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Common practice in community structure detection is to develop different methods for different
classes of networks. Here, we first show that unipartite networks and directed networks can be
uniformly represented as bipartite networks, and their modularity completely consist with that for
bipartite networks. To optimize the bipartite modularity, we then present a modified adaptive ge-
netic algorithm, called as MMOGA, which is especially suited for community structure detection.
In MMOGA, we introduce a new measure for the informativeness of a locus instead of the standard
deviation, which can exactly determine those loci to mutate. This measure is the bias between the
distribution of a locus over the current population and the uniform distribution of the locus, i.e.,
Kull-back Divergence between them. Moreover, we develop a reassignment technique for differen-
tiating the informative state a locus has attained from the random state at initial phase. Also we
present a modified mutation rule which incorporating related operation can guarantee MMOGA the
convergence to the global optima and can speed up the convergence process. Experimental results
show that MMOGA is superior to MOGA and standard genetic algorithms as well as BRIM when
applied to bipartite networks.

PACS numbers: 89.75.Hc, 02.10.Ox, 02.50.-r

I. INTRODUCTION

Complex network has gain overwhelming popularity as
a tool for understanding various complex systems from
diverse fields, including technical, natural and social sci-
ence, etc., which provides a unified perspective and uni-
fied methods for studying these systems through mod-
eling them as networks with nodes and edges respec-
tively representing their units and interactions between
units [1–6]. Generally, networks can be classified into uni-
partite, bipartite and multipartite networks, considering
types of their nodes. As a typical class of real-world net-
works, bipartite networks, compared to unipartite ones,
consist of two types of nodes and edges presenting only
between distinct types. Examples of bipartite networks
come from various fields, including scientific collaborate
networks, actor-movie networks and protein-protein in-
teraction networks [1, 2, 9–11]. Multipartite networks
with more than three types of nodes, are occasionally
seen[7, 8].

It has been discovered [9] that most of real networks
share the local clustering feature, i.e., community struc-
ture, which describes that groups of tight-knit nodes are
mutually connected to each other with sparser edges.
These groups of nodes are generally referred to as com-
munities or modules. From a topological point of view, a
community may correspond to a function unit because of
its structurally relative independence. In turn, commu-
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nity structure can critically affect dynamics of networks.
Therefore, identification of communities is playing the
key role in numerous studies such as predicating protein
function[12] and determing dynamics of systems [13–15].
The last few years have witnessed tremendous efforts
in this domain [10, 15–26](useful reviews include Refs.
[27, 28]). Most of these are dedicated to deal with uni-
partite networks while little attention has been paid to
directed networks [23, 24] and bipartite ones [24–26].

It is of interest that unipartite networks and directed
networks can be represented by bipartite networks as we
shall show. Thus, detecting communities in unipartite
networks or in directed networks can be transformed into
the task in bipartite networks. Given a bipartite mod-
ularity, those methods based on modularity maximiza-
tion [16–19], in principle, can be applied to bipartite net-
works. However, they are expected to affected by the
resolution limit [29, 30] as in the unipartite case, which
may result in the degeneracy problem [31] there existing
an exponential number of distinct of high-scoring parti-
tions. This poses a challenge for the methods returning
one solution. Instead, we present a modified adaptive ge-
netic algorithm to optimize the bipartite modularity [26].
The evolutionary method can return a better solution
in a shorter time. Moreover, the method also can re-
turn multiple better solutions, which enables us to have
a chance to evaluate the reliability of solutions. Addition-
ally, it bears a potential merit that it admits to obtain
a better solution by combining different solutions when
the degeneracy problem is severe.

For a bipartite network, there exists different concep-
tual understanding of the community structure. A point
of view for communities in the network is to consider each
composed of two types of nodes with dense edges across
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them, which is similar to that in unipartite cases [26]. Al-
ternative view is that any community should contain only
one type of nodes, which are closely connected through
co-participation in many communities that consist of an-
other type of nodes [24]. Guided by this view, the usual
approach to identify communities is to project the bi-
partite network onto one specific unipartite network as
needed, and then identify communities in the projection.
Guimerà et al [24] recently presented a method for iden-
tifying communities of one type of nodes against other
type of nodes with a known community structure.
In this paper, we focus on dealing with the problem of

identifying communities in the former view. We present
a modified adaptive genetic algorithm based on mutation
only genetic algorithm (MOGA) that are parameter-free
unlike traditional genetic algorithm. The method has
no need to know the number of communities and their
sizes in advance. In section II, we first give a short re-
view on Barber’s modularity and then show unpartite
networks and directed networks can be uniformly rep-
resented by bipartite networks. In section IIIA, we de-
scribe the frame of MOGA, and introduce a new measure
for selecting loci to mutate in III B, as well as we develop
the reassignment technique in III C. We also discuss the
problem of selecting population size in IIID and that of
convergence in III E. In section IV, we apply the new
algorithm to several networks including model bipartite
network, southern women network and Scotland interlock
network. At last, the conclusion is given.

II. BIPARTITE MODULARITY

Modularity introduced by Newman and Girvan [10]
aims at quantifying the goodness of a particular division
of a given network, which has been widely accepted as
a benchmark index to measure and to compare accuracy
of various methods of community detection. The defini-
tion of this quantity is based on the idea that commu-
nity structure definitely means a statistically surprising
arrangement of edges, that is, the number of actual edges
within communities should be significantly beyond that
of expected edges of a null model. In turn, a null model
should have the same number of nodes and degree distri-
bution as the original network while edges are placed by
chance.
Let ki be the degree of nodes i, M be the total num-

ber of edges, then in the null model [18] the probabil-

ity for an edge presenting between nodes i and j is
kikj

2M .
Then modularity quantifies the extent, relative to the null
model network, to the number of actual edges exceeding
the expectation, which can be formulated as follows:

Q =
1

2M

n
∑

i=1

n
∑

j=1

(Ai,j −
kikj
2M

)δ(gi, gj) (1)

where Q is the sum of the difference over all groups of the
particular partition, Ai,j is the adjacent matrix element,

gi represents the group the node i is assigned to, and
the δ function takes the value of 1 if gi equals to gj, 0
otherwise.
The maximum value of Q is 1, and values approach-

ing 1 indicate strong community structure. On the con-
trary, when the number of within-community edges is
no better than random, Q≤0 and values approaching 0
imply weaker community structure or indivisibility. Con-
sequently, community structure detection can be formu-
lated as a problem of maximization of modularity, which
has prevailed in the research area.
The modularity above-mentioned is actually designed

for unipartite networks. To be suitable for various net-
works, several varieties of modularity based on different
null model has been proposed, including weighted [32],
directed [23] and bipartite modularity [24, 26]. A bi-
partite network with n nodes can be conveniently de-
noted by a duality (p,q) (p+q=n), where p and q re-
spectively represent the numbers of the two types of
nodes. We can renumber nodes such that in the sequence
1, 2, · · · , p, p + 1, · · · , n, the leftmost p indices represent
the first type of nodes and the remainder represent the
second type of nodes. Then, Barber’s bipartite modular-
ity [26] that considers a community composed of distinct
types of nodes in the network, can be written as

Qb =
1

M

p
∑

i=1

n
∑

j=p+1

(Ai,j −
kikj
M

)δ(gi, gj) (2)

Immediately, subtle difference between the two modu-
larities in (1) and (2) can be observed. It is of interest
that we will see a unipartite network can be equivalently
represented as a bipartite one, and the bipartite modular-
ity can recover the modularity for the original network.
If each node i is represented by two nodes Ai and Bi,
each edge i − j represented by two edges Ai − Bj and
Aj −Bi, then a unipartite network with n nodes and M
edges is transformed into a corresponding bipartite net-
work with 2n nodes and 2M edges. For example, the
transformation of a simple unipartite network is shown
in Figs. 1. Further, if we label n nodes Ai with 1, 2,
. . . ,n and label Bi with n+1, n+2, . . . , 2n, then an edge
i − j in the original network corresponds to two edges,
i− (n+ j) and j− (n+ i). Using the bipartite modularity
introduced in Eq. (2) on the induced bipartite network,
we have

Qb =
1

2M

n
∑

i=1

2n
∑

j=n+1

(Ãi,j −
kikj
2M

)δ(gi, gj)

=
1

2M

n
∑

i=1

n
∑

j′=1

(Ãi,n+j′ −
kikn+j′

2M
)δ(gi, gn+j′)

=
1

2M

n
∑

i=1

n
∑

j′=1

(Ai,j′ −
kikj′

2M
)δ(gi, gj′) = Q (3)

where we have made use of the facts the node Ai and Bi

should be in an identical community and have the same
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FIG. 1: The transformation of a simple unipartite network
into bipartite one.(a)An unipartite network with 5 nodes and
6 edges.(b)The bipartite network corresponding to (a)

degree. Thus, bipartite modularity can be also used to
community detection in unipartite networks after being
transformed.
We then turn to the modularity for directed unipartite

networks that are another important class of networks.
The directed network can analogously be transformed to
a bipartite network. A node i is represented by two nodes
Ai and Bi as that in unipartite networks, while a directed
edge from i to j is represented as an edge between Ai and
Bj , that is, set {Ai} and set {Bi} are the sources and the
sinks. Again, using the Eq. (2) and the facts above, we
obtain

Qb =
1

M

n
∑

i=1

2n
∑

j=n+1

(Ãi,j −
kikj
M

)δ(gi, gj)

=
1

M

n
∑

i=1

n
∑

j′=1

(Ãi,n+j′ −
kikn+j′

M
)δ(gi, gn+j′)

=
1

M

n
∑

i=1

n
∑

j′=1

(Ai,j′ −
kouti kinj′

M
)δ(gi, gj′) (4)

where the right in the last equation is just the modularity
for directed networks presented in [23]. The method for
transforming directed networks into bipartite ones has
been proposed by Guimerà et al [24], but their bipartite
modularity is distinct from Barber’s one as mentioned
before.
Consequently, bipartite networks can be considered as

a widely representative class of networks that provides

a generic case for the problem of community structure
detection. And the Barber’s bipartite modularity can
be served as a uniform objective for these methods of
identifying communities that based on optimization.

III. EVOLUTIONARY METHOD FOR

COMMUNITIES DETECTION

As a class of general-purpose tools to solve various hard
problems, genetic algorithms have found wide application
in bioinformatics, computer science, physics, engineer
and other fields. They are, based on the Darvinian prin-
ciple of survival of the fittest, a kind of global optimiza-
tion method simulating evolutionary process of species in
nature [34].
The evolutionary methods are easy to be implemented,

and the process can be described as follows. They first
create a stochastic initial population with predefined size
wherein individuals are known as chromosomes repre-
senting a set of feasible solutions to the problem at hand,
with each associated with a fitness. Then select chro-
mosomes in proportion to corresponding fitness so that
those better solutions would make themselves have multi-
ple copies and worse ones would be discarded in the new
population. Next, genetic operators such as crossover
and mutation are performed according to respective spec-
ified ratios on the population. After these operations, the
population of next generation has been reproduced. It-
erate the above process to evolve the current population
towards better offspring until the termination criteria is
met.
Since the number of partitions on any given network

grows at least exponentially in the number of nodes, the
optimization of modularity is clearly a NP hard prob-
lem that has been given a rigid proof in [33], which has
motived an array of heuristic methods including greedy
agglomeration [11], simulated annealing [16], spectral re-
laxation [17, 18], extremal optimization [19] and math-
ematical programming [35]. All these methods perform
point-point search, that is, transformation from one solu-
tion to a better one, which are susceptible to trapping in
local optima. In contrast, genetic algorithms work with a
population of solutions instead of a single solution. This
implies that genetic algorithms are more robust because
they perform multiple directional search that would make
them effectively find better solutions.
However, for practitioners, a fundamental important

problem is to choose appropriate parameters such as
crossover rate and mutation rate, because they would
seriously affect the performance of genetic algorithms.
Further, these parameters are closely related to the stud-
ied problem, and even for the same problem, they should
adjust themselves with the course of the search. In the
following, we would like to introduce an adaptive genetic
algorithm recently presented by Szeto and Zhang [36] and
then propose a modified version suited for community
structure detection.
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A. Mutation only Genetic algorithm

Traditional genetic algorithms assume that genetic op-
erators indiscriminately act on each locus constituted the
chromosome, but this is always not the case. Indeed,
the recent research in human’s DNA [37] shows muta-
tion rates at different loci are very different from one
another. Inspired by this, Ma and Szeto [38] reported
on locus oriented adaptive genetic algorithm (LOAGA)
that make use of the statistical information inside the
population to tune the mutation rate at individual locus.
Szeto and Zhang [36] further presented a new adaptive
genetic algorithm, called MOGA (mutation only genetic
algorithm), which generalized their method by incorpo-
rating the information on the loci statistics with muta-
tion operator. In MOGA, mutation was the only genetic
operator, and the only required parameter is the size of
population. MOGA was readdressed by Law and Szeto
in [39], wherein it was extended to include crossover op-
erator. Here, the description for MOGA is given on the
basis of the later version.
The population matrix P is stacked by NP chromo-

somes with length L, with its entries Pij(t) representing
the allele at locus j of the chromosome i at time (or gen-
eration) t. The rows of this matrix are ranked according
to the fitness of the chromosomes in descending order,
i.e., f(i) ≥ f(k) for i < k. The columns are ranked
according to the standard deviation σt(j) (its definition
see below) of alleles at locus j such that σt(j) ≤ σt(k)
for j < k. In MOGA, the fitness cumulative probabil-
ity, as an informative measure for chromosome i relative
to the landscape of fitness of the whole population, was
introduced and can be defined as follows:

C(i) =
1

NP

∑

g≤f(i)

N(g) (5)

where N(g) is the number of chromosomes whose fitness
equals to g. Subsequently, the standard deviation σt(j)
over the allele distribution, as a useful informative mea-
sure for each locus j, is defined as

σt(j) =

√

√

√

√

∑NP

i=1(Pij(t)− ht(j))2 × C(i)
∑NP

i=1 C(i)
(6)

where the weighted factor C(i) reflects the informative

usefulness of the chromosome i, and ht(j) is the mean of
the alleles at locus j, given by

ht(j) =
1

NP

NP
∑

i=1

Pij(t) (7)

A locus with a smaller allele standard deviation is con-
sidered to be more informative than the other loci, vice
versa. Indeed, this really makes sense in limited situa-
tions. For the initial population, the alleles at each locus
j should satisfy a uniform distribution, so the standard

deviation σt(j) would very high while the locus present is
not informative. A typical optimization problem gener-
ally allows of a few global optima, so the loci with higher
structural information are liable to take fewer alleles than
allowed, thereby having smaller allele standard devia-
tions. Therefore, the loci with higher deviations prefer
mutating while the other loci (informative loci) remain
for guiding the evolution process.
Now, we can describe the process of MOGA. In each

generation, we sweep the population matrix from top
to bottom. Each row (a chromosome) is selected for
mutation, with probability, α(i) = 1 − C(i). Together
with Eq. (5), we have 1

NP
≤ C(i) ≤ 1, and a chro-

mosome with higher fitness has fewer chance to be se-
lected, vice versa. Particularly, the first chromosome that
has the highest fitness will never be selected for muta-
tion, while the last one will almost always undergo mu-
tation for large enough NP , if NP normally takes a value
from 50-100 as De Jong’s suggestion [43], for example,
α(NP ) = 1 − 1

NP
= 0.98 for NP = 50. If the current

chromosome i selected, then the number N(i) of loci for
mutation is prescribed with N(i) = α(i) × L. Thus, a
selected chromosome with higher fitness has fewer loci
to mutate, thereby most of the informative loci remains;
while a selected chromosome with lower fitness has more
less-informative loci to mutate. In practice, we can mu-
tate the N(i) leftmost loci because they are less infor-
mative relative to others according to the above arrange-
ment of loci.
Overall, MOGA is expected to have a two-fold advan-

tage over traditional genetic algorithms: first of all, no
need to input parameters except the population size can
make it more available for solving various problem; sec-
ondly, the mechanism of adaptive adjusting parameters
can make it more effectively perform to obtain better so-
lutions if it can work as expected.

B. A new measure for the informative of loci

Despite these possible advantages, MOGA cannot be
directly applied on community structure detection due to
the drawback that will be shown. Instead, we present a
modified version of MOGA, called as MMOGA, which is
especially suited for the problem of community structure
detection. Genetic algorithms have been applied to this
problem in [44, 45], but these applications are based on
standard version (SGA).
We begin with the encoding schema of the genetic al-

gorithm for finding communities in a bipartite network.
A useful representation is the locus-based adjacency rep-
resentation presented by Park and Song in [46] where
used in clustering data and has been used for community
detection [45]. In this encoding schema, a chromosome
consists of n loci with a locus for a node in the network,
and the allele at a locus j is the label of one neighbor
of node j in the network. In this way, a chromosome
actually will induce a graph that are often disconnected
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FIG. 2: An example of a chromosome for the bipartite net-
work (p,q). Bjk for k ≤ p represents picking a node of type
B as a neighbor of the kth nodes of type A. Similarly,Aik for
k ≤ q represents picking a node of type B as a neighbor of
the kth nodes of type B.

TABLE I: Example of a population with three chromosomes.
Fitness is calculated from the partition induced from decoding
the chromosome. Values in each column are the alleles at the
locus.

Chro. Fitness Loc.1 Loc.2 Loc.3 Loc.4
R1 0.5 100 20 4 8
R2 0.3 100 50 5 12
R3 0.2 10 50 6 7
σ 36.7243 15.8114 0.8165 2.0412

because of the reduction in connectivity relative to orig-
inal network. Given the connectivity of the community,
the clustering solution encoded by a chromosome then
amounts to find all the connected components of the in-
duced graph. For simplicity, we also call them as the
connected components of the chromosome.
Now, apply the encoding schema to the case of bipar-

tite networks. Assume that a bipartite network with n
nodes consists of p nodes of type A and q nodes of type B,
denoted by (p,q). For the bipartite network, we always
can label nodes of type A with 1, 2, · · · , p while label
another type of nodes with p + 1, · · · , n. Then a chro-
mosome R for the network can be represented as Fig. 2.
Since our objective is to find a partition with higher mod-
ularity as possible, fitness can be defined directly in terms
of modularity. Based on the above representation for the
chromosome, the fitness becomes

f(R) = Qb(πR) =
1

M

p
∑

i=1

n
∑

j=p+1

(Ai,j−
kikj
M

)δ(gi, gj) (8)

where the parameter of Qb is to stress the partition on
which the modularity is calculated and πR is the partition
encoded by the chromosome R.
Recall that in MOGA, the allele standard deviation is

used to pick the loci to mutate. When applied to commu-
nity structure detection, however, the measure generally
will misguide the algorithm. Consider such a simple case
in which the population consists only of three chromo-
somes, R1, R2 and R3, with fitness f(R1) > f(R2) >
f(R3). We would like to select some of the four loci for
mutation whose allele distributions are shown as Table I.
From Eqs. (5) and (6), the allele standard deviations for
the four loci, σ1, σ2, σ3 and σ4, can be calculated, with
the result

σ1 > σ2 > σ4 > σ3 (9)

. According to the selection criteria of the loci to mutate
in MOGA, σ1 has the highest standard deviation and will
be picked out.
Initial population is generated randomly and when

each locus follows an approximately random distribu-
tion. From the uniform distribution, we have nothing on
the structure of optimal solution to the given problem.
With the gradual evolution, more and more fitter mem-
bers of the population will assume same alleles at some
loci, which may suggest some structural information of
the optimal solutions; that is, the bias (or deviation) from
random distribution indicates the informativeness of the
locus. In the simplest case such as knapsack problem
where each locus takes 1 or 0, the allele standard devia-
tion amounts to the bias and can work well [36].
For current case, loci 3 and 4 should be selected with

equally higher priority because their allele distributions
are closer to their respective random distribution. Both
loci 1 and 2 appear certain bias on their alleles, indicat-
ing that they are more informative than others. If the
informativeness of each chromosome taken account of,
however, they are evidently different from one another.
Locus 1 has a larger bias since the chromosomes with
the same allele 100, i.e., R1 and R2 have higher fitness.
In contrast, locus 2 has a smaller bias since the chromo-
somes with the same allele 50, i.e., R2 and R3 have lower
fitness. Therefore, the correct order to mutate is

locus 3=locus 4 > locus 2 > locus 1 (10)

where the equal signs is meant to the pair of loci have
the same priority to mutate. Obviously, the allele stan-
dard deviation would severely misguide MOGA in cur-
rent case.
The failure of the allele standard deviation stems from

this measure is closely related to alleles at loci. However,
the information contained in loci is actually without re-
gard to the particular values but solely determined by
the bias relative to the random distribution. It is thus
crucial how to measure the bias. Fortunately, we can use
Kullback-Leibler divergence to describe the bias.
In the formalism of MMOGA, we explicitly represent

a locus j as a discrete random variables Xj , and an allele
at the locus is viewed as a value of Xj. Then the random
distribution over the locus can formally given by

Q(Xj = x) =

{

1
|Xj |

, for each x ∈ Xj

0, otherwise
(11)

Let the allele distribution over the population be P , de-
fined by

P(Xj = x) =

∑

Pij=x f(i)
∑

i f(i)
. (12)

We can mathematically define the bias µ as the Kullback-
Leibler divergence between the two distribution, P and
Q:

µ(j) =
∑

x∈NBs(j)

P(Xj = x)log
P(Xj = x)

Q(Xj = x)
(13)
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where NBs(j) represents the set of nodes adjacent to j
in the original network. It is noteworthy that the quan-
tity 0log0 should be interpreted as zero. As a Kullback-
Leibler divergence, the bia is always non-negative, and is
zero if and only if P = Q.
Assuming that there are three alleles at each of the

four locus in the above example, we obtain µ1 = 0.863,
µ2 = 0.585 and µ3 = µ4 = 0.5145. As a smaller bias
indicates poorer information a locus contain, the locus
would undergo mutation. Conversely, a larger bias means
richer informativeness, the locus should remain. There-
fore, guided by the bias, the order of mutation is locus
3,4,2,1 or 4,3,2,1, which completely match the order in
Eq.(10).
Further, it can be observed that locus 2 has zero bias

if it has only two alleles. The difference coming from the
change of number of alleles would be normally concealed
by the standard allele deviation. For these reasons, the
bias appears superior to the standard allele deviation and
is used in our MMOGA for determining the loci to mu-
tate.

C. The reassignment technique for locus static

It is so far acknowledged that the loci with random
distribution should have priority for mutation. How-
ever, this presupposition does not always hold. After
the evolution of certain generations, some communities
or their main-bodies would have appeared at the popu-
lation scale. At present, a locus with a random distribu-
tion does not imply that it contains no information and
should undergo mutation immediately. Generally, there
exists in the network many nodes whose neighbors are
all (or almost) in the same communities and have a simi-
lar connection pattern or even are structurally equivalent
nodes [42] that are connected to the same nodes. For such
a node, if all (or most) of its neighbors presenting in the
same connected component predominates on the current
population, then the locus has the random distribution
or a approximately random distribution. Therefore, we
are required to differentiate the case to avoid such mis-
guiding.
The reassignment technique is designed to deal with

this problem. For a chromosome R, the element x is the
allele at the locus j which is a neighbor of the node j.
Check whether the component that j is assigned to in-
cludes other neighbors with smaller labels. If it is true
and the neighbor with the smallest labels is y, then the

contribution from R, f(R)∑
i
f(i) that should be assigned to

x now is reassigned to y if x 6= y. In this way, forward
sweeping the population matrix can obtain the distribu-
tion of the locus over the population. Thus, the allele
distribution over the population in Eq. (12) can be refor-
mulated as follows:

P∗(Xj = x) =

∑

S(i,j)=x f(i)
∑

i f(i)
. (14)

where S(i, j) is the node j’s neighbor with the smallest
label that lies as j in the same component of the chromo-
some i.
An example using the technique as shown in Table II.

Using Eq. (12), it is obvious that the locus 1 has ap-
proximately random distribution and thus the bias ap-
proximates 0. Recalculating the distribution with the
reassignment technique, however, we have P∗(X1 = 2) =
0.53,P∗(X1 = 3) = 0.47 and P∗(X1 = 4) = P∗(X1 =
5) = 0, which is very different from the random distribu-
tion with the bias 1.0026.

TABLE II: Example of reassignment technique. Column 1 is
four chromosomes,column 2 is fitness of the chromosome, col-
umn 3 is the alleles of locus 1, and the right four columns show
whether the corresponding nodes are in the same connected
component as node 1 with 1 yes and 0 no.

Chro. Fitness Loc.1 Loc.2 Loc.3 Loc.4 Loc.5
R1 0.28 2 1 1 0 0
R2 0.25 3 0 1 1 0
R3 0.25 4 1 0 1 1
R4 0.22 5 0 1 0 1

The idea behind the technique is well understood.
Given a locus j, we can replace its allele present with
any of other alleles (i.e. other neighbors in the original
network) that lie in the same component in a such way
that does not alter the connectivity of the component
hence causing no change in the partition encoded by the
chromosome. To show the feasibility of this, we focus
on the component that j lies in. Recall that a locus
represents a node and the allele at the locus represent
the unique neighbor which the node adhere to. Conse-
quently, the component is in the form of a directed graph
with unitary out-degree for each node . There exist two
possible schemes as shown in Fig. 3 (Note that the undi-
rected edges are irrelevant to the reassignment process
thus disregard their direction).
In the scheme depicted in Fig. 3(a), we can directly

change the allele from 3 to 1 but still maintain the con-
nectivity of the component. For the schema in Fig. 3(b),
however, such directly altering allele will split the original
partition. To deal with this case, we study the traveling
in the component along directed edges, starting from the
node j. Since the subgraph elicited from node j is con-
nected to the rest of the component through j, this trav-
eling must end in a node that has passed. Let the path is
j → x1 → x2 → · · · → xk−1 → xk. When xk 6= j, we can
reestablish the connectivity by removing the last edge, re-
versing the direction of each edge in the path, and adding
a new edge x1(3) → j. Note the resultant graph meets
with the constraint that any node has only an outgoing
edge. Therefore, we can reset the alleles at these locus
evolved in the path. For example, in Fig. 3(b), the entire
path is j → 3 → 2 → 6 → 5 → 7 → 2, so we can set the
alleles according to the path, 7 → 5 → 6 → 2 → 3 → j,.
Now, the allele at locus can be set 1. As to the case
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FIG. 3: Two possible schemes of changing the allele at locus
j, where nodes represent loci and the directed edge j → i
represent the allele present at locus j is i while undirected
edges are irrelevant to the reassignment process. The red
node is the node(locus) j, the blue nodes are the allele nodes
in the same component, the yellow are the influenced nodes
and the white are indifferent ones. (a) The new target node
1 (new allele) is in the subgraph elicited from the node 3(the
allele present at locus j). (b)The new target node 1 is not in
the subgraph elicited from the node 3.

xk = j, we can directly alter the alleles as the schema in
Fig. 3(a).

In the reassignment technique, we can also reassign the
contribution from the chromosome to the allele with the
maximum label that lies in the same component when
performing locus statistics. More generally, it also can
work as long as we arbitrarily specify a fixed reassignment
order for each locus although different prescriptions may
produce different bias.

Clearly, the reassignment technique is very useful for
community structure detection although it would not
work when applied to the loci that have a single allele,
i.e., the corresponding nodes in the network are leaves.
Moreover, this special case can be readily eliminated by
forbidding mutation, which may bring about an unex-
pected merit that naturally reduces the complexity of the
problem. Since most of real-world networks are scale-free
networks where exists substantial leaf nodes, this merit
will be significant for finding communities in these net-
works.

D. Population size

As in MOGA, the unique parameter in MMOGA re-
quired to be provided is the population size. The pa-
rameter may have significance influences on the appli-
cation of genetic algorithms. With smaller values, the
algorithms would search smaller region of solution to the
problem so as to converge quickly but end with poorer
solutions. While with larger values, they have more pow-
erful search ability so as to end with better solutions but
require massively computational efforts. Thus, how to se-
lect an appropriate population size for specified problems
is important to practitioners.
De Jong’s experiment on a small suit of test functions

showed [43] the best population size was 50-100 for these
functions. There are also other empirical study and the-
oretic analysis on this parameter [47, 48]. In practice,
De Jong’s setting has been widely adopted, which may
be due to this choice fulfilling good tradeoff between the
quality of the solution and the requirement of computa-
tion in many cases.
This popularity of the setting, however, does not ex-

clude the development of genetic algorithms working with
variable population size. A few examples of the class of
algorithms can be found in [49–51]. Although one of
these mechanism may be beneficial to be incorporated
into MOGA∗, in this work we does not take it into ac-
count.
Since we expect all alleles at a locus can simultaneous

appear at the population, the population size would be
preferable which is greater than the degrees of most nodes
in the network. As mentioned before, most real-world
networks are scale-free, so the degrees of most of nodes
in these networks are less than 50. Allowing for this and
the cost of large population size, we would like to take a
fixed value from the interval between 50 and 200.

E. Convergence and its speeding up

MOGA and its extending to include crossover have
been reported to perform well in the applications to solve
knapsack problem [36] and to find the minimum energy
of one dimensional Ising spin glass [39], where all the loci
have two alleles, 0 and 1. For many cases, however, their
performance would be hindered by two factors. One fac-
tor is the misguiding from the allele standard deviations
above-mentioned. Another factor is that in the evolution
of each generation the fittest individual(s) actually will
not participate in the mutation unless others supersede
it (them).
In fact, despite fulfilling the elite preservation

strategy[40, 41] that for SGA assures the convergence
toward the global optimum, MOGA dos not guarantee
such convergence even it may be end with a not local op-
timum solution. Consider such a case that NP -1 fittest
chromosomes have identical fitness and the remaining one
has lower fitness. Those fittest should be passed to next
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generation while the remaining one would mutate with
very high probability. If the mutation happens to repro-
duce a chromosome with the same fitness as others, this
would unexpectedly terminate the evolutionary process.
It is helpful to notice that the fittest ones present, if not

local optimum, always can perform local search to reach
a local optima. Consequently, it is preferable to mod-
ify the rule for mutation so as to allow for local search.
We still select the chromosome i with the same proba-
bility 1-C(f(i)) as in MOGA, if chosen then perform the
mutation aforementioned, or randomly select a locus to
mutate. Given that this may destroy the elite preserva-
tion strategy, MMOGA first duplicates 10% the fittest
chromosomes to a new generation, then select from the
current population the remaining in proportion to their
fitness to prepare for mutation. These individuals tem-
porarily generated by selection mutate according to the
new rule to reproduce the 90% of the new generation.
The fittest individuals are probably selected and perform
local search. In this way, MMOGA not only can converge
to the global optima, it also speeds up the convergence.

IV. RESULTS

In this section, we empirically study the effectiveness
of MMOGA by applying it to model networks with pre-
defined community structure and several real-world net-
works. In both cases, we show that the tailored adaptive
genetic algorithm is superior to SGA and MOGA, and it
also can compete with the famous BRIM algorithm that
dedicated to bipartite network.

A. Model bipartite networks

To test how well our algorithm perform, we have ap-
plied it to the model bipartite networks with a known
community structure. A model network can be con-
structed with two steps. First step is to determine its lay-
out of nodes in the network, i.e., to specify the number of
communities NC, and the numbers of nodes of two types
included in each community NA and NB, as well as to as-
sign group membership to these nodes. Next, determine
the dispersion of edges by specifying the intra-community
and intercommunity link probabilities, pin and pout, such
that pin ≥ pout.
For simplicity, all communities assume the same values

of NA and NB. We set NC=5, NA = 12 and NB = 8 as
used in [26]. One may expect that as pin is markedly
greater than pout the networks instantiated from the
model have significant community structure that tend
to be detected. Conversely, as pout approaches pin, the
network instantiations become more uniform and their
modular structure becomes more obscured. In this ex-
periment, pin is fixed with the value of 0.9 while pout
varied by tuning pout/pin from 0.1 to 1 with step 0.1. We
have tested on such models the performance of MMOGA

as well as of SGA and MOGA, each instantiated with ten
networks. On each instantiation ran these algorithms ten
times.

For evaluating the quality of solutions, modularity and
normalized mutual information (NMI) both are useful.
But NMI is more suitable for current case since the opti-
mal (correct) partition of the model network is known in
advance. This measure takes its maximum value of 1 as
the found partition perfectly matches with the known
partition while it takes 0 the minimum value as they
are totally independent of each other. Accordingly, we
employed the stop criteria that the algorithms reach the
predefined maximum generation or NMI reaches its max-
imum value.

Fig. 4 and Fig. 5 display the performance compari-
son between such genetic algorithms as pout/pin = 0.1
and pout/pin = 0.2, respectively. The maximum gener-
ation is set 2000. For both cases, MMOGA and SGA
remarkably outperform MOGA. From Fig. 4 (a), we can
see MMOGA is appreciably faster than SGA, as well as
both perform well since the mutual information rapidly
exceeds 0.9. In our test, each run of MMOGA on all
10 instantiated networks consistently gave the optimal
partition, i.e., producing 100 numbers of generation less
than 2000. For SGA, 97 runs gave the optimal partition.
Their distributions of generations to reach the optima in
Fig. 4(b) and (c) further reveal their difference in speed
(in terms of generations).

As pout/pin = 0.2, the instantiated networks are, rel-
ative to the former ones, more difficult to identify their
community structure. SGA succeeded in obtaining the
optimal partition in 32 runs. In sharp contrast, each run
of MMOGA gave the optimal partition. More informa-
tion on the distributions of the generations of SGA and
MMOGA are provided in Fig. 5 (a). Also in Fig. 5 (b),
the variations of the mutual information with regard to
SGA and MMOGA illuminate there existing a greater
performance difference between them than in the case of
pout/pin = 0.1.

Even as pout/pin = 0.1, MOGA reaching the optimal
solution in its first 2000 generation was not observed.
Actually, MOGA performed so poorly that it even did
much more slowly than SGA as shown in Fig. 5 (b). The
main reason for this we argue is that the use of incorrect
informative measure for loci has misguided the algorithm.

We have made a more extensive performance com-
parison. Fig. 6 shows the variation of accuracy of
MMOGA and SGA as well as BRIM against the changes
of pout/pin. For the model networks, assigning each of
the nodes from the smaller groups to its own module is a
better(or may be the best) strategy for BRIM that will
lead to a precise partition. To be fair [52], we picked the
best partition from the ten runs on each instantiated net-
work then average over ten instantiations for a particular
pout/pin.
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FIG. 4: Performance on bipartite model networks with
pin = 0.9, pout/pin = 0.1. The generation size is set 2000.
(a)Evolutionary process of mutual information over first 500
generations. (b)Distribution of generation to reach optima
using SGA. More than half of generations are over 200.
(c)Distribution of generation to reach optima using MMOGA.
There are 83 runs which generation to reach optima is less
than 200.

B. Southern women network

As the first example of real world bipartite network, we
study Southern women network [53]. The social network
consists of 18 women and 14 events of which the data
were collected by Davis et al in the 1930s, describing their
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FIG. 5: Performance on model networks with pin = 0.9
and pout/pin = 0.2. The generation size is set 2000.
(a)Distributions of generation to reach optima using SGA and
MMOGA. There are 32 black points and 100 red points re-
spectively representing the generation to reach optima par-
tition using SGA and MMOGA. Most of black points are
distributed above 1000 generation while most of red points
are below 800 generation. (b)Variation of mutual informa-
tion with generation. Each point is the average over the 100
runs.

participation in these events. It has been extensively
used as a typical instance for investigating the problem
of finding cohesive groups hidden in social networks, see
Ref. [25] for a useful review.

We have performed MMOGA ten times on this net-
work,with population size 100 and the generation size
3000. Unlike BRIM algorithm which initial state is
important, genetic algorithms generally show irrele-
vancy (or weaker relevancy) to initial states and can suc-
cess in finding a considerable good solution. For each run,
MMOGA found the best solution so far, with Q=0.34554.

Fig. 7 shows the identified community structure in the
Southern women network using MMOGA. This partition
is exactly the same as BRIM has found with the initial
strategy that begins with assigning all events to a sin-
gle community. Also we have applied SGA and MOGA
to this network with the same population size and the
generation size. A simple performance comparison be-
tween them is shown in Table III, which lists the success
times for reaching the best solution, the minimum gener-
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FIG. 7: Community structure in the Southern women net-
work. Each community consists of those nodes with same
color, including women and events represented by box and
triangle events respectively.

ation (MinGen) and maximum generation (MaxGen) to
reach the optima, as well as the average normalized mu-
tual information (I∗norm) and average modularity (Q∗)

No matter what we are concerned about, the speed or
the quality, MMOGA again takes the evident advantage
over SGA and MOGA. Table IV shows the accuracy of
MMOGA in comparison with other methods.
Most of previous studies dedicated to assign these

women to groups for their interests. Davis et al [53]
assigned the women to two groups, with 1-9 and 9-18.
Women 9 can be considered as an overlapped node of

TABLE III: Performance comparison between SGA, MOGA
and MMOGA. Each algorithm runs 10 times. Here, success
means that the algorithms have found the best solution before
the maximum generation.

Method Succ. MinGen. MaxGen. I∗norm Q∗

SGA 4 2011 2924 0.8923 0.34539
MOGA 0 0.7997 0.34477
MMOGA 10 87 1830 1 0.34554

the two groups in a sense, but it should be exclusively
included in one group by the currently used community
definition. We may label the partition with 9 and 1-8 in
the same group as ”Davis 1”, and label the alternative
partition (9 is grouped with 10-18) as ”Davis 2”.
Doreian et al [54] took the definition of bipartite com-

munity composed of two types nodes and proposed sev-
eral partitions, with the accuracy of the partition with
the highest modularity shown in Table IV. We call BRIM
algorithm using strategy (1) assigning all events to a
single module and (2) assigning each event to its own
module as ”BRIM 1” and ”BRIM 2”, respectively. Bar-
ber [26] reported its accuracy when using such strategies
on the network, which also can be found in Table IV.

TABLE IV: Performance comparison on the Southern women
network, where partial data are drawn from [26].

Method Communities Q∗ I∗norm

MMOGA 5 0.34554 1
BRIM 1 5 0.34554 1
BRIM 2 2 0.32117 0.58032
Davis 1 2 0.31057 0.44657
Davis 2 2 0.31839 0.45126
Doreian 3 0.29390 0.60766

C. Scotland corporate interlock network

The second real world bipartite network we have tested
on is Scotland corporate interlock network [55]. This net-
work describes the corporate interlock pattern between
136 directors and 108 largest joint stock companies dur-
ing 1904-1905. As it is disconnected, we focus merely on
its largest component which comprises 131 directors and
86 firms. And in the following, the network consistently
indicates this component.
BRIM algorithm found the poorer partitions of this

network with Q=0.56634 and Q=0.39873, using the
strategies assigning all directors to unique modules or
to the same module. With the adaptive binary search
technique, BRIM algorithm, when using the strategy of
randomly assigning directors to modules, may find a re-
markable better solution with Q=0.663(±0.002). Based
on the experimental results, the author suggested the
network comprise approximately 20 communities.
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FIG. 8: Distributions of the partitions returned by SGA,
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Similarly, we have examined the performance of such
three algorithms on this network by each running ten
times with the same setting as before. Figure 8 shows the
distributions of the solutions returned by SGA, MOGA
and MMOGA. Obviously, both SGA and MMOGA defi-
nitely exhibit higher accuracy than BRIM and MOGA.
Moreover, MMOGA appears more preferable to SGA.

In the experiment, the modularity of the best parti-
tion found by SGA, Q =0.70699, is less than those of
best two partitions (π1 and π2) found by MMOGA with
Q=0.709275 and Q=0.708887. On the other hand, as
shown in Fig. 8, for MMOGA most of ten partitions in-
cluding the best two are found during the first 2000 gen-
erations while for SGA six of ten partitions are found
after 2000 generations.
In closing, we would like to give a simple evaluation

of the reliability of the solutions. We calculated the nor-
malized mutation information between any pairs of the
solutions returned by MMOGA. The maximum value is
the NMI between π1 and π2, which is equals to 0.91913
indicating that they are very similar. Simultaneously,
for each solution, we calculated the mean of the NMI be-
tween the partition with other partitions. We found π2

has the largest value 0.84586 and π1 has the third largest
value 0.82483. These facts lend confidence to the reli-
ability to the optimum partitions obtained, π1 and π2.
Figure 9 shows the community structure of this network
according to π2. Clearly, MMOGA indeed has given a
very accurate partition of this network.

V. CONCLUSION

We have shown both unipartite networks and directed
networks can be equivalently represented as bipartite net-

works, and their modularity are just the corresponding
bipartite modularity. This means that bipartite networks
can be considered as a more extensive class of networks
that includes unipartite networks and directed networks.
Therefore, methods for detecting community structure of
bipartite networks generally can be applied to unipartite
networks and directed networks. Here, we have presented
an adaptive genetic algorithm, MMOGA, for the task of
community structure detection. Although it is addressed
in the case of bipartite networks, it obviously can hope-
fully succeed in the application to unipartite networks
and directed networks.

This algorithm is based on the frame of MOGA that
was presented with the aim to improve performance of
traditional genetic algorithms. But we have shown that
MOGA has a poor performance as applied to this task.
In fact, we have shown MOGA does not guarantee the
convergence to global optima. In MMOGA, we introduce
the new measure for the informativeness of loci, the mod-
ified rule for mutation and the reassignment technique.
These ingredients jointly make MMOGA more effectively
optimize objective function for community structure de-
tection, fulfilling the motive of MOGA. The experiments
on model networks and real networks consistently show
MMOGA outperforms MOGA, SGA and BRIM. In con-
trast with BRIM, another advantage is that MMOGA
can automatically determine the number of communities.

A potential advantage of the evolutionary method is
that it can return multiple better solutions with no bias,
which can provide some useful information on the re-
liability of the solutions that we are interested. We
look forward to the technique that can effective com-
bine the solutions to obtain a more accurate partition.
Finally, we believe that as an effective discrete optimiza-
tion method (the special reassignment technique can be
switch off as needed) it will find more application in many
fields.
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