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Nonlinear Density Waves

Nonlinear Density Waves in the Single-Wave Model
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The single-wave model equations are transformed to an exact hydrodynamic closure by using a class of
solutions to the Vlasov equation corresponding to the waterbag model. The warm fluid dynamic equations
are then manipulated by means of the renormalization group method. As a result, amplitude equations for
the slowly varying wave amplitudes are derived. Since the dispersion equation for waves has in general three
roots, two cases are examined. If all three roots of the dispersion equation are real, the amplitude equations
for the eigenmodes represent a system of three coupled nonlinear Schrodinger equations. In the case, where
the dispersion equation possesses one real and two complex conjugate roots, the amplitude equations take
the form of two globally coupled complex Ginzburg-Landau equations.
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I. INTRODUCTION

The processes of pattern and coherent structures for-
mation in plasmas and plasma-like media have attracted
attention for many years. A number of approxima-
tions and simplified models has been proposed, amongst
which the single-wave model is one of the most efficient
approaches to study the weakly nonlinear behavior in
marginally stable plasmas. Starting from the general
Vlasov-Maxwell equations for the phase space density
distribution and the self-consistent field, one usually de-
rives a self-consistent set of equations describing the evo-
lution of the coarse-grained distribution function and a
certain isolated marginally stable wave mode of the elec-
trostatic potential.

Using the method of matched asymptotic expan-
sions, the single-wave model equation has been recently
derived1 in the most general case. Amongst earlier pio-
neering work utilizing the single-wave model, the stud-
ies dedicated to the beam-plasma instability2–4 and the
bump-on-tail instability5–7 should be mentioned.

The present paper is organized as follows. In the next
section, we cast the self-consistent single-wave model
equations derived by del-Castillo-Negrete1 in an equiva-
lent form by using a class of exact solutions to the Vlasov
equation corresponding to the waterbag model8,9. Fur-
ther, the exact closure of hydrodynamic equations are
manipulated following the renormalization group (RG)
approach9. As a result amplitude equations for the slowly
varying wave envelopes are derived. Depending on the
character of the solutions of the dispersion equation to
cases can be distinguished. In the first case, where all
three roots of the dispersion equation are real, the ampli-
tude equations represent a system of three coupled non-
linear Schrodinger equations. If the dispersion equation
possesses one real and two complex conjugate roots, the

a)Department of Physics, Lancaster University and The Cockcroft
Institute, Keckwick Lane, Daresbury, WA4 4AD, United Kingdom.

amplitude equations take the form of two globally cou-
pled complex Ginzburg-Landau equations. Finally, in the
last section, we draw some conclusions and outlook.

II. THEORETICAL MODEL AND BASIC EQUATIONS

The basic equations derived by del-Castillo-Negrete1,
which will be the starting point of our subsequent anal-
ysis can be written as

∂tf + V∂xf + ∂xϕ∂Vf = 0, (1)

ϕ = a(t)eix + a∗(t)e−ix, (2)

σ
da

dt
+ ila = i

〈
fe−ix

〉
, (3)

where the operator averaging is denoted by

〈. . . 〉 =
1

2π

∞∫

−∞

dV

2π∫

0

dx . . . . (4)

The independent time t and spatial x variables, as
well as the dependent ones f(x,V ; t) and ϕ(x; t)
entering the above equations have been properly
nondimensionalized1.
For present purposes, we restrict the analysis to a spe-

cial class of exact solutions to Eq. (1) corresponding to
the waterbag distribution8,9

f(x,V ; t) = C[H(V − v−(x; t))−H(V − v+(x; t))], (5)

where H denotes the well-known Heaviside function, C is
a normalization constant and 0 < x < 2π is a normalized
spatial variable. It simply means that the phase space
density f(x,V ; t) remains constant within a region con-
fined by the boundary curves v±(x; t), which are assumed
to be single valued. The latter distort nonlinearly during
the evolution of the system as specified by Eqs. (1) - (3).
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It is convenient to introduce the macroscopic fluid vari-
ables

̺ =

∞∫

−∞

dVf(x,V ; t) = C(v+ − v−), (6)

̺v =

∞∫

−∞

dVVf(x,V ; t) =
C

2

(
v2+ − v2−

)
, (7)

where ̺(x; t) and v(x; t) are the density and the current
velocity, respectively. It can be shown that the higher
moments defining the particle pressure P(x; t) and the
heat flow Q(x; t) can be expressed as

P =

∞∫

−∞

dV(V − v)
2
f(x,V ; t) =

C

12
(v+ − v−)

3
, (8)

Q =

∞∫

−∞

dV(V − v)
3
f(x,V ; t) = 0. (9)

In particular, the last expression (9) implies that the
waterbag distribution yields an exact closure of the hy-
drodynamic equations in the form

∂t̺+ ∂x(̺v) = 0, (10)

∂tv + v∂xv + v2T∂x
(
̺2
)
= ∂xϕ, (11)

where

v2T =
1

8C2
, (12)

is the normalized thermal speed-squared. The macro-
scopic fluid equations (10) and (11) must be supple-
mented with the equation for the amplitude of the field
mode (3), written in the form

σ
da

dt
+ ila = i

〈
̺e−ix

〉
, (13)

where now the operator averaging specified by Eq. (4)
involves integration on the normalized spatial variable x
only, and the potential ϕ is given by expression (2) as
before.
We further scale the hydrodynamic and field variables

according to the expressions

̺ = ̺0 + ǫR, v = v0 + ǫV, a = ǫα, ϕ = ǫΦ, (14)

where ǫ is a formal small parameter, and will be set
equal to one at the end of the calculations. Furthermore,
̺0 = const and v0 = const represent the stationary so-
lution of Eqs. (10) and (11), provided the stationary

field amplitude a0 = 0. The basic macroscopic fluid and
electrostatic field equations can be rewritten as

∂tR+ ̺0∂xV + v0∂xR = −ǫ∂x(RV ), (15)

∂tV + v0∂xV + 2̺0v
2
T ∂xR− ∂xΦ = −ǫ∂x

(
V 2

2
+ v2TR

2

)
,

(16)

σ
dα

dt
+ ilα = i

〈
Re−ix

〉
, (17)

Φ = α(t)eix + α∗(t)e−ix. (18)

To simplify the above system of equations, we perform a
Galilean transformation specified by

z = x− v0t, Ψ(t) = α(t)eiv0t, (19)

and cast our basic system of equations in the form

∂tR+ ̺0∂zV = −ǫ∂z(RV ), (20)

∂tV + 2̺0v
2
T∂zR− ∂zΦ = −ǫ∂z

(
V 2

2
+ v2TR

2

)
, (21)

σ
dΨ

dt
+ iLΨ = i

〈
Re−iz

〉
, (22)

Φ = Ψ(t)eiz +Ψ∗(t)e−iz , L = l − σv0. (23)

Eliminating V from the left-hand-sides of Eqs. (20) and
(21), we arrive at the basic system

∂2
tR−λ2∂2

zR−̺0Φ = −ǫ∂t∂z(RV )+ǫ̺0∂
2
z

(
V 2

2
+ v2TR

2

)
,

(24)

σ∂tΨ+ iLΨ = i
〈
Re−iz

〉
, λ2 = 2̺20v

2
T , (25)

for the subsequent analysis using the RG approach.

III. RENORMALIZATION GROUP REDUCTION OF

THE MACROSCOPIC EQUATIONS

Following the standard procedure of the RG method9,

we represent Ĝ(z, Z; t) as a perturbation expansion

Ĝ(z, Z; t) =

∞∑

n=0

ǫnĜn(z, Z; t), (26)

where Ĝ = (R, V,Φ) represents all hydrodynamic and
field variables, and Z = ǫz is a slow spatial variable.
Thus, the only renormalization parameter left at our dis-
posal is the time t which will prove extremely convenient
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and simplify tedious algebraic manipulations in the se-
quel.
To zero order the perturbation equations (24) and (25)

can be written as

∂2
tR0 − λ2∂2

zR0 = ̺0
(
Ψ0e

iz +Ψ∗
0e

−iz
)
, (27)

σ∂tΨ0 + iLΨ0 = i
〈
R0e

−iz
〉
. (28)

Since the equation for R0 is inhomogeneous (with regard
to the spatial variable z), its solution is sought in the
form

R0(z, Z; t) = F(Z; t)eiz + F∗(Z; t)e−iz, (29)

where the function F satisfies the equation

(
∂2
t + λ2

)
(σ∂t + iL)F − i̺0F = 0. (30)

Taking the latter into account, we can write the general
solution for R0 in the form

R0(z, Z; t) =
∑

m

Am(Z)eiωmt+iz +
∑

m

A∗
m(Z)e−iω∗

m
t−iz ,

(31)
where the sum spans over all roots of the characteristic
equation

(
ω2 − λ2

)
(σω + L) + ̺0 = 0. (32)

In general, the characteristic equation has three roots.
However, as it will become clear from the subsequent
exposition, in the cases of physical interest one of the
roots is real, while the other two are complex conjugate.
Note also that the arbitrary (to this end) amplitudes Am

are constants with respect to the fast variables z and t,
but can depend on the slow spatial variable Z.
Using Eqs. (21) and (28), we find

V0 = −
1

̺0

∑

m

ωmAmeiωmt+iz −
1

̺0

∑

m

ω∗
mA∗

me−iω∗

m
t−iz ,

(33)

Ψ0 =
1

̺0

∑

m

(
λ2 − ω2

m

)
Ameiωmt. (34)

In first order the basic equations (24) and (25) can be
expressed as

∂2
tR1 − λ2∂2

zR1 − ̺0Φ1 = 2iλ2
∑

m

∇ZAmeiωmt+iz

−
1

̺0

∑

m,n

GmnAmAne
i(ωm+ωn)t+2iz + c.c., (35)

σ∂tΨ1 + iLΨ1 = i
〈
R1e

−iz
〉
. (36)

Here ∇Z denotes differentiation with respect to the slow
variable Z. Moreover, Gmn is a symmetric matrix given
by the expression

Gmn = (ωm + ωn)
2
+ 2
(
ωmωn + λ2

)
. (37)

It can be verified in a straightforward manner that the
general solution of the first order equations is

R1 = t
∑

m

Vgm∇ZAmeiωmt+iz

+
1

̺0

∑

m,n

FmnAmAne
i(ωm+ωn)t+2iz + c.c., (38)

where

Fmn =
(ωm + ωn)

2
+ 2
(
ωmωn + λ2

)

(ωm + ωn)
2
− 4λ2

. (39)

The quantity Vgm is the group velocity, defined as follows.
Let us introduce the dispersion function10

D(k, ω) =
(
λ2k2 − ω2

)
(σω + L)− ̺0, (40)

corresponding to a general solution of Eq. (24) propor-
tional to eiωt+ikz , where k is the wave number. Obvi-
ously, the dispersion equation for k = 1 that is, D(1, ω) =
0 reduces to the characteristic equation (32). The group
velocity is given by the expression10

Vgm =
dωm

dk

∣∣∣∣
k=1

= −
∂D

∂k

(
∂D

∂ωm

)−1
∣∣∣∣∣
k=1

, (41)

or in an explicit form

Vgm =
2̺0λ

2

(ω2
m − λ2)(σλ2 − 3σω2

m − 2Lωm)
. (42)

For the first order current velocity V1 we obtain

V1 = −
1

̺20

∑

m,n

VmnAmAne
i(ωm+ωn)t+2iz+c.c.+. . . , (43)

where

Vmn =
ωmωn + λ2 + 2λ2Fmn

ωm + ωn

, (44)

and the dots on the right-hand-side of Eq. (43) represent
additional terms, which do not contribute to the secular
terms in second order.
The final step in our perturbative procedure is to ob-

tain the secular second-order solution. Retaining terms
giving rise to secular contributions in the second-order
solution, we can express the constitutive equations as
follows

∂2
tR2 − λ2∂2

zR2 − ̺0Φ2
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= 2itλ2
∑

m

Vgm∇2
ZAmeiωmt+iz + λ2

∑

m

∇2
ZAmeiωmt+iz

−
2

̺20

∑

m,n

ΓmnAm

∣∣∣Ãn

∣∣∣
2

eiωmt+iz + c.c., (45)

σ∂tΨ2 + iLΨ2 = i
〈
R2e

−iz
〉
, (46)

where the coupling matrix Γmn is given by the expression

Γmn = ωmωn + λ2 + 3λ2Fmn

+ (ωm + 2iγn)(ωn − 2iγn)Fmn, (47)

and

γm = Im(ωm), Ãm = Ame−γmt. (48)

It is straightforward to verify that the secular second-
order solution can be expressed as

R2 =
∑

m

(
V 2
gmt2

2
−

it

2
Gm

)
∇2

ZAmeiωmt+iz

−
it

̺20λ
2

∑

m,n

VgmΥmnAm

∣∣∣Ãn

∣∣∣
2

eiωmt+iz + c.c., (49)

where

Υmn = Γmn

σ(ωm + 2iγn) + L

σωm + L
, (50)

Gm = Vgm

[
1 +

V 2
gm

̺0λ2

(
ω2
m − λ2

)
(3σωm + L)

]
. (51)

The last step is to collect all terms corresponding to in-
creasing orders, which contribute to R(z, Z; t) and per-
form a resummation such as to absorb secular terms (pro-
portional to various powers of the time variable t) present
in R1 and R2. Since this approach is standard9, we omit
details here.

IV. THE RENORMALIZATION GROUP EQUATION

Following the standard procedure9,10 of the RG
method, we finally obtain the desired RG equation

i∂tÃm − iVgm∂zÃm

=
Gm

2
∂2
z Ãm +

Vgm

̺20λ
2

∑

n

ΥmnÃm

∣∣∣Ãn

∣∣∣
2

, (52)

where now Ãm denotes the renormalized complex am-
plitude of the type (48). In terms of the renormalized

wave envelopes, the macroscopic density ̺(z; t) can be
expressed as

̺(z; t) = ̺0 +
∑

m

Ãm(z; t)eiRe(ωm)t+iz

+
∑

m

Ã∗
m(z; t)e−iRe(ωm)t−iz. (53)

Similar expressions hold for the current velocity V [com-
pare with Eq. (33)] and for the electrostatic potential Ψ
[compare with Eq. (33)].
It was mentioned in the previous section that being an

algebraic equation of third order, the characteristic equa-
tion (32) possesses three roots in general. Thus, we can
distinguish the following two cases of physical interest.
All three roots ω1, ω2 and ω3 are real. Therefore, the

renormalization group equation (52) comprises a system
of three coupled nonlinear Schrodinger equations

i∂tAm − iVgm∂zAm

=
Gm

2
∂2
zAm +

Vgm

̺20λ
2

3∑

n=1

ΓmnAm|An|
2
, (54)

where m = 1, 2, 3.
One real ω1 root and two ω2 and ω∗

2 complex conju-
gate roots. In this case the renormalization group equa-
tion (52) represents a system of two coupled complex
Ginzburg-Landau equations of the form

i∂tA1 − iVg1∂zA1 =
G1

2
∂2
zA1

+
Vg1

̺20λ
2

[
Γ11|A1|

2
+ Γ12(1 + 2iγ12)

∣∣∣Ã2

∣∣∣
2
]
A1, (55)

i∂tÃ2 − iVg2∂zÃ2 =
G2

2
∂2
z Ã2

+
Vg2

̺20λ
2

[
Γ21|A1|

2 + Γ22(1 + 2iγ22)
∣∣∣Ã2

∣∣∣
2
]
Ã2, (56)

where the quantities γ12 and γ22 are given by the expres-
sions

γ12 =
σγ2

σω1 + L
, γ22 =

σγ2

σω2 + L
. (57)

The complexity of the coupling coefficient in Eq. (55)
prevents the system (55) - (56) from possessing a solution
in the form of a plane wave. However, if the imaginary
part of the complex coupling coefficient in Eq. (55) is
small and can be neglected, the above system reduces
to a coupled set of a nonlinear Schrodinger and a com-
plex Ginzburg-Landau equation. Since the second equa-
tion (56) generally possesses a solution in the form of
a planar wave with constant amplitude, the first equa-
tion (55) can be transformed approximately to a dissi-
pative nonlinear Schrodinger equation. Finally, in the
third limiting case, where A1 = 0, we end up with a sin-

gle complex Ginzburg-Landau equation (56) for the Ã2

amplitude only.
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V. CONCLUDING REMARKS

Using a class of waterbag phase space density distribu-
tions, which is an exact solutions to the Vlasov equation,
we have cast the single-wave model equations to a fluid
dynamic form with nonzero thermal velocity. Since the
continuity and momentum balance equations comprise an
exact hydrodynamic closure, the hydrodynamic represen-
tation is fully equivalent to the original Vlasov-Maxwell
system.
Based on the renormalization group method, a sys-

tem of coupled nonlinear equations for the slowly vary-
ing amplitudes of interacting plasma density waves has
been derived. Depending on the solution of the disper-
sion equation the system mentioned above takes the form
of either three coupled nonlinear Schrodinger equations
in the case, where all three roots are real, or two cou-
pled complex Ginzburg-Landau equations if the disper-
sion equation possesses one real and two complex conju-

gate roots.
An interesting continuation of the present study would

be the consideration of large-scale hydrodynamic fluctu-
ations and their influence on the dynamics of perturba-
tions. This we plan to complete in a future publication.
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