlap in the galactic center region, there could

be some double counting. A possible way to allow for this would be to truncate the bulge

contribution so that it is only non-zero in the galactic center region, and another possibility

would be to truncate the disk contribution so that it is only non-zero outside the galactic

center region. We describe the formalism for doing this in the case where there are both

Newtonian and linear potentials. However, for the bulge galaxies of interest to us in this

paper, we found that neither of the two truncation procedures had that much of an impact

on the fits (mainly because only the innermost rotation curve points could be affected by

the bulge/disk decomposition in the first place), and only present the formalism here for

reference purposes.

For bulges the most straightforward truncation is of the form

σ(r, t0) =
N

2π2t3
K0

(

r

t

)

θ(t0 − r), (A9)

with the volume density being truncated at r = t0. (We truncate σ(r) rather than I(R) with

a delta function since as noted in [77], truncating I(R) with a delta function would generate

singularities in the Abel transform.) Given the truncated (A9) the orbital velocities are then

given by

v2β(r < t0) =
2Nβ∗c2

πr

∫ r/t

0
dzz2K0(z), v2β(r > t0) =

2Nβ∗c2

πr

∫ t0/t

0
dzz2K0(z) (A10)

v2γ(r < t0) =
Nγ∗c2r

π

∫ r/t

0
dzz2K0(z)

−
Nγ∗c2t2

3πr

∫ r/t

0
dzz4K0(z) +

2Nγ∗c2r2

3πt2

[

rK1

(

r

t

)

− t0K1

(

t0
t

)]

,

v2γ(r > t0) =
Nγ∗c2r

π

∫ t0/t

0
dzz2K0(z)−

Nγ∗c2t2

3πr

∫ t0/t

0
dzz4K0(z). (A11)

For disks the most straightforward truncation is to truncate the surface density according

to Σ(R)θ(R − s0) so that it starts at some minimum value s0 near to the galactic center.

Following the procedure described in [1] for the arbitrary Σ(R), we find that for a truncated

Σ(R) the Newtonian potential contribution is given by

Vβ(R) = −2πβ∗c2
∫

∞

0
dk
∫

∞

s0
dR′R′Σ(R′)J0(kR

′)J0(kR)
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= −2πβ∗c2
∫

∞

0
dk
∫

∞

0
dR′R′Σ(R′)J0(kR

′)J0(kR)

+2πβ∗c2
∫

∞

0
dk
∫ s0

0
dR′R′Σ(R′)J0(kR

′)J0(kR) (A12)

For an exponential disk with Σ(R) = Σ0e
−R/R0 (and thus a truncated number of stars

N∗

TR = 2πΣ0(R
2
0 + s0R0)e

−s0/R0 in the R > s0 region), the first of the last two integrals in

(A12) can be done analytically (and leads to the Newtonian term given in (9)). However,

the dk integration range in the second of the last two integrals in (A12) has to be broken

into two separate R < R′, R > R′ regions. But when s0 is less than the positions R of the

points of interest for the rotation curves (as would typically be the case) we only need the

R > R′ region, with (A12) then simplifying to

Vβ(R > s0) = −πΣ0β
∗c2R

[

I0

(

R

2R0

)

K1

(

R

2R0

)

− I1

(

R

2R0

)

K0

(

R

2R0

)]

+
4Σ0β

∗c2

R

∫ s0

0
dR′R′e−R′/R0K

(

R′2

R2

)

, (A13)

where K(x2) =
∫ π/2
0 dy(1 − x2sin2y)−1/2 is the complete elliptic integral of the first kind.

Finally, on differentiating (A13) with respect to R and recalling that

dK(x2)

dx
=

E(x2)− (1− x2)K(x2)

x(1− x2)
(A14)

where E(x2) =
∫ π/2
0 dy(1 − x2sin2y)1/2 is the complete elliptic integral of the second kind,

we then obtain for the Newtonian contribution to the orbital velocities

v2β(R > s0) =
πΣ0β

∗c2R2

R0

[

I0

(

R

2R0

)

K0

(

R

2R0

)

− I1

(

R

2R0

)

K1

(

R

2R0

)]

−
4Σ0β

∗c2

R

∫ s0

0
dR′R′e−R′/R0

[

E(x2)

(1− x2)

]

x=R′/R

. (A15)

Similarly, again following [1], for the linear potential contribution we obtain the general

Vγ(R) = πγ∗c2
∫

∞

0
dk
∫

∞

s0
dR′R′Σ(R′)

[

(R2 +R′2)J0(kR
′)J0(kR)− 2RR′J1(kR

′)J1(kR)
]

= πγ∗c2
∫

∞

0
dk
∫

∞

0
dR′R′Σ(R′)

[

(R2 +R′2)J0(kR
′)J0(kR)− 2RR′J1(kR

′)J1(kR)
]

− πγ∗c2
∫

∞

0
dk
∫ s0

0
dR′R′Σ(R′)

[

(R2 +R′2)J0(kR
′)J0(kR)− 2RR′J1(kR

′)J1(kR)
]

.

(A16)

Thus for a truncated exponential disk we obtain

Vγ(R > s0) = πΣ0γ
∗c2RR2

0

[

I0

(

R

2R0

)

K1

(

R

2R0

)

− I1

(

R

2R0

)

K0

(

R

2R0

)]
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+
πΣ0γ

∗c2R2R0

2

[

I0

(

R

2R0

)

K0

(

R

2R0

)

+ I1

(

R

2R0

)

K1

(

R

2R0

)]

− 2Σ0γ
∗c2

∫ s0

0
dR′R′e−R′/R0

[

(R′2 − R2)

R
K

(

R′2

R2

)

+ 2RE

(

R′2

R2

)]

(A17)

for points with R > s0. Finally, on differentiating (A17) with respect to R and recalling

that
dE(x2)

dx
=

E(x2)−K(x2)

x
, (A18)

we then obtain for the linear potential contribution to the orbital velocities

v2γ(R > s0) = πΣ0γ
∗c2R2R0I1

(

R

2R0

)

K1

(

R

2R0

)

− 2Σ0γ
∗c2R

∫ s0

0
dR′R′e−R′/R0

[

E(x2)
]

x=R′/R
. (A19)

For most cases of interest the disk scale length R0 will typically be much larger than the

truncation point s0, with the e−R′/R0 term thus being very close to one in the integration

ranges needed for both (A15) and (A19). Then, when we do approximate the e−R′/R0 term

to one, the integrals in (A15) and (A19) can be done analytically, and yield the simple and

convenient expressions

v2β(R > s0) =
πΣ0β

∗c2R2

R0

[

I0

(

R

2R0

)

K0

(

R

2R0

)

− I1

(

R

2R0

)

K1

(

R

2R0

)]

− 4Σ0β
∗c2R

[

K(x2)− E(x2)
]

x=s0/R
, (A20)

v2γ(R > s0) = πΣ0γ
∗c2R2R0I1

(

R

2R0

)

K1

(

R

2R0

)

−
2Σ0γ

∗c2R3

3

[

(1 + x2)E(x2)− (1− x2)K(x2)
]

x=s0/R
. (A21)
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TABLE I: Properties of the THINGS 18 Galaxy Sample

Galaxy Type Distance LB R0 Rlast MHI Mdisk (M/L)stars (v2/c2R)last Data Sources

(Mpc) (1010L⊙) (kpc) (kpc) (1010M⊙) (10
10M⊙) (M⊙/L⊙) (10−30

cm
−1) v L R0 HI

DDO 0154 LSB 4.2 0.007 0.8 8.1 0.03 0.003 0.45 1.12 [10] [11] [12] [11]

IC 2574 LSB 4.5 0.345 4.2 13.1 0.19 0.098 0.28 1.69 [10] [11] [13] [11]

NGC 0925 LSB 8.7 1.444 3.9 12.4 0.41 1.372 0.95 4.17 [10] [11] [12] [11]

NGC 2403 HSB 4.3 1.647 2.7 23.9 0.46 2.370 1.44 2.89 [10] [11] [14] [11]

NGC 2841 HSB 14.1 4.742 3.5 51.6 0.86 19.552 4.12 5.83 [10] [11] [15] [11]

NGC 2903 HSB 9.4 4.088 3.0 30.9 0.49 7.155 1.75 3.75 [10] [11] [14] [11]

NGC 2976 LSB 3.6 0.201 1.2 2.6 0.01 0.322 1.60 10.43 [10] [11] [16] [11]

NGC 3031 HSB 3.7 3.187 2.6 15.0 0.38 8.662 2.72 9.31 [10] [11] [17] [11]

NGC 3198 HSB 14.1 3.241 4.0 38.6 1.06 3.644 1.12 2.09 [10] [11] [14] [11]

NGC 3521 HSB 12.2 4.769 3.3 35.3 1.03 9.245 1.94 4.21 [10] [11] [12] [11]

NGC 3621 HSB 7.4 2.048 2.9 28.7 0.89 2.891 1.41 3.18 [10] [11] [10] [11]

NGC 3627 HSB 10.2 3.700 3.1 8.2 0.10 6.622 1.79 15.64 [10] [11] [12] [11]

NGC 4736 HSB 5.0 1.460 2.1 10.3 0.05 1.630 1.60 4.66 [10] [11] [10] [11]

NGC 4826 HSB 5.4 1.441 2.6 15.8 0.03 3.640 2.53 5.46 [10] [11] [18] [11]

NGC 5055 HSB 9.2 3.622 2.9 44.4 0.76 6.035 1.87 2.36 [10] [11] [12] [11]

NGC 6946 HSB 6.9 3.732 2.9 22.4 0.57 6.272 1.68 6.39 [10] [11] [12] [11]

NGC 7331 HSB 14.2 6.773 3.2 24.4 0.85 12.086 1.78 9.61 [10] [11] [12] [11]

NGC 7793 HSB 5.2 0.910 1.7 10.3 0.16 0.793 0.87 3.61 [10] [11] [12] [11]
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TABLE II: Properties of the Ursa Major 30 Galaxy Sample

Galaxy Type Distance LB R0 Rlast MHI Mdisk (M/L)stars (v2/c2R)last Data Sources

(Mpc) (1010L⊙) (kpc) (kpc) (1010M⊙) (1010M⊙) (M⊙/L⊙) (10−30
cm

−1) v L R0 HI

NGC 3726 HSB 17.4 3.340 3.2 31.5 0.60 3.82 1.15 3.19 [19] [20] [21] [20]

NGC 3769 HSB 15.5 0.684 1.5 32.2 0.41 1.36 1.99 1.43 [19] [20] [21] [20]

NGC 3877 HSB 15.5 1.948 2.4 9.8 0.11 3.44 1.76 10.51 [19] [20] [21] [20]

NGC 3893 HSB 18.1 2.928 2.4 20.5 0.59 5.00 1.71 3.85 [19] [20] [21] [20]

NGC 3917 LSB 16.9 1.334 2.8 13.9 0.17 2.23 1.67 4.85 [19] [20] [21] [20]

NGC 3949 HSB 18.4 2.327 1.7 7.2 0.35 2.37 1.02 14.23 [19] [20] [21] [20]

NGC 3953 HSB 18.7 4.236 3.9 16.3 0.31 9.79 2.31 10.20 [19] [20] [21] [20]

NGC 3972 HSB 18.6 0.978 2.0 9.0 0.13 1.49 1.53 7.18 [19] [20] [21] [20]

NGC 3992 HSB 25.6 8.456 5.7 49.6 1.94 13.94 1.65 4.08 [19] [20] [21] [20]

NGC 4010 LSB 18.4 0.883 3.4 10.6 0.29 2.03 2.30 5.03 [19] [20] [21] [20]

NGC 4013 HSB 18.6 2.088 2.1 33.1 0.32 5.58 2.67 3.14 [19] [20] [21] [20]

NGC 4051 HSB 14.6 2.281 2.3 9.9 0.18 3.17 1.39 8.52 [19] [20] [22] [20]

NGC 4085 HSB 19.0 1.212 1.6 6.5 0.15 1.34 1.11 10.21 [19] [20] [21] [20]

NGC 4088 HSB 15.8 2.957 2.8 18.8 0.64 4.67 1.58 5.79 [19] [20] [21] [20]

NGC 4100 HSB 21.4 3.388 2.9 27.1 0.44 5.74 1.69 3.35 [19] [20] [21] [20]

NGC 4138 LSB 15.6 0.827 1.2 16.1 0.11 2.97 3.59 5.04 [19] [20] [21] [20]

NGC 4157 HSB 18.7 2.901 2.6 30.9 0.88 5.83 2.01 3.99 [19] [20] [21] [20]

NGC 4183 HSB 16.7 1.042 2.9 19.5 0.30 1.43 1.38 2.36 [19] [20] [21] [20]

NGC 4217 HSB 19.6 3.031 3.1 18.2 0.30 5.53 1.83 6.28 [19] [20] [21] [20]

NGC 4389 HSB 15.5 0.610 1.2 4.6 0.04 0.42 0.68 9.49 [19] [20] [21] [20]

UGC 6399 LSB 18.7 0.291 2.4 8.1 0.07 0.59 2.04 3.42 [19] [20] [21] [20]

UGC 6446 LSB 15.9 0.263 1.9 13.6 0.24 0.36 1.36 1.70 [19] [20] [22] [20]

UGC 6667 LSB 19.8 0.422 3.1 8.6 0.10 0.71 1.67 3.09 [19] [20] [21] [20]

UGC 6818 LSB 21.7 0.352 2.1 8.4 0.16 0.11 0.33 2.35 [19] [20] [21] [20]

UGC 6917 LSB 18.9 0.563 2.9 10.9 0.22 1.24 2.20 4.05 [19] [20] [21] [20]

UGC 6923 LSB 18.0 0.297 1.5 5.3 0.08 0.35 1.18 4.43 [19] [20] [22] [20]

UGC 6930 LSB 17.0 0.601 2.2 15.7 0.29 1.02 1.69 2.68 [19] [20] [21] [20]

UGC 6973 HSB 25.3 1.647 2.2 11.0 0.35 3.99 2.42 10.58 [19] [20] [22] [20]

UGC 6983 LSB 20.2 0.577 2.9 17.6 0.37 1.28 2.22 2.43 [19] [20] [21] [20]

UGC 7089 LSB 13.9 0.352 2.3 7.1 0.07 0.35 0.98 3.18 [19] [20] [21] [20]
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TABLE III: Properties of the LSB 20 Galaxy Sample

Galaxy Type Distance LB R0 Rlast MHI Mdisk (M/L)stars (v2/c2R)last Data Sources

(Mpc) (1010L⊙) (kpc) (kpc) (1010M⊙) (10
10M⊙) (M⊙/L⊙) (10−30

cm
−1) v L R0 HI

DDO 0064 LSB 6.8 0.015 1.3 2.1 0.02 0.04 2.87 6.05 [23] [24] [24] [25]

F563-1 LSB 46.8 0.140 2.9 18.2 0.29 1.35 9.65 2.44 [26] [27] [27] [28]

F563-V2 LSB 57.8 0.266 2.0 6.3 0.20 0.60 2.26 6.15 [29] [27] [27] [28]

F568-3 LSB 80.0 0.351 4.2 11.6 0.30 1.20 3.43 3.16 [26] [27] [27] [28]

F583-1 LSB 32.4 0.064 1.6 14.1 0.18 0.15 2.32 1.92 [26] [27] [27] [28]

F583-4 LSB 50.8 0.096 2.8 7.0 0.06 0.31 3.25 2.52 [26] [27] [27] [28]

NGC 0959 LSB 13.5 0.333 1.3 2.9 0.05 0.37 1.11 7.43 [23] [30] [31] [30]

NGC 4395 LSB 4.1 0.374 2.7 0.9 0.13 0.83 2.21 2.29 [29] [32] [24] [32]

NGC 7137 LSB 25.0 0.959 1.7 3.6 0.10 0.27 0.28 3.91 [23] [33] ES [33]

UGC 0128 LSB 64.6 0.597 6.9 54.8 0.73 2.75 4.60 1.03 [34] [27] [35] [35]

UGC 0191 LSB 15.9 0.129 1.7 2.2 0.26 0.49 3.81 15.48 [23] [36] [36] [37]

UGC 0477 LSB 35.8 0.871 3.5 10.2 1.02 1.00 1.14 4.42 [29] [30] ES [30]

UGC 1230 LSB 54.1 0.366 4.7 37.1 0.65 0.67 1.82 0.97 [27] [27] [35] [35]

UGC 1281 LSB 5.1 0.017 1.6 1.7 0.03 0.01 0.53 3.02 [29] [36] [24] [32]

UGC 1551 LSB 35.6 0.780 4.2 6.6 0.44 0.16 0.20 3.69 [23] [38] [39] [38]

UGC 4325 LSB 11.9 0.373 1.9 3.4 0.10 0.40 1.08 7.39 [23] [32] [24] [32]

UGC 5005 LSB 51.4 0.200 4.6 27.7 0.28 1.02 5.11 1.30 [27] [27] [35] [35]

UGC 5750 LSB 56.1 0.472 3.3 8.6 0.10 0.10 0.21 1.58 [29] [27] [35] [35]

UGC 5999 LSB 44.9 0.170 4.4 15.0 0.18 3.36 19.81 5.79 [27] [27] [35] [35]

UGC 11820 LSB 17.1 0.169 3.6 3.7 0.40 1.68 9.95 8.44 [23] [37] [40] [37]
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TABLE IV: Properties of the LSB 21 Galaxy Sample

Galaxy Type Distance LB R0 Rlast MHI Mdisk (M/L)stars (v2/c2R)last Data Sources

(Mpc) (1010L⊙) (kpc) (kpc) (1010M⊙) (10
10M⊙) (M⊙/L⊙) (10−30

cm
−1) v L R0 HI

ESO 0140040 LSB 217.8 7.169 10.1 30.0 20.70 3.38 8.29 [26] [41] [42] NA

ESO 0840411 LSB 82.4 0.287 8.0 9.1 0.30 1.05 1.49 [26] [41] ES NA

ESO 1200211 LSB 15.2 0.028 2.0 3.5 0.01 0.20 0.66 [26] [41] ES NA

ESO 1870510 LSB 16.8 0.054 2.1 2.8 0.09 1.62 2.02 [26] [41] [43] NA

ESO 2060140 LSB 59.6 0.735 5.1 11.6 3.51 4.78 4.34 [26] [41] [42] NA

ESO 3020120 LSB 70.9 0.717 3.4 11.2 0.77 1.07 2.37 [26] [41] ES NA

ESO 3050090 LSB 13.2 0.186 1.3 5.6 0.06 0.32 1.87 [26] [41] ES NA

ESO 4250180 LSB 88.3 2.600 7.3 14.6 4.79 1.84 5.17 [26] [41] [42] NA

ESO 4880490 LSB 28.7 0.139 1.6 7.8 0.43 3.07 4.34 [26] [41] ES NA

F571-8 LSB 50.3 0.191 5.4 14.6 0.16 4.48 23.49 5.10 [26] [28] [27] [28]

F579-V1 LSB 86.9 0.557 5.2 14.7 0.21 3.33 5.98 3.18 [26] [28] [27] [28]

F730-V1 LSB 148.3 0.756 5.8 12.2 5.95 7.87 6.22 [26] [40] [40] NA

UGC 04115 LSB 5.5 0.004 0.3 1.7 0.01 0.97 3.42 [26] [41] [44] NA

UGC 06614 LSB 86.2 2.109 8.2 62.7 2.07 9.70 4.60 2.39 [26] [41] [35] [35]

UGC 11454 LSB 93.9 0.456 3.4 12.3 3.15 6.90 6.79 [26] [41] [40] NA

UGC 11557 LSB 23.7 1.806 3.0 6.7 0.25 0.37 0.20 3.49 [26] [41] [32] [32]

UGC 11583 LSB 7.1 0.012 0.7 2.1 0.01 0.96 2.15 [26] [41] [40] NA

UGC 11616 LSB 74.9 2.159 3.1 9.8 2.43 1.13 7.49 [26] [41] [40] NA

UGC 11648 LSB 49.0 4.073 4.0 13.0 2.57 0.63 5.79 [26] [41] [40] NA

UGC 11748 LSB 75.3 23.930 2.6 21.6 9.67 0.40 1.01 [26] [41] [40] NA

UGC 11819 LSB 61.5 2.155 4.7 11.9 4.83 2.24 7.03 [26] [41] [40] NA
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TABLE V: Properties of the Miscellaneous 21 Galaxy Sample

Galaxy Type Distance LB R0 Rlast MHI Mdisk (M/L)stars (v2/c2R)last Data Sources

(Mpc) (1010L⊙) (kpc) (kpc) (1010M⊙) (10
10M⊙) (M⊙/L⊙) (10−30

cm
−1) v L R0 HI

DDO 0168 LSB 4.5 0.032 1.2 4.4 0.03 0.06 2.03 2.22 [45] [45] [45] [45]

DDO 0170 LSB 16.6 0.023 1.9 13.3 0.09 0.05 1.97 1.18 [46] [46] [46] [46]

M 0033 HSB 0.9 0.850 2.5 8.9 0.11 1.13 1.33 4.62 [47] [47] [48] [47]

NGC 0055 LSB 1.9 0.588 1.9 12.2 0.13 0.30 0.50 2.22 [49] [49] [49] [49]

NGC 0247 LSB 3.6 0.512 4.2 14.3 0.16 1.25 2.43 2.94 [50] [51] [51] [50]

NGC 0300 LSB 2.0 0.271 2.1 11.7 0.08 0.65 2.41 2.69 [52] [51] [51] [52]

NGC 0801 HSB 63.0 4.746 9.5 46.7 1.39 6.93 2.37 3.59 [45] [45] [53] [45]

NGC 1003 LSB 11.8 1.480 1.9 31.2 0.63 0.66 0.45 1.53 [47] [47] [54] [55]

NGC 1560 LSB 3.7 0.053 1.6 10.3 0.12 0.17 3.16 2.16 [45] [45] [45] [45]

NGC 2683 HSB 10.2 1.882 2.4 36.0 0.15 6.03 3.20 2.28 [56] [56] [57] [55]

NGC 2998 HSB 59.3 5.186 4.8 41.1 1.78 7.16 1.75 3.43 [45] [45] [53] [45]

NGC 3109 LSB 1.5 0.064 1.3 7.1 0.06 0.02 0.35 2.29 [58] [59] [59] [58]

NGC 5033 HSB 15.3 3.058 7.5 45.6 1.07 0.27 3.28 3.16 [15] [15] [14] [15]

NGC 5371 HSB 35.3 7.593 4.4 41.0 0.89 8.52 1.44 3.98 [15] [15] [14] [15]

NGC 5533 HSB 42.0 3.173 7.4 56.0 1.39 2.00 4.14 3.31 [45] [45] [57] [45]

NGC 5585 HSB 9.0 0.333 2.0 14.0 0.28 0.36 1.09 2.06 [60] [60] [60] [60]

NGC 5907 HSB 16.5 5.400 5.5 48.0 1.90 2.49 1.89 3.44 [61] [55] [61] [55]

NGC 6503 HSB 5.5 0.417 1.6 20.7 0.14 1.53 3.66 2.30 [15] [15] [14] [15]

NGC 6674 HSB 42.0 4.935 7.1 59.1 2.18 2.00 2.52 3.57 [45] [45] [54] [45]

UGC 2259 LSB 10.0 0.110 1.4 7.8 0.04 0.47 4.23 3.76 [62] [62] [63] [62]

UGC 2885 HSB 80.4 23.955 13.3 74.1 3.98 8.47 0.72 4.31 [64] [53] [53] [55]
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FIG. 1: Fitting to the rotational velocities (in km sec−1) of the THINGS 18 galaxy sample with

their quoted errors as plotted as a function of radial distance (in kpc). For each galaxy we have

exhibited the contribution due to the luminous Newtonian term alone (dashed curve), the

contribution from the two linear terms alone (dot dashed curve), the contribution from the two

linear terms and the quadratic terms combined (dotted curve), with the full curve showing the

total contribution. No dark matter is assumed.
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FIG. 2: Fitting to the rotational velocities of the Ursa Major 30 galaxy sample – Part 1
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FIG. 2: Fitting to the rotational velocities of the Ursa Major 30 galaxy sample – Part 2
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FIG. 3: Fitting to the rotational velocities of the LSB 20 galaxy sample
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FIG. 4: Fitting to the rotational velocities of the LSB 21 galaxy sample
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FIG. 5: Fitting to the rotational velocities of the Miscellaneous 21 galaxy sample
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FIG. 6: Extended distance predictions for DDO 154 and UGC 128.
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