
ar
X

iv
:1

01
1.

15
00

v1
  [

he
p-

ph
] 

 5
 N

ov
 2

01
0

UMN-TH-2926/10

Large Nongaussianity in Axion Inflation

Neil Barnaby, Marco Peloso
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

e-mail: barnaby@physics.umn.edu, peloso@physics.umn.edu

The inflationary paradigm has enjoyed phenomenological success, however, a compelling particle
physics realization is still lacking. The key obstruction is that the requirement of a suitably flat
scalar potential is sensitive to Ultra-Violet (UV) physics. Axions are among the best-motivated
inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry.
We re-consider the cosmological perturbations in axion inflation, consistently accounting for the
coupling to gauge fields φF F̃ , which is generically present in these models. This coupling leads to
production of gauge quanta, which provide a new source of inflaton fluctuations, δφ. For an axion
decay constant <

∼ 10−2 Mp, this effect typically dominates over the standard fluctuations from the
vacuum and dramatically modifies phenomenological predictions. For concrete realizations that
admit a UV completion (such as N-flation and axion monodromy), this can be probed in the near
future. We show that: (1) a large tensor-to-scalar ratio is not generic in large field inflation, and,
(2) large nongaussianity is easily obtained in very minimal and natural realizations of inflation.

PACS numbers: 11.25.Wx, 98.80.Cq

I. INTRODUCTION

Primordial inflation is the dominant paradigm in cur-
rent cosmology since (i) it resolves the conceptual diffi-
culties of the standard big bang model, and (ii) it pre-
dicts primordial perturbations with properties in excel-
lent agreement with those that characterize the Cos-
mic Microwave Background (CMB) anisotropies. De-
spite these successes, there is still no compelling par-
ticle physics model of inflation; the key obstacle being
the requirement of a sufficiently flat scalar potential,
V (φ). Even generic Planck-suppressed corrections may
yield unacceptably large contributions to the slow roll

parameters ǫ ≡ M2

p

2

(
V ′

V

)2

, η ≡ M2
p
V ′′

V , thus spoiling in-

flation (prime denotes derivative with respect to φ, while
Mp

∼= 2.4 · 1018GeV is the reduced Planck mass). One
of the simplest solutions to this problem is to assume
that the inflaton φ is a Pseudo Nambu Goldstone Bo-
son (PNGB) [1]-[8]. In this case the inflaton enjoys a
shift symmetry φ → φ + const, which is broken either
explicitly or by quantum effects. In the limit of exact
symmetry, the φ direction is flat and thus dangerous cor-
rections to ǫ, η are controlled by the smallness of the
symmetry breaking. Moreover, PNGBs like the axion
are ubiquitous in particle physics: they arise whenever
an approximate global symmetry is spontaneously bro-
ken and are plentiful in string compactifications. Axion
inflation is also phenomenologically desirable since the
tensor-to-scalar ratio is typically large in such models.
The first explicit example of axion inflation was the

natural inflation model [1] in which the shift symmetry
is broken down to a discrete subgroup φ → φ + (2π)f ,
resulting in a periodic potential

Vnp(φ) ∼= Λ4 [1− cos (φ/f)] (1)

with f the axion decay constant. For such potential,
agreement with observations requires f > Mp, which may
be problematic since it suggests a global symmetry bro-

ken above the quantum gravity scale, where effective field
theory is presumably not valid. Moreover, f > Mp does
not seem possible in string theory [9]. More recently, sev-
eral controlled realizations of axion inflation have been
studied – including double-axion inflation [2], N-flation
[3, 4], axion monodromy [5] and axion/4-form mixing [8]
– which have f < Mp but nevertheless behave effectively
as large field inflation models (φ >∼ Mp).

In axion inflation models, the inflaton couples to some
gauge field as α

f φF
µν F̃µν , where Fµν = ∂µAν−∂νAµ and

F̃µν = ǫµναβFαβ/2. The scale of this coupling is set by
the axion decay constant, f ; the dimensionless parame-
ter α is typically order unity but can be ≥ 1 in multi-
field [2] or extra-dimensional models [7]. It is natural
to explore the implications of this generic interaction for
observables. In [7] it was shown that energy dissipation
into gauge fields can slow the motion of φ, providing a
novel new inflationary mechanism that operates at very
strong coupling. In this work, we point out that even in
the conventional slow-roll regime, the coupling φFF̃ can
have significant impact. The motion of the inflaton am-
plifies the fluctuations of the gauge field, which in turn
produce inflaton fluctuations via inverse decay [10] pro-
cesses: δA + δA → δφ. When f <∼ 10−2Mp, which is
quite natural for realizations that admit an UV comple-
tion, we show that the inverse decay typically dominates
over the usual vacuum fluctuations from inflation, and
this has dramatic phenomenological consequences. Our
results are quite general: in the spirit of effective field
theory, a coupling φFF̃ should be included whenever φ
is pseudo-scalar [11].

Recently, there has been considerable interest in non-
gaussian effects in the CMB (see the review [12] for refer-
ences). Nongaussianity will be probed to unprecedented
accuracy with the forthcoming Planck data and may pro-
vide a valuable tool to discriminate between models. Sev-
eral constructions are known which can predict an ob-
servable signature; however, in the minimal cases non-
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gaussianity is small, and obtaining an observable level
usually requires either fine-tuning or unconventional field
theories. Here we point out that the inverse decay con-
tribution to δφ is highly nongaussian in axion models;
observational bounds are easily saturated for modest val-
ues of f . Thus, the simplest and, perhaps, most natural
models of inflation can lead to observable nongaussianity.

II. COSMOLOGICAL PERTURBATIONS

We consider the theory

S = −1

2
(∂φ)2 − V (φ) − 1

4
FµνFµν − α

4f
φFµν F̃µν (2)

where φ is the PNGB inflaton, Fµν the field strength of
the gauge field (for simplicity, a U(1) gauge field is con-
sidered; the extension to non-Abelian groups is straight-
forward), and F̃µν its dual. The potential V (φ) may
contain a periodic contribution of the form (1) due to
non-perturbative effects and, perhaps, non-periodic con-
tributions from other effects (such as moduli stabilization
or wrapped branes). In this Section, we leave V (φ) arbi-
trary, except to suppose that it is sufficiently flat to sup-
port Ne

>∼ 60 e-foldings of inflation. We assume an FRW
geometry ds2 = −dt2 + a(t)2dx2 = a(τ)2

[
−dτ2 + dx2

]
.

Working in Coulomb gauge, we decompose ~A(t,x) into
circular polarization modes obeying [7]

[
∂2

∂τ2
+ k2 ± 2kξ

τ

]

A±(τ, k) = 0, ξ ≡ αφ̇

2fH
(3)

where dot denotes differentiation with respect to t, H ≡
ȧ/a, ξ ∼= const. We observe that one of the polarizations

of ~A experiences a tachyonic instability for k/(aH) <∼ 2ξ.
The growth of fluctuations is described by [7]

A+(τ, k) ∼=
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) (4)

in the interval (8ξ)−1 <∼ k/(aH) <∼ 2ξ of phase space
which accounts for most of the power in the produced
gauge field (we take φ̇ > 0 without loss of generality).
This interval is nonvanishing only for ξ >∼ O(1), which
we assume in the following. The production is uninter-
esting at smaller ξ.
The unstable growth of A+(τ, k) yields an important

new source of cosmological fluctuations, δφ. The pertur-
bations of the inflaton are described by [7, 13]

[
∂2

∂t2
+ 3H

∂

∂t
− ∇2

a2

]

δφ(t,x) =
α

f
Fµν F̃µν (5)

where the source term is constructed from (4). The so-
lution of (5) splits into two parts: the solution of the
homogeneous equation and the particular solution which
is due to the source. Schematically, we have

δφ = δφvac
︸ ︷︷ ︸

homogeneous

+ δφinv.decay
︸ ︷︷ ︸

particular

(6)

The quantity of interest is the primordial curvature
perturbation on uniform density hypersurfaces, ζ =
−H

φ̇
δφ. We computed the two-point 〈ζ (x) ζ (y)〉 and

three-point 〈ζ (x) ζ (y) ζ (z)〉 correlation functions using
the formalism of [7, 13]. The two-point function defines
the power spectrum

〈ζ(x)ζ(y)〉 =
∫

dk

k

sin [k|x− y|]
k|x− y| Pζ(k) (7)

We find the result

Pζ(k) = P
(

k

k0

)ns−1 [

1 + 1.1 · 10−4P e4πξ

ξ3

]

(8)

P1/2 ≡ H2

2π|φ̇|
(9)

where ns is the spectral index, and the pivot scale is
k0 = 0.002Mpc−1. The two terms in (8) are the power
spectra of the homogeneous and inhomogeneous parts of
(6), respectively. There is no “mixed term” since the
two contributions (6) are uncorrelated. (The gauge fluc-
tuations that source δφinv.decay, and that are amplified
according to (3), are not correlated with the vacuum
inflaton fluctuations.) The power spectrum is probed
by CMB and Large Scale Structure observations. It is
found to be nearly scale invariant (ns ≃ 1, the precise
value depends on the data set assumed [14]; due to this
approximate scale invariance the specific value of k0 is
irrelevant for our considerations), and have amplitude
Pζ(k) ∼= 25 · 10−10 [15] (the so-called COBE normaliza-
tion). When inverse decay fluctuations are subdominant,
we have the standard result P1/2 = 5 · 10−5; however, at
large ξ the value of P must be modified.
The three-point correlation function encodes depar-

tures from gaussianity. Nongaussian effects from inverse
decays are maximal when all three modes have compara-
ble wavelength (the equilateral configuration). The mag-
nitude of the three-point function is conventionally quan-
tified using the parameter fNL [14]. We find that:

f equil
NL

∼= 1.4 · 108P3 e6πξ

ξ3
(10)

This result does not include the negligible contribution

from δφvac and is accurate as long as |f equil
NL | >∼ 1. The

current WMAP bounds are −214 < f equil
NL < 266 (95%

CL), while the Planck satellite, and planned missions,

will constrain f equil
NL to O(10) [16].

The results (8) and (10) only depend on the two di-
mensionless combinations ξ and P1/2, shown in Figure 1.
The solid red curve indicates the parameter values which
reproduce the COBE normalization of the power spec-
trum. In the region below, and above the dashed black
line the power spectrum is dominated by δφvac and by
δφinv.decay, respectively. The COBE normalized curve
crosses this boundary at ξ ≃ 2.6. For larger ξ, the
conventionally quoted results for axion inflation are in-
valid. First of all, the nongaussianity of the perturba-
tion reaches a detectable level. Moreover, P1/2 needs
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to be smaller than the standard ∼ 5 · 10−5 value. This
typically requires lowering the value of H (at least for
the large-field models considered in the next Section).
The decrease of H , in turn, has the effect of decreas-
ing the power in the tensor fluctuations (gravity waves),

PT
∼= 8

M2
p

(
H
2π

)2
(to leading order, PT (k) is not influenced

by the unstable growth ofA+). The tensor-to-scalar ratio
r ≡ PT /Pζ

∼= 8.1 ·107H2/M2
p is an important quantity to

discriminate between different inflationary models. We
find that r must decrease with increasing ξ ≥ 2.6. The
current observational limit is r <∼ 0.2 [14], and activity is
underway to probe r >∼ 0.01 [15].
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FIG. 1: Values of parameters leading to the observed COBE
normalization of the power spectrum (red line), and reference

values for the nongaussianity parameter fequil

NL = 1, 10, 100
along this curve. See the main text for details.

The results (8) and (10) have been obtained by disre-
garding two backreaction effects of the produced gauge
quanta. Such quanta are produced at the expense of the
kinetic energy of φ, so that, if the instability is sufficiently
strong, then it will affect the inflaton dynamics. The re-
gion of parameter space where this occurs is above the
black solid line (P1/2 > 13ξ3/2 e−πξ) shown in Figure 1.
We have also disregarded the impact of the energy den-
sity of the produced quanta on the expansion rate, H .
This is justified provided e2πξ/ξ3 < 2 · 104M2

p/H
2. This

constraint is not expressed in terms of ξ and P1/2, so
we have not included it in Figure 1. However, it can be
studied on a case-by-case basis.

III. PREDICTIONS FOR SPECIFIC MODELS

We now focus our attention on the power-law potential

V (φ) = µ4−pφp (11)

which subsumes many interesting scenarios. Inflation
proceeds at large field values φ >∼ Mp and ends when

φ ∼ Mp. For this model, the values of H , φ̇ and ns

are uniquely determined by the number of e-foldings of
observable inflation Ne, according to the standard slow
roll inflaton evolution (ǫ, η ≪ 1). In the following, we
fix Ne = 60, which is the typical value taken in large

field models. Once we do so, we are left with the two
parameters f/α, and µ. For any given value of f/α, the
mass scale µ is uniquely determined by fixing the power
spectrum (8) to the COBE value. Therefore, we can plot
the observational predictions as a function of f/α only.
We do so in Figure 2, where we take p = 1, 2 for illus-
tration. In both cases shown, backreaction effects can be
neglected.
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FIG. 2: Observational predictions for the large-field power-
law inflation model (11) with p = 1, 2 and assuming Ne

∼= 60.
The spectral index is ns = 0.975, 0.967 for p = 1, 2. At small
f/α the coupling of φ to FF̃ is stronger and nongaussianity is
large. The tensor-to-scalar ratio decreases at strong coupling,
as discussed in the main text.

Figure 2 shows that large nongaussianity is rather

generic for large-field axion inflation: f equil
NL

>∼ 10 for
decay constants f/α <∼ 10−2Mp, which is natural in a
model that admits a UV completion. If Planck does
not detect nongaussianity, then we will have a surpris-
ing bound on the strongest couplings of the type φFF̃
between the inflaton and any gauge field. Figure 2 also
shows that the model (11) need not predict observably
large r, contrary to the common lore. We now consider
the implications for some specific models.
Natural Inflation: The original natural inflation

model [1] was based on the potential (1). If we require
ns

>∼ 0.95, as suggested by recent data [14], then the
model requires a large decay constant f >∼ 5Mp [17]. In
this regime inflation proceeds near the minimum φ = 0
and is indistinguishable from the model (11) with p = 2.

Large values of f weaken the coupling of φ to FF̃ , hence
inverse decay is negligible unless α >∼ 180, whereas we
expect α = O(1) in the simplest (single-axion) scenario.
On the other hand, f >∼ Mp may be problematic and it
seems that a UV completion of axion inflation requires
f < Mp. We now turn our attention to such scenarios.
Axion Monodromy: In [5] an explicit, controlled

realization of axion inflation was obtained from string
theory. The potential has the form V (φ) = µ3φ +
Λ4 cos(φ/f) where the linear contribution arises because
the shift symmetry is broken by wrapping an NS5-brane
on an appropriate 2-cycle, and the periodic modulation
is due to nonperturbative effects. The former typically
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dominates [5, 6] so we have the model (11) with p = 1,
to first approximation. The decay constant is bounded

[5] as 0.06V−1/2g
1/4
s < f/Mp < 0.9gs with gs < 1 the

string coupling and V ≫ 1 the compactification volume
in string units. From Fig. 2 we see that large nongaus-
sianity is easily obtained for α = O(1). Note that the
periodic modulation of V (φ) can also lead to resonant
nongaussianity [22] for f <∼ 10−2Mp and Λ sufficiently
large [6].
N-flation: In [3] it was noted that the collective mo-

tion of N axions φi, each with its own broken shift sym-
metry, can support inflation when fi < Mp, via the as-
sisted inflation mechanism [18]. This scenario is quite
natural in string theory, where generic compactifications
may contain exponentially large numbers of axions [3, 4].
For φi

<∼ fi we can expand the potential near the min-
imum to obtain V ∼=

∑

i m
2
iφ

2
i /2. The dynamics of the

collective field Φ ≡
√∑

i φ
2
i are well-described by a single

field model of the form (11) with p = 2 [3, 4]. Sufficient
inflation requires Φ > Mp which can be achieved for sub-

Planckian φi provided
√
N is sufficiently large.

Typically, the mass basis {φi} is not aligned with
the interaction basis [19, 20], so that all φi will cou-

ple to a given gauge field as Lint = −∑

i αiφiFF̃/fi.

The coupling of the collective field Φ to FF̃ is highly
model-dependent but can be parametrized as Lint =
−αeffΦFF̃/feff , so that the result of Fig. 2 apply for the
effective coupling. A precise calculation depends on the
mass rotation and detailed microphysics, but we expect
that an observable signal may be possible for reasonable
parameters.
Axion Mixing: Ref. [8] realizes p = 2 via axion/4-

form mixing. Here f < Mp so f equil
NL ≫ 1 is possible.

Double-Axion Inflation: Ref. [2] proposed a model
characterized by two axions θ and ρ, with potential

V =

2∑

i=1

Λ4
i

[

1− cos

(
θ

fi
+

ρ

gi

)]

(12)

which arises from the coupling of the two axions to two
different gauge groups, θ

fi
FiF̃i, and ρ

gi
FiF̃i (up to nu-

merical coefficients). For f1/g1 = f2/g2, one linear com-
bination of the two axions becomes a flat direction of
(12). This relation can be ascribed to a symmetry of the
theory, and the curvature of the potential along this di-
rection can be made controllably small if this symmetry
is only slightly broken. In this case one obtains an effec-
tive large field inflaton, with a potential of the type (1),
and with an effective axion constant > Mp, even if all the
fi, gi are sub-Planckian. Therefore, this model can lead

to large production of gauge fields and observable f equil
NL .

In summary, we have shown that large nongaussianity
is possible for many explicit axion inflation models which
admit a UV completion. Our qualitative results will carry
over to any inflation model with a PNGB dynamically
important during inflation, including multi-field models
such as the roulette [23] or racetrack [24] scenarios. Sim-
ilar effects may also be possible for higher p-form fields.
It would be interesting to study the value of α in concrete
string theory realizations.
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