
ar
X

iv
:1

01
1.

12
93

v1
  [

ph
ys

ic
s.

so
c-

ph
]  

4 
N

ov
 2

01
0

Evolutionary Games defined at the Network Mesoscale: The Public Goods game
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The evolutionary dynamics of the Public Goods game addresses the emergence of cooperation within groups
of individuals. However, the Public Goods game on large populations of interconnected individuals has been
usually modeled without any knowledge about their group structure. In this paper, by focusing on collaboration
networks, we show that it is possible to include the mesoscopic information about the structure of the real groups
by means of a bipartite graph. We compare the results with theprojected (coauthor) and the original bipartite
graphs and show that cooperation is enhanced by the mesoscopic structure contained. We conclude by analyzing
the influence of the size of the groups in the evolutionary success of cooperation.

Evolutionary game dynamics on graphs has become a
hot topic of research during the last years. The attention
has been mainly focused on2-players games, such as the
Prisoner’s Dilemma game, since the pairwise interactions
can be easily implemented on top of networked substrates.
However, for m-players game, such as the Public Goods
game, the microscopic description about the pairwise in-
teractions contained in the network is not enough, since
m-players game are intrinsically defined at the mesoscopic
network level. This mesoscopic level describes how indi-
viduals engage into groups where the Public Goods games
are played. However, the actual group structure of net-
works has not been considered in the literature, being au-
tomatically substituted by a fictitious one. In this work, we
study the emergence of cooperation in collaboration net-
works, by incorporating the real group structure to the
evolutionary dynamics of the Public Goods game. Our re-
sults are compared with those obtained when the meso-
scopic structure is ignored. We show that cooperation is
actually enhanced when the group structure is taken into
account, thus providing a novel structural mechanism, re-
lying on the mesoscale level of large social systems, that
promotes cooperation. Moreover, we further show that the
particular characteristics of the group structure strongly
influence the survival of cooperation.

I. INTRODUCTION

Evolutionary game theory on graphs is attracting lately a
lot of interest among the community of physicists working
on complex systems [1, 2]. This is a very appealing research
topic because it combines two important ideas. First, interac-
tions take place on a (possibly complex) network [3, 4], gener-
alizing the lattice perspective; and, second, that the dynamics
taking place on that substrate needs not be the traditional one,
but rather it can arise from an evolutionary approach [5]. On
the other hand, from the applications viewpoint, studying evo-
lutionary games on graphs is one of several avenues proposed
to understand the emergence of cooperation in different con-
texts [6]. This is a most relevant issue that arises, for instance,

in understanding the origin of multicellular organisms [7], of
altruistic behavior in humans and primates [8], or the way ad-
vanced animal societies work [9, 10], to name a few.

Research on evolutionary game theory on graphs focused
on the problem of the emergence of cooperation has consid-
ered mainly the Prisoner’s Dilemma game [11, 12]. The Pris-
oner’s Dilemma game (PDG) describes a situation in which
cooperation is hampered by the players’ temptation to defect
(defecting yields more payoff than cooperating when facing
a cooperator) and by the risk arising from cooperation (coop-
erating with a defector yields the lowest payoff) [13]. This
leads to a social dilemma in so far as when players cooperate
both the total benefit and the individual benefit are higher than
when mutual defection occurs. While evolutionary dynamics
leads all the individuals to defection when interactions take
place in a well-mixed population (every player interacts with
every other one), the existence of a network structuring the
population can sometimes promote the emergence of coop-
eration [14], but this depends strongly on the details of the
network and the dynamics [2, 15].

Much less attention has been paid to them-player gener-
alization of the PDG, also called Public Goods Game (PGG)
[16]: Cooperators contribute an amountc (“cost”) to the pub-
lic good; defectors do not contribute. The total contribution
is multiplied by an enhancement factorr < m and the result
is equally distributed between allm members of the group.
Hence, defectors get the same benefit of cooperators at no
cost, i.e., they free-ride on the cooperators’ effort. Thisis an
alternative view of the social dilemma posed by the so-called
tragedy of the commons [17]. As with the PDG, the evolu-
tionary outcome of the PGG differs if played on a well-mixed
population (where once again defection is selected) or on a
network structure. Thus, Brandtet al. [18] showed that lo-
cal interactions can promote cooperation in the sense that full
cooperation is obtained for values ofr well below the critical
valuer = m. This result, arising from simulation in an hexag-
onal lattice, was later generalized to other lattices in [19] and
to scale-free [20] graphs in [21].

In this work, we go beyond those first results and focus on
the mesoscopic structure of the networks and relate it to the
situation represented by a PGG. Applications of this game
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arise naturally when a number of people have to work to-
gether towards a common goal, either to obtain some ben-
efit or to avoid some negative effects. While trying to sta-
bilize the Earth’s climate is a dramatic example of the latter
[22], co-authoring scientific papers is a direct application of
the PGG in the positive sense. This provides a specific setting
in which we can test the ideas about the emergence of cooper-
ation in PGG on real social networks, as several collaboration
networks have been mapped and are publicly available [23–
25]. In this respect, it is worth noticing that the asymptotic
behavior of evolutionary games in real social networks can
be very different from that observed in model networks, and,
in fact, mesoscopic scales, clustering and motifs have been
shown to play a key role in governing the game dynamics
[26–28]. Therefore, it is important to assess to which degree,
if at all, is cooperation promoted in PGG on collaboration net-
works. On the other hand, while collaboration networks are in
fact bipartite, as co-authors are connected to papers, theyare
very often used in a projected mode, by connecting directly
co-authors among themselves. Thus, the question arises as to
the relevance of the mesoscopic structure (as defined by the
papers) and the possible differences it may give rise to when
the original bipartite or the projected network are considered.

To study these issues in depth, this paper is structured as
follows: In section II we introduce the usual formulation of
the PGG on complex netwoks and present the new formula-
tion based on bipartite graphs incorporating the interaction
groups,i.e. the mesoscale structure of the population. Be-
sides, in this section we briefly introduce two different ver-
sions of the PGG and the different evolutionary rules we will
use. In section III we focus on scientific collaboration net-
woks to show the different evolutionary outcomes of the pro-
jected and the bipartite representations. Namely, we show that
the mesoscopic structure composed of the interaction groups
plays a relevant role in the promotion of cooperation. In
section IV we focus on the structural characteristics of the
mesoscale. In particular, we analyze the role of the size of
the interaction groups. The general conclusion of our analysis
is that the larger the interaction groups are, the more difficult
cooperation is promoted. Finally, in section V we summarize
the main results and pose some relevant questions that arise
from them.

II. MODELLING EVOLUTIONARY DYNAMICS OF
PUBLIC GOODS GAME

A. The Evolutionary Public Goods Game

The classical setting of a PGG models an economic or so-
cial group ofm agents whose strategies can be cooperation
(C) or defection (D). As explained above, if an agent cooper-
ates she invests a quantityc into the public pot whereas defec-
tors do not contribute. Therefore, in a group withx cooper-
ators (andm − x defectors) the total amount of investments
is xc. This amount is then multiplied by an enhacement fac-
tor r > 1 so that the total investment increases torxc. This
amount is then distributed among all the participants of the

PGG regardless of their contributions. Therefore, the benefit
of each defector will be

fD =
rxc

m
, (1)

while for a cooperator the benefit decreases tofC = fD − c.
From these benefits it is obvious that defectors will earn more
than cooperators,fD ≥ fC . Morevover, whilefD ≥ 0, co-
operators only have possitive benefits whenrx > m. This
means that a lonely cooperator playing with a group of defec-
tors will always lose (fC < 0) wheneverr < m. Therefore,
the Nash equilibrium of a PGG withr < m is a full defec-
tion situation (i. e., a group in which all players defect). How-
ever, this equilibrium is not Pareto optimal since full defection
yields zero total reward whereas if everyone contributes tothe
PGG (full cooperation) the group will obtain the maximum
total reward. Thus, here is where the social dilemma lies.

In an evolutionary context individuals are not considered
fully rational, so that they do not play a Nash equilibrium
found from a rational analysis of the PGG. Besides, agents
are not organized into a single group but in general a large
population ofN ≫ m agents is allowed to organize into a
large number of groups withm agents. The relevant differ-
ence with the classical setting is the introduction of a dynam-
ical evolution: Agents play the game several times and they
are allowed to change their strategy after each round of the
game. These strategy changes obey certain evolutionary rules
by which agents evaluate their performance comparing their
fitness with those of the rest of the population (see section
II D).

In a well mixed population the agents play within several
groups during the different rounds of the game. In particu-
lar, before each round of the PGG the groups are formed ran-
domly. Under this well-mixing assumption it can be shown
that the evolutionary dynamics ends up in full defection when-
everr < m. Therefore, defection again dominates over coop-
eration as in the (static) classical setting. Driven by the abun-
dance of examples in which cooperation is observed in social,
economic and biological situations similar to that defined by
the PGG, it is clear that some mechanisms beyond irrational-
ity and evolution are at the core of the survival of cooperation.
In this line several mechanisms have been proposed such as
costly punishment [18, 29], meaning the possibility of pun-
ishing defectors after a round of the PGG, or the addition of
reputation [18] to agents, which signals the behavior of these
players in past rounds of the game. These social-based mech-
anisms allow to enhance the contributions to the PGG, thus
favouring the survival of cooperative behaviors.

B. The Public Goods Game on Complex Networks

The aforementioned mecanisms (punishment and reputa-
tion) are clearly based in human behaviors that are plausible
to appear in social systems. However, cooperation in the PGG
can also be promoted by taking into consideration the struc-
ture of interaction between players. To this aim, one leavesout
the well-mixing assumption and works with a static substrate
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FIG. 1: Schematic representation of the usual way for defining the
interaction groups of the PGG on complex networks. Each of the 4
agents defines a group composed of herself and its neighbors.As a
result, the above graph contains3 groups composed of2 nodes and a
big one containg the4 nodes of the graph.

of interactions. As introduced above, in [18] it was shown
that in the case of the PGG, cooperation was significantly pro-
moted when considering Euclidean lattices. The importance
of the structure of interactions in the success of cooperation in
the general context of evolutionary game theory is underlined
by the termnetwork reciprocity[6].

The interaction backbone of real social systems is however
far from Euclidean structures. In particular, many studiesin
the last decade have addressed the characterization of such
social systems as complex networks [3, 4]. These networks
are a collection ofN nodes (accounting for each agent of
the system) andL links (describing the interaction between
pairs of agents). Complex networks typically display struc-
tural patterns that are absent in regular geometries, such as the
small-world property [30] or scale-free patterns for the num-
ber of connections of the agents [20]. On the other hand, real
complex networks are sparse (L ∼ N ) meaning that the well
mixed assumption (which would imply thatL ∼ N2) does
not hold. Thus, it is necessary to study how the structure of
these networks affects the evolution of cooperation. As in the
case of regular lattices, the first evolutionary social dilemma
to be studied on top of networks was the PDG. The main re-
sult of these studies is that, under certain conditions [2, 15],
cooperation is further enhanced whith respect to the case of
regular lattices. Moreover, it was observed that the degree-
heterogeneity of scale-free networks increases significantly
the survival of cooperation with respect to random complex
networks [31, 32], as was subsequently shown [21] for PGG,
thus reinforcing the message that scale-free structures are nat-
ural promoters of cooperation.

The implementation of the PGG on top of complex neworks
is however, not as straighforward as in the case of the PDG.
The reason is clear: While the PDG is defined for pairwise in-
teractions and thus the possible games are dictated by the col-
lection of links of the network, form player groups (m > 2)
we do not have the information about how to engage players
in groups. Therefore, somea priori assumptions about the
inner group structure of complex networks have to be made.
Most of the works in the literature about the PGG on networks
assume that a complex network automatically definesN dif-
ferent groups of players. Namely, each of these groups is de-

fined by considering one agenti and herki neighbors as dic-
tated by the network topology (see Figure 1). Obviously, the
size of these groups is not regular since the number of neigh-
bors each agent has can fluctuate around the average connec-
tivity of the complex network. In scale-free networks these
fluctuations diverge since the probability of finding an indi-
vidual with k neighbors follows a power-law,P (k) ∼ k−γ

with 2 ≤ γ ≤ 3. Thus, one finds a large number of small size
groups (those centered around agents with small connectivity)
and a few of them composed of many agents (corresponding
to groups formed around the hubs of the system). On the other
hand, since each individuali participates inki+1 groups, the
hubs participate in a large number of groups.

Given the above definition for the group structure the im-
plementation of the evolutionary PGG is as follows. At each
time step of the evolutionary dynamics, each playeri plays the
PGG within theki + 1 groups she belongs to (using the same
strategy in each PGG). Once all the games are played, each
agenti collects the total benefit,fi, obtained. If the agent
plays as cooperator she pays a cost,ci, for participating in
each of theki+1 groups. Here we will consider two situations
for assigning the value of the investment made in each of the
PGG she participates (as introduced in [21]). First, we con-
sider that a cooperator agent pays a fixed costci = z per game
(FCG) played; thus, her total investment raises to(ki + 1)z.
The second option is to assume a fixed costz per individual
(FCI) playing as cooperator. Therefore, in this latter scenario,
the quantityz is equally distributed by contributing a quantity
ci = z/(ki + 1) to each group she participates.

Having in mind the above two settings for deciding the con-
tributions of cooperator players, we can write the benefits of
each agent given her strategy and those of her first and second
neighbors. If we denote byxt

i the strategy of agenti during
roundt of the PGG, so thatxt

i = 1 when playing as coopera-
tor andxt

i = 0 if defecting, the benefitfi(t) obtained after the
round reads

fi(t) =

N
∑

j=1

Aij

r(
∑N

l=1 Ajlx
t
lcl + xt

jcj)

kj + 1
− kix

t
ici

+
r(
∑N

j=1 Aijx
t
jcj + xt

ici)

ki + 1
− xt

ici . (2)

In the above equation we have made use of the adjacency ma-
trix of network whose entries areAij = Aji = 1 wheni andj
are connected andAij = 0 otherwise, withAii = 0 (no self-
links). Note that the first two terms of Eq. (2) correspond to
the PGG played within the groups formed around the neigh-
bors ofi while the last two terms account for the game played
by i and her neighbors.

C. The Public Goods Game on Bipartite Graphs

The definition of the groups where the PGG takes place
as the sets formed by each agent and her network neighbors
arises from using the network of contacts as the map of agent
interactions. However, most social networks are constructed
from real data containg information about the groups formed
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FIG. 2: Schematic representation of the two different formsof encoding collaboration data. In the central plot severalcollaboration groups
represent the original data. The interactions among agentscan be translated into a projected complex network (left). However, if one aims at
preserving all the information about the group structure, arepresentation as a bipartite graph (right) is more appropriate.

by individuals. Well-known examples are collaboration net-
works in which agents can be scientists collaborating to per-
form research [23–25]. In Figure 2 we plot how collaboration
data are usually collected to form a projected (or one-mode)
complex network of the interactions among agents (the co-
author network). The central plot corresponds to the orig-
inal data containing several collaboration groups among six
agents. These groups are then translated into a complex net-
work by projecting the original data (left plot). The collec-
tion of groups then transforms into a star-like graph in which
there is a central hub (node6) with five neighbors, some of
them connected and thus forming triangles with the central
hub. One easily realizes that groups defined on the projected
network itself (following the definition given in section IIB)
are rather different from the original ones.

On the other hand, one can take advantage of the informa-
tion available in collaboration data by constructing a bipartite
graph [33–35]. The structure of this bipartite graph is repre-
sented in the right plot of Figure 2. As observed, the bipartite
representation contains two types of nodes denoting agents
(left column of round nodes) and collaborations (right column
of squared nodes) respectively. It is clear that connections are
restricted to link nodes of different types (i. e. belongingto
different columns). Thus, such a bipartite representationpre-
serves the information about the group structure of the original
data and constitutes a well-suited framework for studying dy-
namical processes intrinsically defined at a system mesoscale
[36] (in our case defined by the collaboration groups) as is the
case of the PGG.

Let us now formalize the bipartite graph in which the evo-
lutionary dynamics of the PGG takes place. The graph will be
composed ofN agents playing the PGG withinP groups. The
particular way agents engage into groups will be encoded by
aP ×N matrixBij usually called biadjacency matrix. Given
the bipartite structure of the graph, thei-th row accounts for
the individuals participating in groupi, so that agentj is en-

gaged in groupi wheneverBij = 1 while Bij = 0 when she
is absent (note that nowBii needs not be zero as rows and
columns represent different entities). Alternatively, the i-th
column contains the information about the groups containing
agenti: Bji = 1 when agenti participates in groupj and
Bji = 0 otherwise. Given the biadjacency matrix we can cal-
culate the number of groups agenti takes part,qi, as

qi =

P
∑

j=1

Bji, (i = 1, ..., N) . (3)

Alternatively, the number of participants contained in groupi,
mi, reads

mi =

N
∑

j=1

Bij , (i = 1, ..., P ) . (4)

Having introduced the structure of the bipartite graph de-
scribing the relations between agents and groups, we model
the PGG. At each time step, each playeri (i = 1, ..., N ) plays
a round of the PGG each at every group she participates in
as defined by the biadjacency matrix of the bipartite graph,
Bji = 1 (j = 1, ..., P ). Obviously, the benefit obtained by
the agent depends on both her strategy and those of the agents
participating in the same groups. The net benefit after playing
roundt of the PGG now reads

fi(t) =

P
∑

j=1

rBji

mj

[

N
∑

l=1

Bjlx
t
lcl

]

− xt
iciqi . (5)

Note that the sum in the above expression accounts forqi
PGGs played byi while the last term is for the cost associ-
ated to partipating as cooperator.



5

D. Strategy update: Evolutionary Dynamics

After a round of the PGG is played, agents update their
strategies. This update is driven by the benefits obtained by
the agent and her neighbors in the last round of the game.
Thus, the update stage keeps the local character, by restrict-
ing the information available to agents about the benefits of
other players to their local (one-mode) network neighbor-
hoods. Note that the group structure described in the bipartite
representation plays no role in this stage, as update rules make
use of the network of contacts. Thus, the update process takes
place in the same way regardless of the representation (one-
mode network or bipartite graph) of the PGG we are using.

In this work we will use three different update rules in order
to test the robustness of the results obtained. In all the update
rules each agent decides to use the strategy of a given neighbor
j in the next round of the game (xt+1

i = xt
j) or to stay the

same (xt+1
i = xt

i). The three update rules work as follows:

• Unconditional Imitation (UI) [14]: agenti compares
her payoff with her neighbor with the largest payoff,
say agentj. Agent i will copy the strategy of agentj
providedfi < fj . Otherwise, agenti will remain un-
changed. The probability of copying agentj is given
by

Pj = Θ(fj − fi) with fj = max{fl|Ail = 1} , (6)

whereΘ(x) is the Heaviside step function,Θ(x) = 1
whenx > 0 andΘ(x) = 0 for x ≤ 0.

• Fermi rule [37, 38]: agenti chooses one neighbor at
random, say agentj, and compares their respective ben-
efits. The probability thati copies the strategy of the
chosen neighbor obeys a saturated Fermi function of the
benefit differencefi − fj . Thus, the probability thati
decides to take the strategy of an agentj reads

Pj =
Aij

ki
·

1

1 + eβ(fi−fj)
. (7)

• Moran rule (MOR) [15, 39]: agenti chooses one of her
neighbors proportionally to her payoff. Subsequently,
agenti adopts automatically the state of the chosen
neighbor. Therefore, the probability of choosing agent
j is given by

Pj =
Aijfj

∑N

l=1 Ailfl
. (8)

These three update rules contain different evolutionary ingre-
dients. In particular, UI and MOR use global knowledge about
the benefits of the neighbors since they evaluate all of them.
On the contrary, the Fermi update chooses one neighbor ran-
domly. Concerning the stochastic character of the agent’s de-
cisions, we note that both Fermi (for small and moderate val-
ues ofβ) and MOR updates are purely stochastic and they
even allow mistakes,i.e. it is possible to copy the strategy of
a neighbor with smaller benefit. In contrast, UI is purely de-
termistic and errors are not admitted. Note that whenβ ≫ 1

(strong selection limit) the saturated Fermi function turns into
a Heaviside step function thus mimicking the behavior of UI.
However, the differences in the degree of knowledge about
neighbors of both setting persist. In the following, we willuse
β = 1 for the Fermi update since the results are quite robust
around this value.

III. COOPERATION IN SCIENTIFIC COLLABORATIONS:
PROJECTED VERSUS BIPARTITE NETWORKS

In this section we implement the PGG on top of a real col-
laboration network. The network is composed byN = 13861
scientist and the collaboration data is obtained fromP =
19465 papers appeared in thecond-matsection of the arXiv
preprint server [23]. This collection of papers is obtainedafter
computing the giant connected component of the (projected)
coauthor network of the original data set which has16726 au-
thors and22015 papers. In Figure 3 we plot the degree dis-
tribution of the coauthor network and those of the bipartite
(authors-papers) graph. Both the probability of finding one
author withk coauthors,P (k), and that of having an author
collaborating inq papers,P (q), have broad profiles. On the
other hand, the probability that a paper is coauthored bym re-
searchers,P (m), shows an exponential decay. This homoge-
neous distribution for the number of authors coauthoring one
paper is a very important difference arising when comparing
the (one-mode) coauthor network with the bipartite represen-
tation of the collaboration data.

The structural differences between the coauthor network
and the bipartite graph imply that the dynamical processes
implemented on top of them can yield different results. In
particular, modelling the PGG without any knowledge of the
real group structure will give as a result the definition of large
groups centered around hubs of the coauthor network (see
Figure 3.a). However, this definition strongly contrasts with
the homogenenous distributionP (m) for the number of au-
thors collaborating in one paper. Thus, we will compare the
outcome of the PGG evolutionary dynamics using the one-
mode coauthor network as in [21] with the results obtained by
working with the real collaboration data,i.e. with the bipartite
graph, in which the group structure arises in a natural manner
as defined by the set of papers.

We will focus on the evolution of the asymptotic value of
the cooperation level,〈c〉, as a function of the enhacement
factorr. The cooperation level usually represents the fraction
of theN individuals that cooperate in the stationary regime.
Thus, in our simulations we start by assigning randomly the
initial strategies of the players,{x0

i }, so that half of the popu-
lations plays initially as cooperators and the other one as does
as defectors. Then, we let the evolutionary dynamics evolve
for τ = 105 rounds of the PGG and measure the station-
ary value of the cooperation level duringT = 104 additional
rounds. Thus, the final value of〈c〉 is computed as

〈c〉 =
1

T ·N

(

τ+T
∑

t=τ+1

N
∑

i=1

xt
i

)

. (9)
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FIG. 3: Structural analysis of thecond-matscientific collaboration
network. In (a) we plot the degree distribution,P (k), of the pro-
jected (one-mode) network (coauthor network). This distribution
display a long tail decaying asP (k) ∼ k−2. The average connec-
tivity is 〈k〉 = 6.44 as indicated (in this and subsequent plots) by
a red vertical line. Plots(b) and (c) show the characteriztic of the
associated bipartite graph. In(b) we show the degree distribution of
authors,P (q), i.e. the probability of finding and author contributing
to q papers. The behavior of this distribution denotes a sharp decay
thus indicating that the initial power law behavior truncates for large
q. The average number of papers per author is〈q〉 = 3.87. On the
contrary, in(c) we plot the probability that a paper is coauthored by
m authors,P (m). In this caseP (m) decays exponentially (note
normal scale onx axis) and, on average, papers are coauthored by
〈m〉 = 2.76 researchers.

The above definition of〈c〉 assummes that the evolutionary
dynamics ends up in a dynamical equilibrium in which co-
operators and defectors coexist. However, for the Fermi and
MOR updates, depending on the precise values ofr, this is
not the case. Quite on the contrary, each run of the evolu-
tionary dynamics for the same value ofr (corrresponding to

a different set of initial conditions) ends up into either full
defection or full cooperation. The strong ergodicity of thedy-
namics, due to the stochastic character of these updates rules,
drives the system evolution into one of those two absorbing
states. Therefore, it is mandatory to perform a large number
(at least103 in our case) of different realizations (correspond-
ing to different initial conditions) of the evolutionary dynam-
ics. Obviosuly, in those cases where the dynamical evolution
always finishes in one of the two absorving states, the reported
value of〈c〉 is defined as the fraction of realizations in which
the dynamics ends up in full cooperation.

Figure 4 shows the function〈c〉(r) for both the (one-mode)
coauthor network and the bipartite graph in six different sce-
narios. Namely, plots 4.a, 4.b and 4.c show the results for the
PGG payed with fixed cost per game (FCG) while in plots 4.d,
4.e and 4.f we show the case of the PGG played with fixed
cost per individual (FCI). As introduced in section II D, for
both the FCG and FCI versions of the PGG we show the out-
come of the evolutionary dynamics when three update dynam-
ics are at work. Namely, in plots 4.a and 4.d we use the MOR
(strongly stochastic and using global knowledge) scheme, in
plots 4.b and 4.e the Fermi rule (slightly stochastic and with
limited knowledge), and finally, plots 4.c and 4.f correspond to
UI update (purely deterministic and using global knowledge).

As can be seen from the plots, the average level of coopera-
tion 〈c〉 increases from〈c〉 = 0 to 〈c〉 = 1 when the value
of r exceeds some thresholdrt. The precise value of this
threshold and the velocity of this transition depends strongly
on the particular dynamical rule and the substrate of interac-
tions used. It is clear that our main interest here is to confront
the results of the PGG obtained using the one-mode network
and the bipartite graph. The plots corresponding to the PGG
with FCG clearly show that the cooperation level is always
larger (meaning that it sets on for lower values ofr and in-
creases faster) when the structure of groups is that of the real
collaboration data, i. e. of the bipartite representation.It is
also clear that the MOR update rule (plot 4.a) gives rise to
larger differences between the two substrates. Interestingly,
we observe that the curve〈c〉(r) corresponding to the bipar-
tite graph is much more stable under update rule changes than
its one-mode counterpart. On the other hand, for both the one-
mode and the bipartite substrates cooperation increases when
the stochastic character of the update rule decreases,i.e. go-
ing from MOR update to the Fermi rule and from the Fermi
rule to UI.

The FCI setting is probably the most appropriate version
of the PGG to model scientific collaborations. The reason is
clear, researchers have a limited amount of time/resourcesto
invest in collaborating and it has to be partitioned among all
the collaborations they share. In general, researchers partic-
ipating in a large number of projects tend to contribute less
(in terms of time and lab work) to each paper in which they
appear. On the other hand, those researches involved in few
collaborations tend to assume the largest part of the work to
do. In the plots of Figure 4 corresponding to the PGG in its
FCI version we find the same result as for the PGG with FCG:
the group structure (contained in the bipartite graph) promotes
cooperation. Again, the differences between both substrates
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FIG. 4: Cooperation level〈c〉 as a function of the enhancement factorr for the PGG played on top of the one-mode (projected) coauthor
network and the bipartite graph preserving the original group structure. The first three plots(a), (b) and(c) correspond to the PGG with fixed
cost per game (FCG) while the plots(d), (e) and(f) account for the PGG with fixed cost per individual (FCI). For each of the two versions of
the PGG we show the evolution of the curves〈c〉(r) for three different update rules:(a) and(d) MOR update,(b) and(e) Fermi rule, and(c)
and(f) UI.

are larger when using the MOR update while the stochasticity
of the update rules decrease the level of cooperation in both
cases.

IV. INFLUENCE OF GROUP SIZE IN THE PROMOTION
OF COOPERATION

Having shown that the mesoscopic group structure of col-
laboration networks strongly affects the promotion of cooper-
ation, we now consider the issue of the size of the groups in
which PGG is played. To this end, and inspired in the model
introduced by Ramascoet al. [33], we propose the following
way for constructing synthetic collaboration graphs. We start
with an initial core ofm nodes that defines the first group of
our bipartite graph. At each time step of the growth process
we add a new element, that will define a new group of sizem.
To do this, the newcomer chooses one of the nodes already
present in the graph. The probabilityPi that a nodei receives
the link from a newcomer is proportional to the number of
groups it belongs to,gi,

Pi =
gi

∑

j gj
. (10)

Once the newcomer has chosen the first node, say with node
j, it closes the group by choosing other(m − 2) nodes ran-
domly from the neighbors ofj, i.e. among those nodes that
participate in one or more groups withj. The above process
is iterated until the graph containsN nodes (andN −m+ 1
groups). The above model, being extremely simple, allows to
reproduce two main structural features observed in collabo-
ration networks: the scale-free distribution for the number of

contacts each individual has in the projected (coauthor) net-
work and the nearly constant value for the number of authors
appearing in a paper. In fact, this latter feature is used as a
tunable parameter,m, in our network model allowing us to
explore the effect that this size has on the evolution of coop-
eration. In the following we will fix the size of the network to
N = 5000 and we will work withm = 3, 5 and7.

Following the same strategy as in the previous section we
will compare the outcome of the evolutionary dynamics mak-
ing use of three update rules (MOR, Fermi and UI) and we
will also analyze the PGG in both its FCG and FCI versions.
In Figure 5 we show the six plots corresponding to these sce-
narios. The initial setup and the numerical procedure is identi-
cal to that used in the previous section. The only novelty is the
use of the rescaled enhancement factor,r

′

= r/m, so to com-
pare the outcome of the PGG dynamics in different network
topologies (they depend heavily onm) [21, 40] here labeled
by the group sizem.

Let us start by analyzing the case of the PGG played with
FCG. In this case the curves〈c〉(r/m) in plots 5.a and 5.b,
corresponding to the MOR and Fermi (stochastic) updates,
behave as expected: Cooperation dominates forr/m > 1
(i. e., when the enhancement factor is larger than the group
size) while forr/m < 1 it decays fast towards full defection.
The decay becomes sharper asm increases so that we con-
clude that small groups benefit cooperation. The case of UI
(plot 5.c) confirms this conclusion about the negative effects
of large groups. However, in this case the curves〈c〉(r/m)
for m = 5 and7 point out a dramatic scenario for the survival
of cooperation. While for the rest of the curvesr/m = 1
represent the point beyond which full cooperation dominates
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FIG. 5: Cooperation level〈c〉 as a function of the rescaled enhancement factorr/m for the PGG played on top of three synthetic collaboration
networks with different group sizesm = 3, 5 and7. As in Figure 4, the first three plots(a), (b) and(c) correspond to the PGG with FCG while
the plots(d), (e)and(f) account for the PGG with FCI. For each of the two versions of the PGG we show the evolution of the curves〈c〉(r/m)
for three different update rules:(a) and(d) MOR update,(b) and(e) Fermi rule, and(c) and(f) UI.

in those curves corresponding to UI withm = 5 andm = 7
the transition is very slow. Therefore, the effects of enlarg-
ing the group size in the mesoscopic structure of collaboration
networks seem to have negative effects over cooperation, spe-
cially in the case when UI is the update mechanism at work.

Now we turn our attention to the PGG played wit FCI. As
before, we first focus on the stochastic update rules (MOR
and Fermi). In the corresponding plots (5.d and 5.e) we ob-
serve that, for the same value of the group sizem, coopera-
tion is significantly enhanced with respect to the case of the
PGG with FCG. In the case of the MOR update we also ob-
serve again (as in the PGG with FCG) that by increasing the
group size the cooperation level decreases. However, for the
Fermi rule this is not the case (at variance with the PGG with
FCG) and the curves〈c〉(r/m) collapse in the transition re-
gion, placed aroundr/m ≃ 0.2. The case of the UI turns to
be the most intriguing as in the PGG with FCG. However, in
the case of the FCI version the effects of enlarging the size
of the groups have worse consequences as observed from the
plot 5.f. As expected, for a group size ofm = 3 cooperation
is enhanced with respect to the FCG situation, however for
m = 5 andm = 7 both curves are nearly the same and the
situation is completely different to that observed form = 3.
First, for low values ofr/m the cooperation levels observed
for m = 5, 7 are rather large compared to the casem = 3
and the other curves corresponding to different update rules.
This sudden onset of cooperation is however followed by an
extremely slow increase of the cooperation level. We have
checked the roots of this behavior by looking at the dynam-
ical evolution of the fraction of cooperators for several real-
izations of the dynamics. The result is that, despite of the
deterministic character of UI dynamics, we observe that the

dynamics behaves as in the stochastic settings,i.e. the dy-
namics always ends up into full defection or full cooperation.
This convergence, at variance with the stochastic settings, is
achieved in few rounds of the PGG, thus pointing out that the
dynamical outcome is strongly dependent on the initial con-
ditions. For UI updates the influence of the most connected
players, here represented by those agents participating ina
large number of groups, is the key role driving the evolution
of the system. Therefore, the existence of large groups en-
hances both the ubiquity of those players and their benefits.
The imitation process provides with an efficient way to spread
their initial strategy and trap the system dynamics in one of
the two absorbing states.

V. CONCLUSIONS

Summarizing our main results, we have shown that it of ut-
most importance to include the mesoscopic details about the
real group structure when dealing with the PGG on networks.
The intrinsic group structure (described by means of a bipar-
tite graph) promotes cooperation in PGGs, this being a new
mechanism for this phenomenon beyond the scale-free char-
acter [21] and other features [41–44] of the one-mode (pro-
jected) complex network. Regarding the size of the groups in
wich the PGG takes place, we have shown that they affect the
outcome of the evolutionary dynamics in an important way: In
most of the cases, increasing the number of the participantsin
each of the groups leads to a decrease of the cooperation level.
However, this decrease is influenced by the update rule used.
While for MOR and Fermi updates the influence of the size of
the groups is quite soft for the case of UI we have shown that
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large group sizes slow down the development of cooperation
due to the large influence of those players participating in a
large number of groups.

Our work allows us to draw important conclusions regard-
ing the application of these models and the corresponding re-
search. Thus, looking again at the difference in the behavior
observed on the bipartite network and on the projected one, it
is clear that the fact that the mean group size in both settings is
different plays a role in the promotion of cooperation: Indeed,
as is known for PGGs, smaller group sizes require smaller
values ofr for cooperation to become a profitable strategy.
This obvious fact does not decrease the relevance of our con-
clusions, because what we are showing is that considering a
projected network leads to an overestimating of the amplifica-
tion factor needed for cooperation, arising from the artificially
increased group size. The results in the FCG setting demon-
strate that amplification factors between1 and2 already lead
to cooperation, which are reasonable values in the context we
are dealing with, namely collaboration in research and paper-
writing. On the other hand, the large value obtained for the
MOR rule indicates that this is not likely to be a good model
of human behavior in this context, while local imitative rules
like Fermi or UI yield lower estimates for the criticalr, prob-
ably closer to reality. Note also that we have seen important
differences between a setup in which the amount one can in-
vest is unlimited (FCG) or bounded (FCI). This latter scenario,
which is closer to reality in the sense that we all have limited
time and energy to devote to collaborative work, gives rise to
very low (or even smaller than1) critical values forr. This
might seem strange at first glance, but when considering this
issue on the light of the structure of the bipartite network,one
realizes that even with the bipartite description there areau-
thors with a large number of collaborations, i. e., there are
hubs. These hubs invest very little on every collaboration they
are involved in, and in practice become free-riders. However,
imitative update rules forces their neighbors to be coopera-

tors as well, because they observe the large payoff received
by the hub (arising from his many collaborations), and only
under MOR dynamics larger values ofr are needed to support
cooperation.

On a different note, our research confirms the intuition that
the larger teams are, the more difficult it becomes to foster
collaborative work. This is a very relevant insight in so far
as it can not be obtained by looking at the projected network,
where the information about group size is lost. Our simula-
tions on a simple model of collaborative network lead to the
prediction that, generally speaking, group sizes aroundm = 3
are best to promote cooperation. Note, however, that under
Fermi dynamics, the group size is not that important, particu-
larly in the more realistic FCI scenario, for which the critical
value ofr appears to be linearly dependent onm, thus making
the group size lose influence. The opposite case arises when
UI is used to update strategies, showing that it might be im-
possible to reach full cooperation even for very large values
of r. It is then clear that accurately modeling the collabora-
tion structure is a key issue when trying to understand why
people work together in small groups, with group size and the
bipartite character of the network being particularly relevant
aspects. Further research is needed to ascertain the way in
which individuals update their strategies to complete thisin-
cipient modeling toolbox.
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[32] J. Gómez-Gardeñes, M. Campillo, L. M. Florı́a, and Y.Moreno,

Phys. Rev. Lett.98, 108103 (2007).
[33] J. J. Ramasco, S. N. Dorogovtsev, and R. Pastor-Satorras, Phys.

Rev. E70, 036106 (2004).
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