
ar
X

iv
:1

01
1.

20
07

v1
  [

gr
-q

c]
  9

 N
ov

 2
01

0

Uniqueness of collinear solutions for the relativistic three-body

problem

Kei Yamada and Hideki Asada

Faculty of Science and Technology,

Hirosaki University, Hirosaki 036-8561, Japan

(Dated: November 10, 2010)

Abstract

Continuing work initiated in an earlier publication [Yamada, Asada, Phys. Rev. D 82, 104019

(2010)], we investigate collinear solutions to the general relativistic three-body problem. We prove

the uniqueness of the configuration for given system parameters (the masses and the largest sepa-

ration among them). First, we show that the equation determining the distance ratio among the

three masses, which has been obtained as a seventh-order polynomial in the previous paper, has at

most three positive roots, which apparently provide three cases of the distance ratio. It is found,

however, that, even for such cases, there exists one physically reasonable root and only one, because

the remaining two positive roots do not satisfy the slow motion assumption in the post-Newtonian

approximation and are thus discarded. This means that, especially for the restricted three-body

problem, exactly three positions of a third body are true even at the post-Newtonian order. They

are relativistic counterparts of the Newtonian Lagrange points L1, L2 and L3. We show also that,

for given system parameters, the angular velocity of the post-Newtonian collinear configuration is

smaller than that for the Newtonian case.

PACS numbers: 04.25.Nx, 95.10.Ce, 95.30.Sf, 45.50.Pk
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I. INTRODUCTION

The three-body problem in the Newton gravity belongs among classical problems in as-

tronomy and physics (e.g, [1, 2]). In 1765, Euler found a collinear solution for the restricted

three-body problem, where one of three bodies is a test mass. Soon later, his solution was

extended for a general three-body problem by Lagrange, who also found an equilateral tri-

angle solution in 1772. Now, the solutions for the restricted three-body problem are called

Lagrange points L1, L2, L3, L4 and L5, which are described in textbooks of classical mechan-

ics [2]. SOHO (Solar and Heliospheric Observatory) and WMAP (Wilkinson Microwave

Anisotropy Probe) launched by NASA are in operation at the Sun-Earth L1 and L2, re-

spectively. LISA (Laser Interferometer Space Antenna) pathfinder is planned to go to L1.

Lagrange points have recently attracted renewed interests for relativistic astrophysics [3, 4],

where they have discussed the gravitational radiation reaction on L4 and L5 by numerical

methods.

As a pioneering work, Nordtvedt pointed out that the location of the triangular points

is very sensitive to the ratio of the gravitational mass to the inertial one [5]. Along this

course, it is interesting as a gravity experiment to discuss the three-body coupling terms

at the post-Newtonian order, because some of the terms are proportional to a product of

three masses as M1 ×M2 ×M3. Such a term appears only for relativistic three (or more)

body systems: For a relativistic binary with two masses M1 and M2, there exist M
2

1
M2 and

M1M
2

2
without such a three-mass product. For a Newtonian three-body system, we have

only the two-body coupling terms proportional to M1M2, M2M3 or M3M1.

The relativistic periastron advance of the Mercury is detected only after much larger

shifts due to Newtonian perturbations by other planets such as the Venus and Jupiter are

taken into account in the astrometric data analysis. In this sense, effects by the three

body coupling are worthy to investigate. Nevertheless, most of post-Newtonian works have

focused on either compact binaries because of our interest in gravitational waves astronomy

or N-body equation of motion (and coordinate systems) in the weak field such as the solar

system (e.g. [6]). Actually, future space astrometric missions such as Gaia [7, 8] require a

general relativistic modeling of the solar system within the accuracy of a micro arc-second

[9]. Furthermore, a binary plus a third body have been discussed also for perturbations of

gravitational waves induced by the third body [10–13].
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After efforts to find a general solution, Poincare proved that it is impossible to describe

all the solutions to the three-body problem even for the 1/r potential. Namely, we cannot

analytically obtain all the solutions. Nevertheless, the number of new solutions is increasing

[14]. Therefore, the three-body problem still remains an open issue even for Newton gravity.

The theory of general relativity is currently the most successful gravitational theory

describing the nature of space and time. Hence it is important to take account of general

relativistic effects on three-body configurations. The figure-eight configuration that was

found decades ago [15, 16] has been recently studied at the first post-Newtonian [17] and

also the second post-Newtonian orders [18]. According to their numerical investigations, the

solution remains true with a slight change in the figure-eight shape because of relativistic

effects.

On the other hand, the post-Newtonian collinear configuration obtained in the previous

paper [19] may offer a useful toy model for relativistic three-body interactions, because it is

tractable by hand without numerical simulations. This solution is an relativistic extension

of Euler’s collinear one, where three bodies move around the common center of mass with

the same orbital period and always line up.

In fact, their formulation leads to a seventh-order equation determining the distance

ratio among masses [19]. Here, it should be noted that only positive roots are acceptable,

because the distance ratio must be positive. Properties of the master equation has not been

known yet. How many positive roots for it are there? The main purpose of this paper is

to analytically investigate the number of the positive roots. In particular, we shall prove

the uniqueness of the configuration for given system parameters (the masses and the largest

separation among them).

This paper is organized as follows. In section II, we briefly summarize formulations for

collinear solutions at the Newtonian and post-Newtonian orders. We discuss positive roots

for the seventh-order equation for determining the distance ratio in section III. In section

IV, we show the uniqueness of the configuration for given system parameters (the masses

and the largest separation among them). We also compare the angular velocity of the post-

Newtonian collinear configuration with that for the Newtonian one. Section V is devoted

to the conclusion. We provide some detailed calculations regarding the angular velocity of

collinear configurations in Appendix.

Throughout this paper, we take the units of G = c = 1.
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II. EQUATION FOR THE DISTANCE RATIO AMONG THREE MASSES

Let us begin by summarizing the derivation of the Euler’s collinear solution for the circular

three-body problem in Newton gravity. We consider Euler’s solution, for which each mass

moves around their common center of mass denoted as XG with a constant angular velocity

ω. Hence, it is convenient to use the corotating frame with the same angular velocity ω. We

choose an orbital plane normal to the total angular momentum as the x − y plane in such

a corotating frame. We locate all the three bodies on a single line, along which we take the

x-coordinate. The location of each mass MI (I = 1, 2, 3) is written as XI ≡ (xI , 0). Without

loss of generality, we assume x3 < x2 < x1. Let RI define the relative position of each mass

with respective to the center of mass XG ≡ (xG, 0), namely RI ≡ xI −xG (RI 6= |XI | unless

xG = 0). We choose x = 0 between M1 and M3. We thus have R3 < R2 < R1, R3 < 0 and

R1 > 0.

It is convenient to define a ratio as R23/R12 = z, which is an important variable in the

following formulation. Then we have R13 = (1 + z)R12. The equation of motion becomes

R1ω
2 =

M2

R2

12

+
M3

R2

13

, (1)

R2ω
2 = −

M1

R2

12

+
M3

R2

23

, (2)

R3ω
2 = −

M1

R2

13

−
M2

R2

23

, (3)

where we define

RIJ ≡ XI −XJ , (4)

RIJ ≡ |RIJ |. (5)

First, we subtract Eq. (2) from Eq. (1) and Eq. (3) from Eq. (2) and use R12 ≡ |X1−X2|

and R23 ≡ |X2−X3|. Such a subtraction procedure will be useful also at the post-Newtonian

order, because we can avoid directly using the post-Newtonian center of mass [21, 22]. Next,

we compute a ratio between them to delete ω2. Hence a fifth-order equation is obtained as

(M1+M2)z
5+(3M1+2M2)z

4+(3M1+M2)z
3−(M2+3M3)z

2−(2M2+3M3)z−(M2+M3) = 0.

(6)

Now we have a condition as z > 0. Descartes’ rule of signs (e.g., [20]) states that the number

of positive roots either equals to that of sign changes in coefficients of a polynomial or less
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than it by a multiple of two. According to this rule, Eq. (6) has the only positive root

z > 0, though such a fifth-order equation cannot be solved in algebraic manners as shown

by Galois (e.g., [20]). After obtaining z, one can substitute it into a difference, for instance

between Eqs. (1) and (3). Hence we get ω.

In order to include the dominant part of general relativistic effects, we take account of

the terms at the first post-Newtonian order. Namely, the massive bodies obey the Einstein-

Infeld-Hoffman (EIH) equation of motion as [21, 22]

dvK

dt
=

∑

A 6=K

RAK
MA

R3

AK

[

1− 4
∑

B 6=K

MB

RBK

−
∑

C 6=A

MC

RCA

(

1−
RAK ·RCA

2R2

CA

)

+ v2K + 2v2A − 4vA · vK −
3

2
(vA · nAK)

2

]

−
∑

A 6=K

(vA − vK)
MAnAK · (3vA − 4vK)

R2

AK

+
7

2

∑

A 6=K

∑

C 6=A

RCA
MAMC

RAKR
3

CA

, (7)

where vI denotes the velocity of each mass in an inertial frame and we define

nIJ ≡
RIJ

RIJ
. (8)

We obtain a lengthy form of the equation of motion for each body. By subtracting the

post-Newtonian equation of motion for M3 from that for M1 for instance, we obtain the

equation as [19]

R13ω
2 = FN + FM + FV ω

2, (9)

where we denote a ≡ R13 and the Newtonian term FN and the post-Newtonian parts FM

(dependent on the masses only) and FV (velocity-dependent part divided by ω2) are defined
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as

FN =
M

a2z2

[

(ν1 + ν3)z
2 + (1− ν1 − ν3)(1 + z2)(1 + z)2

]

, (10)

FM = −
M2

a3z3

[

(4− 4ν1 + ν3)(1− ν1 − ν3)

+(12− 7ν1 + 3ν3)(1− ν1 − ν3)z

+(12− ν1 + ν3)(1− ν1 − ν3)z
2

+(8− 7ν1 − 7ν3 + 8ν1ν3 + 3ν2

1
+ 3ν2

3
)z3

+(12 + ν1 − ν3)(1− ν1 − ν3)z
4

+(12 + 3ν1 − 7ν3)(1− ν1 − ν3)z
5

+(4 + ν1 − 4ν3)(1− ν1 − ν3)z
6

]

, (11)

FV =
M

(1 + z)2z2

[

−ν2

1
(1− ν1 − ν3)

−2ν1(1 + ν1 − ν3)(1− ν1 − ν3)z

+(2− 2ν1 + ν3 + 6ν1ν3 − 3ν2

3
+ ν3

1
− 3ν2

1
ν3 − 3ν1ν

2

3
+ ν3

3
)z2

+2(2− ν1 − ν3)(1 + ν1 + ν3 − ν2

1
+ ν1ν3 − ν2

3
)z3

+(2 + ν1 − 2ν3 − 3ν2

1
+ 6ν1ν3 + ν3

1
− 3ν2

1
ν3 − 3ν1ν

2

3
+ ν3

3
)z4

−2ν3(1− ν1 + ν3)(1− ν1 − ν3)z
5

−ν2

3
(1− ν1 − ν3)z

6

]

, (12)

respectively. Here, we define the mass ratio as νI ≡ MI/M for the total mass M ≡
∑

I MI

and make a frequent use of ν2 = 1 − ν1 − ν3. It should be noted that in this truncated

calculation we ignore the second post-Newtonian (or higher order) contributions so that

we can replace, for instance, v1 by R1ω (with using the Newtonian R1) in post-Newtonian

velocity-dependent terms such as v2
1
.

In the similar manner to the above Newtonian formulation, straightforward but lengthy

calculations lead to a seventh-order equation as [19]

F (z) ≡

7
∑

k=0

Akz
k = 0, (13)
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where we define

A7 =
M

a

[

−4− 2(ν1 − 4ν3) + 2(ν2

1
+ 2ν1ν3 − 2ν2

3
)− 2ν1ν3(ν1 + ν3)

]

, (14)

A6 = 1− ν3 +
M

a

[

−13− (10ν1 − 17ν3) + 2(2ν2

1
+ 8ν1ν3 − ν2

3
)

+2(ν3

1
− 2ν2

1
ν3 − 3ν1ν

2

3
− ν3

3
)

]

, (15)

A5 = 2 + ν1 − 2ν3 +
M

a

[

−15− (18ν1 − 5ν3) + 4(5ν1ν3 + 4ν2

3
)

+6(ν3

1
− ν1ν

2

3
− ν3

3
)

]

, (16)

A4 = 1 + 2ν1 − ν3 +
M

a

[

−6− 2(5ν1 + 2ν3)− 4(2ν2

1
− ν1ν3 − 4ν2

3
)

+2(3ν3

1
+ ν2

1
ν3 − 2ν1ν

2

3
− 3ν3

3
)

]

, (17)

A3 = −(1− ν1 + 2ν3) +
M

a

[

6 + 2(2ν1 + 5ν3)− 4(4ν2

1
+ ν1ν3 − 2ν2

3
)

+2(3ν3

1
+ 2ν2

1
ν3 − ν1ν

2

3
− 3ν3

3
)

]

, (18)

A2 = −(2− 2ν1 + ν3) +
M

a

[

15− (5ν1 − 18ν3)− 4(4ν2

1
+ 5ν1ν3)

+6(ν3

1
+ ν2

1
ν3 − ν3

3
)

]

, (19)

A1 = −(1− ν1) +
M

a

[

13− (17ν1 − 10ν3) + 2(ν2

1
− 8ν1ν3 − 2ν2

3
)

+2(ν3

1
+ 3ν2

1
ν3 + 2ν1ν

2

3
− ν3

3
)

]

, (20)

A0 =
M

a

[

4− 2(4ν1 − ν3) + 2(2ν2

1
− 2ν1ν3 − ν2

3
) + 2ν1ν3(ν1 + ν3)

]

. (21)

Here, the sign of Eq. (21) is chosen so that it can agree with the fifth-order equation Eq.

(6) in the Newtonian limit of M/a → 0. This seventh-order equation is antisymmetric for

exchanges between ν1 and ν3, only if one makes a change as z → 1/z. This antisymmetry

may validate the complicated form of each coefficient.
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Once a positive root for Eq. (13) is found, the root z can be substituted into Eq. (9) in

order to obtain the angular velocity ω.

The angular velocity including the post-Newtonian effects is obtained from Eq. (9) as

[19]

ω = ωN

(

1 +
FM

2FN

+
FV

2R13

)

, (22)

where ωN ≡ (FN/R13)
1/2 denotes the angular velocity of the Newtonian collinear orbit.

III. EXISTENCE OF POSITIVE ROOTS

In this section, we show that there always exist positive roots for the seventh-order

equation that has been derived as Eq. (13). This is nothing but the existence of the post-

Newtonian collinear solution.

For the later convenience, we recover ν2 and thus rewrite a coefficient A0 as

A0 = 2
M

a
(ν2 + ν3)(2ν2 + 2ν3 + ν2ν3), (23)

which immediately leads to A0 > 0.

In the similar manner, one can show A7 < 0. An alternative but powerful way to see this

is using the antisymmetry of the seventh-order equation for transformations between masses

M1 and M3 as ν1 ↔ ν3 and z ↔ 1/z. This transformation makes a change as A0 → −A7.

By using A0 > 0, therefore, we have always A7 < 0.

Bringing the above results together, we have F (0) = A0 > 0 and F (∞) = A7z
7|z→∞ < 0.

Therefore, the number of positive roots for F (z) = 0 either equals to one or more than it

by a multiple of two.

Let us investigate the seventh-order equation in order to more precisely determine the

number of positive roots. In the Newtonian fifth-order equation by Eq. (6), we have AN5 > 0,

AN4 > 0, AN3 > 0, AN2 < 0, AN1 < 0, AN0 < 0. In the post-Newtonian approximation, the

post-Newtonian parts must be much smaller than the Newtonian ones (|APNk| ≪ |ANk| for

each k), so that the post-Newtonian correction cannot change the sign of each coefficient Ak.

We thus have A6 > 0, A5 > 0, A4 > 0, A3 < 0, A2 < 0, A1 < 0. By combining them with

A7 < 0 and A0 > 0, the number of sign changes of the coefficients in Eq. (13) is necessarily

three. Therefore, Descartes’ rule of signs indicates that Eq. (13) has either one or three

8



TABLE I: Values of z, ω and aω for Figure 1. Here are three positive roots, where we assume

z1 < z2 < z3.

z1 z2 z3

z 3.635×10−4 1.000 2751

ω 8.723×10−5 2.449×10−6 8.723×10−5

aω 0.8723 0.02449 0.8723

roots. We can easily understand that one of them is a correction to the Newtonian orbit.

What are the other two roots at all? We shall investigate them in next section.

IV. UNIQUENESS OF THE POST-NEWTONIAN COLLINEAR SOLUTION

Figure 1 shows that the equation has three positive roots, where we assume ν1 = 1/7,

ν2 = 5/7, ν3 = 1/7, a/M = 104 (v ∼ 10−2). Table I shows numerical values of z, ω and

aω for Figure 1. Two out of the three roots do not satisfy a slow-motion condition for the

post-Newtonian approximation as shown below.

Here we show that the remaining two positive roots must be discarded. Because of the

antisymmetry of Eq. (13) for the transformation as z ↔ 1/z, the two roots must be a pair

through this transformation associated with exchanges between M1 and M3. Let the smaller

root and larger one denoted as zS and zL, respectively.

First, we consider the smallest positive root zS, where we assume zS ≪ 1. Then, Eq.(13)

is approximated as

A1zS + A0 = 0, (24)

where A0 starts at the post-Newtonian order without Newtonian terms and A1 = AN1+APN1

has both the Newtonian terms and post-Newtonian corrections (|AN1| ≫ |APN1|). We thus

obtain an approximate form of the smallest root as

zS = −
A0

AN1

= O

(

M

a

)

, (25)

where we used Eqs. (20) and (21). This implies that zS is indeed of the post-Newtonian
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order, in consistent with zS ≪ 1. At this point, however, we cannot discard this smallest

root zS.

As a next step, let us make an order-of-magnitude estimation for the angular velocity ωS

that satisfies Eq. (9) for zS, where ωS denotes the angular velocity corresponding to zS . We

obtain from Eqs. (10), (11) and (12)

FN = O

(

M

a2z2S

)

= O

(

1

M

)

, (26)

FM = O

(

M2

a3z3S

)

= O

(

1

M

)

, (27)

FV = O

(

M

z2S

)

= O

(

a2

M

)

. (28)

We thus find R13 = a ≪ FV becauseM ≪ a. Therefore, we find FN ∼ FM ∼ FV ω
2

S ≫ R13ω
2

S

in Eq. (9). This leads to

ωS = O

(

1

a

)

, (29)

though ω2

N = O(M/a3) for the Newtonian case. Eq. (29) implies an extremely fast rotation,

since the rotational velocity becomes vS ≈ aωS = O(1), namely, comparable to the speed

of light. This unacceptable branch of such an extremely fast motion contradicts with the

post-Newtonian approximation. Hence, zS must be abandoned.

Next, we consider the largest positive root zL, where we assume zL ≫ 1. Then, Eq.(13)

is approximated as

A7zL + A6 = 0, (30)

where A7 starts at the post-Newtonian order without Newtonian terms and A6 = AN6+APN6

has both the Newtonian terms and post-Newtonian corrections (|AN6| ≫ |APN6|). We thus

obtain an approximate form of the largest root as

zL = −
A7

AN6

= O
( a

M

)

, (31)
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where we used Eqs. (14) and (15). This implies that z−1

L is indeed of the post-Newtonian

order, in consistent with zL ≫ 1. At this point, however, we cannot discard this largest root

zL.

As a next step, let us make an order-of-magnitude estimation for the angular velocity ωL

that satisfies Eq. (9) for zL, where ωL denotes the angular velocity corresponding to zL. We

obtain from Eqs. (10), (11) and (12)

FN = O

(

Mz2L
a2

)

= O

(

1

M

)

, (32)

FM = O

(

M2z3L
a3

)

= O

(

1

M

)

, (33)

FV = O
(

Mz2L
)

= O

(

a2

M

)

. (34)

We thus find R13 = a ≪ FV becauseM ≪ a. Therefore, we find FN ∼ FM ∼ FV ω
2

L ≫ R13ω
2

L

in Eq. (9). This leads to

ωL = O

(

1

a

)

, (35)

though ω2

N = O(M/a3) for the Newtonian case. Eq. (35) implies an extremely fast rotation,

since the rotational velocity becomes vL ≈ aωL = O(1), namely, comparable to the speed

of light. This unacceptable branch of such an extremely fast motion contradicts with the

post-Newtonian approximation. Hence, also zL must be abandoned.

We should remember the transformation as z ↔ 1/z, namely 1 ↔ 3. Hence, zS and

zL correspond to each other as zS = 1/zL. In this sense, it seems natural that the above

argument for discarding zL is very similar to that of zS.

As a result, two of the three positive roots are discarded as unphysical ones. Hence, we

complete the proof of the uniqueness.

We mention an application of the uniqueness theorem for the restricted three-body prob-

lem. We have three possibilities for choosing a test mass as M1 = 0, M2 = 0 or M3 = 0. For
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each case, we have only the single collinear solution. Therefore, the three equilibrium points

exist along the symmetry axis of the system, and they are a generalization of Lagrange

points L1, L2 and L3.

Before closing this section, we mention an interesting property of the angular velocity of

the collinear configurations. We have always an inequality as

ω < ωN , (36)

which means that the post-Newtonian orbital period measured in the coordinate time is

longer than the Newtonian one. Detailed calculations are given in Appendix.

V. CONCLUSION

We proved the uniqueness of the collinear configuration for given system parameters (the

masses and the largest separation among them). It was shown that the equation determining

the distance ratio among the three masses, which has been obtained as a seventh-order

polynomial in the previous paper, has at most three positive roots, which apparently provide

three cases of the distance ratio. It was found, however, that there exists one physically

acceptable root and only one. The remaining two positive roots are discarded in the sense

that they do not satisfy the slow motion ansatz in the post-Newtonian approximation.

Especially for the restricted three-body problem, exactly three positions of a third body

are true even at the post-Newtonian order. They are relativistic counterparts of the New-

tonian Lagrange points L1, L2 and L3.

It was shown also that, for given system parameters, the angular velocity of the post-

Newtonian collinear configuration is smaller than that for the Newtonian case.

Our way of discussion seems to work at the second (and higher) post-Newtonian orders,

because the slow motion approximation is a key in the above proof. Therefore, the unique-

ness of collinear configurations for a three-body system may be true even at higher orders,

precisely speaking, if the configuration has the Newtonian limit. It is an open question

whether fully general relativistic systems admit a particular solution that can appear only

for a fast motion case and thus has no Newtonian limit.

We are grateful to Y. Kojima for useful conversations. This work was supported in part

(H.A.) by a Japanese Grant-in-Aid for Scientific Research from the Ministry of Education,
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No. 21540252.

Appendix A: Detailed calculations on the angular velocity

Let us prove ω < ωN . Eq. (22) is rewritten as

ω − ωN

ωN
=

FMR13 + FV FN

2FNR13

. (A1)

Here, FN is positive and thus the denominator of the R.H.S. of Eq. (A1) is always positive.

What we have to do is to investigate the sign of the numerator for the R.H.S. of Eq. (A1).

The numerator is factorized as

M2

a2z4(1 + z)2
×

10
∑

k=0

akz
k, (A2)

13



where we define

a10 = −(1− ν1 − ν3)
2ν2

3
, (A3)

a9 = −(1− ν1 − ν3)(4 + ν1 − 2ν3 − 4ν1ν3 + 2ν2

3
+ 2ν2

1
ν3 − 2ν1ν

2

3
− 4ν3

3
), (A4)

a8 = −(1− ν1 − ν3)(18 + 4ν1 − 9ν3 + 3ν2

1
− 14ν1ν3

+2ν2

3
− ν3

1
+ 7ν2

1
ν3 + 2ν1ν

2

3
− 6ν3

3
), (A5)

a7 = −(1− ν1 − ν3)(32 + 4ν1 − 13ν3 + 12ν2

1
− 18ν1ν3

+10ν2

3
− 4ν3

1
+ 8ν2

1
ν3 + 4ν1ν

2

3
− 8ν3

3
), (A6)

a6 = −(30− 30ν1 − 37ν3 + 19ν2

1
− 12ν1ν3 + 27ν2

3
− 22ν3

1
+ 18ν2

1
ν3

+12ν1ν
2

3
− 28ν3

3
+ 6ν4

1
− 4ν3

1
ν3 − 15ν2

1
ν2

3
+ 6ν1ν

3

3
+ 11ν4

3
), (A7)

a5 = −2(12− 13ν1 − 13ν3 + 11ν2

1
− 10ν1ν3 + 11ν2

3
− 11ν3

1
+ 17ν2

1
ν3

+17ν1ν
2

3
− 11ν3

3
+ 4ν4

1
− 3ν3

1
ν3 − 14ν2

1
ν2

3
− 3ν1ν

3

3
+ 4ν4

3
), (A8)

a4 = −(30− 37ν1 − 30ν3 + 27ν2

1
− 12ν1ν3 + 19ν2

3
− 28ν3

1
+ 12ν2

1
ν3

+18ν1ν
2

3
− 22ν3

3
+ 11ν4

1
+ 6ν3

1
ν3 − 15ν2

1
ν2

3
− 4ν1ν

3

3
+ 6ν4

3
), (A9)

a3 = −(1− ν1 − ν3)(32− 13ν1 + 4ν3 + 10ν2

1
− 18ν1ν3

+12ν2

3
− 8ν3

1
+ 4ν2

1
ν3 + 8ν1ν

2

3
− 4ν3

3
), (A10)

a2 = −(1− ν1 − ν3)(18− 9ν1 + 4ν3 + 2ν2

1
− 14ν1ν3

+3ν2

3
− 6ν3

1
+ 2ν2

1
ν3 + 7ν1ν

2

3
− ν3

3
), (A11)

a1 = −(1− ν1 − ν3)(4− 2ν1 + ν3 + 2ν2

1
− 4ν1ν3 − 4ν3

1
− 2ν2

1
ν3 + 2ν1ν

2

3
), (A12)

a0 = −(1− ν1 − ν3)
2ν2

1
. (A13)
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We show ak < 0 for each k. It is trivial that a0 < 0 and a10 < 0. For ν1 ↔ ν3, we have

a symmetry between a9 ↔ a1, a8 ↔ a2, a7 ↔ a3 and a6 ↔ a4. Therefore, it is sufficient to

examine a9, a8, a7, a6 and a5.

First, let us show a9 < 0. The nontrivial factor in Eq. (A4) turns out to be positive by

noting the following relation as

4− 2ν3 − 4ν1ν3 + 2ν2

3
− 2ν1ν

2

3
− 4ν3

3

= 4(1− ν3)
3 + 10ν3(1−

4

10
ν1 − ν3 −

2

10
ν1ν3)

> 4(1− ν3)
3 + 10ν3(1−

6

10
ν1 − ν3)

> 4(1− ν3)
3 + 10ν3(1− ν1 − ν3)

> 0, (A14)

where we used ν1 ≧ 0, ν3 ≦ 1, ν1ν3 ≦ ν1. Hence we find a9 < 0.

We discuss the sign of a8. By using ν1 = 1 − ν2 − ν3 to delete ν1 and recover ν2, the

R.H.S. of Eq. (A5) is factorized as

− ν2(24− 7ν2 − 23ν3 + 4ν2

3
+ ν3

2
+ 10ν2

2
ν3 + 15ν2ν

2

3
). (A15)

One can show that the latter three terms are positive, since

24− 7ν2 − 23ν3 = 1 + 7(1− ν2 − ν3) + 16(1− ν3)

> 0. (A16)

Hence, the second factor in Eq. (A15) is always positive, which leads to a8 < 0, and also

a2 < 0.

Next, we examine a7. By recovering ν2 to delete ν1, the R.H.S. of Eq. (A6) is factorized

as

− ν2(44− 16ν2 − 39ν3 + 2ν2ν3 + 16ν2

3
+ 4ν3

2
+ 20ν2

2
ν3 + 24ν2ν

2

3
). (A17)

A key thing is a positivity as

44− 16ν2 − 39ν3 = 5 + 16(1− ν2 − ν3) + 23(1− ν3)

> 0, (A18)

which immediately leads to a7 < 0, and also a3 < 0.
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We investigate a6. Similarly to a7, it is factorized as

− (3 + 34ν2 − ν3 − 11ν2

2
− 34ν2ν3 + ν2

3
− 2ν3

2
+ 24ν2ν

2

3
+ 6ν4

2
+ 28ν3

2
ν3 + 33ν2

2
ν2

3
). (A19)

Here, we see that the following two combinations both are positive,

34ν2 − 11ν2

2
− 34ν2ν3 = 11ν2(1− ν2 − ν3) + 23ν2(1− ν3)

> 0, (A20)

3− ν3 − 2ν3

2
> 2− 2ν3

2

> 0, (A21)

which show that Eq. (A19) is always negative. Hence, we show a6 < 0, and also a4 < 0.

Also for a5, it is factorized as

−2(3 + 8ν2 − ν3 + 2ν2

2
− 11ν2ν3 + ν2

3
− 5ν3

2

−7ν2

2
ν3 + 12ν2ν

2

3
+ 4ν4

2
+ 19ν3

2
ν3 + 19ν2

2
ν2

3
). (A22)

One can find the following rather tricky manipulation as

3 + 8ν2 − ν3 + 2ν2

2
− 11ν2ν3 − 5ν3

2
− 7ν2

2
ν3

= 3 + 5ν2[1− ν2(ν2 + ν3)− ν3]− ν3 − 6ν2ν3

> 3 + 5ν2(1− ν2 − ν3)− ν3 − 6ν2ν3

>
1

2
, (A23)

where we used 0 < ν2 + ν3 < 1 and ν2ν3 ≦ 1/4. Hence, we find a5 < 0.

As a consequence, all the coefficients are always negative, which shows ω < ωN for any

mass ratio.
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FIG. 1: Top panel: The seventh-order polynomial in the L.H.S. of Eq. (13). The horizontal axis is

chosen as z. We take ν1 = 1/7, ν2 = 5/7, ν3 = 1/7, a/M = 104 (v ∼ 10−2) in order to exaggerate

small effects in these figures. Clearly such a symmetric choice of the mass ratios produces a trivial

root as z = 1, which makes it easy to check numerical calculations. M2 is relatively large so that

the centrifugal force can be large.

Middle panel: The seventh-order polynomial around the smallest positive root zS .

Bottom panel: The polynomial around the moderate positive root.
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