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Exactly solved models for irreversible aggregation
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We present the complete solution for the probability to find any given state in an aggregation
process (k+1)X → X, given a fixed number of unit mass particles in the initial state. For constant
reaction rate, exactly the same probability is found in three cases: well-mixed solutions, particles on
a ring reacting with k nearest neighbors to the right, and the same for particles on a line. The mass
distribution of a single cluster exhibits scaling laws both at small and large sizes. We relate our
findings to a fragmentation process via a nonlinear recursion relation as well as a type of percolation
transition seen in network renormalization.
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Droplets beget rain, goblets coagulate to make butter
or cream, and dust particles stick together to form ag-
gregates that can eventually coalesce into planets. At
the microscopic level, irreversible aggregation of atoms
and molecules creates many familiar forms of matter
such as aerosols, colloids, gels, suspensions, clusters
and solids [1]. Some catastrophic diseases, such ashe-
mophilia [2] or neurodegeneration [3] are caused by de-
fects in coagulation. But models of aggregation also turn
up in abstract circumstances such as the formation of
political parties [4], algorithms for decision making [5],
data analysis [6], database construction [7], or random
partitions applied to genetics [8–10] – to name a few.

Almost a century ago, Smoluchowski proposed a the-
ory based on rate equations to describe processes gov-
erned by diffusion, collision and irreversible merging of
aggregates [11]. The theory predicts how many small and
large clusters exist at any given time. The mass distri-
bution depends on certain details such as the initial con-
ditions, reactions present, relative rates of aggregation
compared to other processes, various mass dependencies
of the rates, and the presence or absence of spatial struc-
ture. In general one observes in reaction-diffusion sys-
tems (such as e.g. DLA [12]) that a finite speed of diffu-
sion typically leads to negative spatial correlations which
in turn affect reaction dynamics. The Smoluchowski ap-
proach has been extended to include, for instance, fluc-
tuations via a time dependent reaction kernel [13]. A key
interest to physicists has been the derivation of scaling
laws that characterize different universality classes [14].

Here we study stylized models of aggregation that
throw out almost all details to focus exclusively on co-
alescence itself. We derive complete, exact solutions for
the probability to find any given state in three models
and show that these solutions are precisely the same.
Hence the behavior is markedly robust – which is con-
sistent with the generality of aggregation processes span-
ning both physical and non-physical domains. We further
show how aggregation (when the parameter in the model
k is even) is related to random sequential renormaliza-

tion (RSR) of graphs [15] and how the scaling behavior
observed reflects the presence of a novel percolation tran-
sition rather than an underlying fractal. The latter is
discussed in the context of claims [16, 17] that complex
networks exhibit non-trivial fractal dimensions.

We consider models governed by the reaction (k +
1)X → X , where a randomly picked cluster coalesces
with k other ones. The mass of the newly formed cluster
is the sum of the (k + 1) masses and the reaction rate is
constant – independent of time, mass or any other quan-
tity. We consider two extreme cases: well-mixed systems
and one-dimensional models – both a ring with periodic
boundary conditions and a line with open ones. In any
case, reactions are allowed only if there is a sufficient
number, k, of available clusters.

Let us start with the model defined on a ring. Initially,
N0 sites labelled by i ∈ [1, ...N0] are each occupied by a
particle of mass m = 1. Time can be either discrete or
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FIG. 1: (Color online) Illustration of aggregation on a ring
with k = 1, N0 = 24, and N = 5. The tree in color corre-
sponds to a cluster of mass m = 5. It has five leaves (blue)
and four internal nodes (red). Its leaves start at site i and
end at site i + m − 1. The numbers beside internal nodes
correspond to the time when coalescence occurs.

http://arxiv.org/abs/1011.0944v1


2

continuous, but we demand that two events never happen
simultaneously. Hence, events can be ranked by increas-
ing time, and are denoted by positive, integer values t.
Due to these events, particles coagulate to form clusters
of mass m > 1. More precisely, each event consists of
picking a random cluster with uniform probability and
joining it with k clusters to its immediate right, using
periodic boundary conditions. For k even, the same re-
sults are found if we aggregate clusters symmetrically.
After t events, Nt = N0 − kt clusters exist. Our main
result is the probability to find any connected sequence
of cluster masses pN0

Nt
(m1,m2 . . .mNt

) – where a cluster
of massm1 is followed by a cluster of mass m2, etc., mov-
ing clockwise (see Fig. 1). First we start with the single
cluster mass probability.

Cluster masses are restricted to m ≡ 1 (mod k). Defin-
ing m − 1 = ks, the integer s is the number of events
needed to make the cluster of mass m. As depicted in
Fig. 1, we can represent any realization of the process
by a forest of Nt rooted trees with N0 leaves and t in-
ternal nodes. Each tree α has sα internal nodes, with
∑

α sα = t. We simplify notation by writing N for Nt.

Let πN0

N (m) denote for fixed k (the dependence on k
is not written explicitly in the following) the probability
that a cluster of mass m has its left-most member at site
i ∈ [1, N0] after t events. The probability that any of the
N clusters picked at random has mass m is then

pN0

N (m) =
N0

N
πN0

N (m) , (1)

because there are N0 choices for i and the chance to
pick that particular cluster given that it exists is 1/N .
Since events occur completely at random, each history

occurs with equal probability. The term ‘history’ refers
to a fixed forest, which includes a fixed temporal order
of events. Thus πN0

N (m) is equal to the number of histo-
ries leading to a final configuration with a cluster of mass
m starting at position i, divided by all possible histories
leading to N clusters. The latter is equal to

nhist,tot = N0 × (N0 − k)× . . . (N + k), (2)

where each of the t factors equals the number of choices
for the next event. Using Pochhammer k−symbols or,
equivalently, generalized rising factorials [8, 9, 18, 19],
this can be written as

nhist,tot = (N + k)t,k . (3)

Similarly, the number of histories leading to a cluster of
size m starting at a fixed position i is

nhist,cluster = (m− k)(m− 2k)× . . . 1 = (1)s,k (4)

and the number of histories for the remaining N−1 clus-

ters is

nhist,rest = (N0 −m− k)(N0 −m− 2k)× . . . (N − 1)

= (N − 1)t−s,k . (5)

So far we have not included the number of choices associ-
ated with different time orderings for the s events in the
cluster and (t − s) events in the rest of the forest. The
number of different time orderings is given by

norderings =

(

t

s

)

. (6)

Combining Eqs. (1) to (6), we obtain

pN0

N (m) =
N0

N

(

t

s

)

(N − 1)t−s,k(1)s,k
(N + k)t,k

=

(

t

s

)

(N − 1)t−s,k(1)s,k
(N)t,k

. (7)

This result can be further simplified into beta functions
or, more conveniently, k-beta functions (see e.g. [19]),

Bk(x, y) =
1

k
B(

x

k
,
y

k
) ,

giving a remarkably simple final result

pN0

N (m) =

(

t

s

)

Bk(N0 −m,m)

Bk(N − 1, 1)
. (8)

We make a number of observations: (1) For k = 1
the process maps to bond percolation on a ring. For
N = 2, the mass distribution is uniform over the en-
tire range m ∈ [1, N0 − 1]. For N > 2, the distribu-
tion is proportional to the (N − 2)nd factorial power
((N0 −m − 1)(N0 − m − 2) · · · (N0 − m − N + 2)). (2)
For N = 2 and any k ≥ 1, pN0

N (m) is symmetric under
the exchange m ↔ N0 − m. (3) For N = 2 and k = 2
we obtain an equation formally identical to Spitzer’s dis-
crete arcsine law for fluctuations of random walks [20].
(4) Asymptotic power laws for N0 → ∞ can be deter-
mined using Stirling’s formula. If N is fixed and both m
and (N0 −m) → ∞,

pN0

N (m) ∼
(t− s)

N−1

k
−1

s1−
1

k

. (9)

For small masses, this gives a decreasing power law with
exponent −1 + 1/k. For N = k + 1, the power law
pN0

N (m) ∼ s−1+1/k holds up to the largest possible value,
m = N0 − N + 1, and the cutoff is a step function. For
m/N0 → 1 different power laws appear if N 6= k + 1,
and the sign of the exponent changes at N = k + 1. For
N < k + 1, the distribution has a peak at m/N0 → 1,
while it goes to zero for N > k + 1. These scaling laws
are illustrated for k = 2 in Fig. 2. (5) The scaling laws
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FIG. 2: (Color online) Cluster size distributions after t =
50 events for k = 2, for different values of N averaged over
106 realizations compared to exact results. The large size
behavior changes from increasing power law to a decreasing
one at N = k + 1. The inset shows the symmetric discrete
arcsine law found for N = 2.

found for m ≪ N0 are identical to those obtained by
Krapivsky [21] for the well mixed case. However, the be-
havior for m/N0 → 1 given in [21] does not agree with
our result. (6) The probability pN0

N (m) satisfies a number
of recursion relations:

pN0

N (m+ k) =
m(N0 −m−N + 1)

(m+ k − 1)(N0 −m− k)
pN0

N (m) ,

pN0

N+k(m) =
N(N0 −m−N + 1)

(N − 1)(N0 −N)
pN0

N (m) . (10)

A third nonlinear recursion relation is given later.

Joint distributions for masses of adjacent clusters can
also be found. We denote by pN0

N (m1,m2) the probability
to find a cluster of mass m1 followed immediately to the
right by a cluster of mass m2. This is non-zero only if
m1 = 1+ s1k and m2 = 1+ s2k, where sα is the number
of events needed to form a cluster of mass mα. By the
same arguments that led to Eq. (7) we get

pN0

N (m1,m2) =
T [t, {s}, 3](N − 2)s0,k(1)s1,k(1)s2,k

(N)t,k
,

where s0 = t−
∑α

β=1 sβ and the multinomial coefficient

T [t, {s}, α+ 1] =

(

t
s0, . . . sα

)

.

When α = 2, it is a trinomial coefficient that counts the
number of ways in which the three sequences of events –
for the two clusters considered, and for all (N − 2) other
clusters – can be interleaved in a single history.

For any 1 ≤ α ≤ N − 1 the joint probability distri-

bution for α consecutive, adjacent clusters is a product
of a multinomial coefficient and α + 1 Pochhammer k-
symbols, divided by the Pochhammer k-symbol related
to the total number of possible histories given N0 initial
particles. Defining again s0 as the number of events in all
clusters except the first α ones, we can write the result
compactly as

pN0

N (m1, . . .mα) =
T [t, {s}, α+ 1](N − α)s0,k

∏α
β=1(1)sβ ,k

(N)t,k
.

(11)

In particular, this can also be done for the joint dis-
tribution for all N masses by setting α = N − 1. The
resulting expression is then manifestly invariant under
any permutations of N numbers (m1, . . .mN ). Hence
the N− cluster probability is independent of the spatial
ordering of the clusters. While there are obvious corre-
lations between the mass values (the sum of all cluster
masses must be N0), there are no spatial correlations.

We now consider a line of N0 particles with open
boundaries. Again, aggregation events consist of a ran-
dom choice of a cluster, followed by its amalgamation
with its k nearest neighbors to the right. The target
cluster must be at least k steps away from the right-most
boundary. Following the same arguments leads immedi-
ately to Eq. (11) for α = N − 1, showing that the two
models lead to precisely the same statistics.

The absence of spatial correlations indicates that the
same dynamics might result for the well-mixed case. Now
we start with a bucket containing N0 balls, each of unit
mass. An event consists of taking k + 1 balls out of the
bucket, merging them together, and returning the new
ball to the bucket. The k+1 balls are chosen completely
at random, independent of their masses.

The single cluster mass distribution for the well-mixed
model can be obtained using the same strategy as be-
fore, but the details are quite different. Consider the
total number of histories. Since events now correspond
to choosing any k+1 balls out of N0− kt balls, we have,
instead of the Pochhammer k-symbol, a product of bino-
mial coefficients,

nhist,tot =

(

N0

k + 1

)(

N0 − k

k + 1

)

. . .

(

N + k

k + 1

)

. (12)

The expressions for nhist,cluster and nhist,rest are analo-
gous, with the factors (m− jk) (resp. (N0 −m− jk)) in
Eq. (4) (resp. (5)) replaced by binomial coefficients. The
number of time orderings norderings is exactly the same
as before, but the first factor N0/N in Eq. (7) has to
be replaced by 1

N

(

N0

m

)

. Putting all these things together,
many cancellations take place, leading exactly to Eq. (8).
This argument can be similarly extending to get the full
N -particle distribution function, obtaining exactly the
same result as before, for any k.

The time reversed process of aggregation is fragmenta-
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tion. When considering the fragmentation process as-
sociated with any of these models, we have to care-
fully evaluate fragmentation rates. Assuming uniform
rates would not lead to all time reversed histories hav-
ing the same probability. Indeed the fraction of all
mergers associated with making a cluster of mass m′ is
(s′/t) = (m′−1)/(N0−N), which must equal the proba-
bility that an existing cluster of mass m′ will fragment at
the next step in the time reversed process. If it does, then
for consistency its fragmentation products must have a
mass distribution given by pm

′

k+1(m). A quadratic recur-

sion relation for pN0

N+k(m) can then be obtained by con-
sidering the likelihood of all fragmentation events in a
configuration of N clusters, with m being the mass of
one of the resulting k + 1 fragmentation products. The
relation is

pN0

N+k(m) =

N0−N+1
∑′

m′=m+k

N(m′ − 1)pN0

N (m′)pm
′

k+1(m)

N0 −N
,

where the prime on the summation symbol indicates that
m′ must increase in steps of k.

The present work started as part of an ongoing investi-
gation of renormalization schemes for complex networks.
This was triggered by claims that one can define finite
fractal dimensions for real world networks such as the
world-wide-web [16] – a surprising assertion, are given the
fact that these networks typically small world [22, 23].
In particular, the number of nodes increases roughly ex-
ponentially (or even faster than exponentially [24, 25])
with distance from the target node. The renormaliza-
tion group (RG) flow underlying the box covering of
[16, 17] was studied carefully in [26, 27], where it was
found that the scaling laws may be related to an “RG
fixed point” which was observed for a wide variety of
networks. Ref. [15] introduced a fully sequential scheme
(called random sequential renormalization, RSR) which
eliminates formidable difficulties associated with covering
a network with boxes.

Results for various graphs (critical trees [15], Erdös-
Renyi and Barabasi-Albert [28] networks [29], regular
lattices [30]) indicate that a fixed point, associated with
scaling behavior, exists. It is a novel type of percolation
transition (in general in a new universality class) that it
is not contingent upon fractality of the original graph.
The aggregation process on a one dimensional ring or
line (with k even) studied here is precisely the RSR on
these lattices. The non-trivial scaling laws we find for
small and large cluster sizes indicates that also in this
simple geometry a non-trivial fixed point exists that it is
not in the ordinary percolation universality class (which
would correspond to k = 1) and that does not reflect any
underlying fractality of the graph.

In summary, we have given complete solutions to find
any state for a class of aggregation models starting with

uniform initial conditions. The fact that we could solve
exactly a one dimensional model without detailed bal-
ance might seem surprising since such models are in gen-
eral not solvable, unless they satisfy detailed balance. It
is related to the fact that spatial correlations, although
they seem a priori not to be excluded, are in fact absent.
Related to this is our finding that the well-mixed models
have exactly the same solutions. It would be interesting
to see whether generalizations of these observations hold
true for more complicated models. For instance, the co-
agulation rates could depend on the cluster masses, in
which case the sums over histories are weighted path in-
tegrals. We have also extended the application of aggre-
gation models to renormalization schemes for complex
networks.
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