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The evolutionary dynamics of the Public Goods game addsébseemergence of cooperation within groups
of individuals. However, the Public Goods game on large faifons of interconnected individuals has been
usually modeled without any knowledge about their groupcstire. In this paper, by focusing on collaboration
networks, we show that it is possible to include the mesdsdnformation about the structure of the real groups
by means of a bipartite graph. We compare the results witlpitbiected (coauthor) and the original bipartite
graphs and show that cooperation is enhanced by the mesostoture contained. We conclude by analyzing
the influence of the size of the groups in the evolutionargsss of cooperation.

Evolutionary game dynamics on graphs has become a in understanding the origin of multicellular organisms, [
hot topic of research during the last years. The attention altruistic behavior in humans and primates [8], or the way ad
has been mainly focused or2-players games, such as the vanced animal societies wotk [9,/10], to name a few.
Prisoner’s Dilemma game, since the pairwise interactions Research on evolutionary game theory on graphs focused
can be easily implemented on top of networked substrates. on the problem of the emergence of cooperation has consid-
However, for m-players game, such as the Public Goods ered mainly the Prisoner’s Dilemma garhel[11, 12]. The Pris-
game, the microscopic description about the pairwise in- oner’'s Dilemma game (PDG) describes a situation in which
teractions contained in the network is not enough, since cooperation is hampered by the players’ temptation to defec
m-players game are intrinsically defined at the mesoscopic (defecting yields more payoff than cooperating when facing
network level. This mesoscopic level describes how indi- a cooperator) and by the risk arising from cooperation (eoop
viduals engage into groups where the Public Goods games erating with a defector yields the lowest payoff)|[13]. This
are played. However, the actual group structure of net- leads to a social dilemma in so far as when players cooperate
works has not been considered in the literature, being au-  both the total benefit and the individual benefit are highanth
tomatically substituted by a fictitious one. In this work, we  when mutual defection occurs. While evolutionary dynamics
study the emergence of cooperation in collaboration net- leads all the individuals to defection when interactiorieta
works, by incorporating the real group structure to the place in a well-mixed population (every player interactghwi
evolutionary dynamics of the Public Goods game. Ourre- every other one), the existence of a network structuring the
sults are compared with those obtained when the meso- population can sometimes promote the emergence of coop-
scopic structure is ignored. We show that cooperation is eration [14], but this depends strongly on the details of the
actually enhanced when the group structure is taken into  network and the dynamics [2./115].
account, thus providing a novel structural mechanism, re- Much less attention has been paid to theplayer gener-
lying on the mesoscale level of large social systems, that alization of the PDG, also called Public Goods Game (PGG)
promotes cooperation. Moreover, we further show thatthe  [16]: Cooperators contribute an amourit‘cost”) to the pub-
particular characteristics of the group structure strongly  lic good; defectors do not contribute. The total contribnti
influence the survival of cooperation. is multiplied by an enhancement factor< m and the result
is equally distributed between ath members of the group.
Hence, defectors get the same benefit of cooperators at no
I. INTRODUCTION cost, i.e., they free-ride on the cooperators’ effort. Tibian
alternative view of the social dilemma posed by the so-dalle
Evolutionary game theory on graphs is attracting lately a@ragedy of the common5 [17]. As with the PDG, the evolu-
lot of interest among the community of physicists working tionary outcome of the PGG differs if played on a well-mixed
on complex systems|[L| 2]. This is a very appealing researchopulation (where once again defection is selected) or on a
topic because it combines two important ideas. First, awer network structure. Thus, Brandt al. [1€] showed that lo-
tions take place on a (possibly complex) netwolk[3, 4], gene cal interactions can promote cooperation in the sensetiliat f
alizing the lattice perspective; and, second, that the aljosn ~ cooperation is obtained for values:ofvell below the critical
taking place on that substrate needs not be the traditiovgl o valuer = m. This result, arising from simulation in an hexag-
but rather it can arise from an evolutionary approath [5]. Orpnal lattice, was later generalized to other lattices ir] firfi
the other hand, from the applications viewpoint, studywvgre to scale-freel[20] graphs ih [21].
lutionary games on graphs is one of several avenues proposedin this work, we go beyond those first results and focus on
to understand the emergence of cooperation in different corthe mesoscopic structure of the networks and relate it to the
texts [6]. This is a most relevant issue that arises, forims¢, ~ situation represented by a PGG. Applications of this game
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arise naturally when a number of people have to work toPGG regardless of their contributions. Therefore, the fiene
gether towards a common goal, either to obtain some berof each defector will be
efit or to avoid some negative effects. While trying to sta-

bilize the Earth’s climate is a dramatic example of the fatte P=— (1)
[22], co-authoring scientific papers is a direct applicatid

the PGG in the positive sense. This provides a specific gettinyhile for a cooperator the benefit decreasegfo= f2 — c.
in which we can test the ideas about the emergence of coopetrom these benefits it is obvious that defectors will earnemor
ation in PGG on real social networks, as several collabamati han cooperatorst? > £¢. Morevover, whilef” > 0, co-
networks have been mapped and are publicly available [23gperators only have possitive benefits when> m. This
[25]. In this respect, it is worth noticing that the asymptoti means that a lonely cooperator playing with a group of defec-
behavior of evolutionary games in real social networks cangrs will always lose f€ < 0) whenever < m. Therefore,
be very different from that observed in model networks, andihe Nash equilibrium of a PGG with < m is a full defec-
in fact, mesoscopic scales, clustering and motifs have beegpn sjtuation (i. e., a group in which all players defectpw
shown to play a key role in governing the game dynamicsyer, this equilibrium is not Pareto optimal since full defen
[26-128]. Therefore, it is important to assess to which degre yields zero total reward whereas if everyone contributeso
if at all, is cooperation promoted in PGG on collaboratiot ne pgg (full cooperation) the group will obtain the maximum
works. On the other hand, while collaboration networks are i tota| reward. Thus, here is where the social dilemma lies.
fact bipartite, as co-authors are connected to papersaifey  |n an evolutionary context individuals are not considered
very often used in a projected mode, by connecting directlyyly rational, so that they do not play a Nash equilibrium
co-authors among themselves. Thus, the question arises astbynd from a rational analysis of the PGG. Besides, agents
the relevance of the mesoscopic structure (as defined by thg§e not organized into a single group but in general a large
papers) and the possible differences it may give rise to WheBopuIation of N > m agents is allowed to organize into a
the original bipartite or the projected network are con®de large number of groups with: agents. The relevant differ-
To study these issues in depth, this paper is structured ashce with the classical setting is the introduction of a dyna
follows: In sectior ]l we introduce the usual formulation of jca| evolution: Agents play the game several times and they
the PGG on complex netwoks and present the new formulagre allowed to change their strategy after each round of the
tion based on bipartite graphs incorporating the inteoacti game. These strategy changes obey certain evolutionay rul
groups,i.e. the mesoscale structure of the population. Be-py which agents evaluate their performance comparing their

sides, in this section we briefly introduce two different-ver fitness with those of the rest of the population (see section
sions of the PGG and the different evolutionary rules we will

use. In sectiofi Tl we focus on scientific collaboration net- |4 3 well mixed population the agents play within several
woks to show the different evolutionary outcomes of the Progroups during the different rounds of the game. In particu-
jected and the bipartite representations. Namely, we shatvt |5y pefore each round of the PGG the groups are formed ran-
the mesoscopic structure composed of the interaction §rougjomly. Under this well-mixing assumption it can be shown
plays a relevant role in the promotion of cooperation. Inthatthe evolutionary dynamics ends up in full defection whe
section[I¥ we focus on the structural characteristics of thesyer, < . Therefore, defection again dominates over coop-
mesoscale. In particular, we analyze the role of the size ofration as in the (static) classical setting. Driven by thera
the interaction groups. The general conclusion of our @mly  gance of examples in which cooperation is observed in social
is that the larger the interaction groups are, the more diffic  economic and biological situations similar to that defingd b
cooperation is promoted. Finally, in sectioh V we summarizehe pGG, it is clear that some mechanisms beyond irrational-
the main results and pose some relevant questions that arigg and evolution are at the core of the survival of cooperati
from them. In this line several mechanisms have been proposed such as
costly punishmen{ [18, 29], meaning the possibility of pun-
ishing defectors after a round of the PGG, or the addition of

Il.  MODELLING EVOLUTIONARY DYNAMICS OF reputation([18] to agents, which signals the behavior of¢he
PUBLIC GOODS GAME players in past rounds of the game. These social-based mech-
anisms allow to enhance the contributions to the PGG, thus
A. The Evolutionary Public Goods Game favouring the survival of cooperative behaviors.

The classical setting of a PGG models an economic or so-
cial group ofm agents whose strategies can be cooperation ~ B- The Public Goods Game on Complex Networks
(C) or defection (D). As explained above, if an agent cooper-
ates she invests a quantitynto the public pot whereas defec-  The aforementioned mecanisms (punishment and reputa-
tors do not contribute. Therefore, in a group witltooper-  tion) are clearly based in human behaviors that are plaasibl
ators (andn — = defectors) the total amount of investmentsto appear in social systems. However, cooperation in the PGG
is xc. This amount is then multiplied by an enhacement fac-can also be promoted by taking into consideration the struc-
tor r > 1 so that the total investment increases-i@. This  ture of interaction between players. To this aim, one leaués
amount is then distributed among all the participants of thehe well-mixing assumption and works with a static substrat
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fined by considering one agenand herk; neighbors as dic-
tated by the network topology (see Figlite 1). Obviously, the
size of these groups is not regular since the number of neigh-
bors each agent has can fluctuate around the average connec-
tivity of the complex network. In scale-free networks these
fluctuations diverge since the probability of finding an indi
vidual with k& neighbors follows a power-lawP (k) ~ k=7

with 2 < v < 3. Thus, one finds a large number of small size
groups (those centered around agents with small conntggtivi
and a few of them composed of many agents (corresponding
to groups formed around the hubs of the system). On the other
FIG. 1: Schematic representation of the usual way for defitfie  hand, since each individuaparticipates irk; + 1 groups, the
interaction groups of the PGG on complex networks. Each@#th hubs participate in a large number of groups.

agents defines a group composed of herself and its neighBera. Given the above definition for the group structure the im-
result, the above graph contaifigroups composed afnodes anda  plementation of the evolutionary PGG is as follows. At each
big one containg the nodes of the graph. time step of the evolutionary dynamics, each playgays the
PGG within thek; + 1 groups she belongs to (using the same

. . . . strategy in each PGG). Once all the games are played, each
of interactions. As introduced above, [n[18] it was Shownagenti collects the total benefitf;, obtained. If the agent

that in the case of the PGG, cooperation was significantly pro lays as cooperator she pays a cost.for participating in

moted when considering Euclidean lattices. The importancg - o¢ thek; + 1 groups. Here we will consider two situations

?rf the struclture (t)f Ttefrachrr;; in the succetﬁs of cpopn:jr:;l_ for assigning the value of the investment made in each of the
€ general context of evolutionary game th€ory 1S undedlin p5 gpe participates (as introducedlinl [21]). First, we con-

by the termnetwork reciprocityle]. sider that a cooperator agent pays a fixed ¢pst z per game

The interaction backbone of real social systems is howev : :
: ) o FCG) played; thus, her total investment raise 1)z.
far from Euclidean structures. In particular, many studies e{r ) played; SO+ 1)
ug

N e second option is to assume a fixed coper individual
the last decade have addressed the characterization of s 1) playing as cooperator. Therefore, in this latter sgian
social SySte”?S as complex networEbl___[B, 4]. These networ e quantityz is equally distributed by contributing a quantity
are a collection ofV nodes (accounting for each agent of =~ =/(k; + 1) to each group she participates
thg system) and. links (describing the in.teractiqn between Havinglin mind the above two settings for deciding the con-
Fa'rf ofttagentti). ¢ Comglex ?gtwork? typ|callytd_|splay IS{I 'UC tributions of cooperator players, we can write the benefits o
ural patterns that are absent In reguiargeometries, a each agent given her strategy and those of her first and second
small-world prppertylEO] or scale-free patterns for thermu eighbors. If we denote by’ the strategy of ageritduring
ber of connections of the agents/[20]. On the other hand, resﬂ)undt of the PGG. so thatt-l — 1 when playing as coopera-
complex networks are sparské ¢~ N) meaning that the well t_ Qi L K o ;
mixed assumption (which would imply thdt ~ N?) does tor andz! = 0 if defecting, the benefif; (¢) obtained after the

not hold. Thus, it is necessary to study how the structure O;ound reads

these networks affects the evolution of cooperation. A& t N r(N, Ajate + hey)

: . . . filt) = ZA.. =1 797 kate,
case of regular lattices, the first evolutionary socialrditea i ij k. +1 i G
to be studied on top of networks was the PDG. The main re- j=1 !
sult of these studies is that, under certain conditibhs 2, 1 r(ON, Agate; + ate;)
cooperation is further enhanced whith respect to the case of = : — xic; . 2)

regular lattices. Moreover, it was observed that the degree Fit1

heterogeneity of scale-free networks increases signtfican In the above equation we have made use of the adjacency ma-

the survival of cooperation with respect to random complexrix of network whose entries awé;; = A;; = 1 wheni andj

networks [31] 32], as was subsequently shdwh [21] for PGGare connected and;; = 0 otherwise, withA; = 0 (no self-

thus reinforcing the message that scale-free structueasaar  links). Note that the first two terms of Ed.](2) correspond to

ural promoters of cooperation. the PGG played within the groups formed around the neigh-
The implementation of the PGG on top of complex neworksbors ofi while the last two terms account for the game played

is however, not as straighforward as in the case of the PDQ ¢ and her neighbors.

The reason is clear: While the PDG is defined for pairwise in-

teractions and thus the possible games are dictated by the co

lection of links of the network, forn player groupsi. > 2) C. The Public Goods Game on Bipartite Graphs

we do not have the information about how to engage players

in groups. Therefore, some priori assumptions about the  The definition of the groups where the PGG takes place

inner group structure of complex networks have to be madeas the sets formed by each agent and her network neighbors

Most of the works in the literature about the PGG on networksarises from using the network of contacts as the map of agent

assume that a complex network automatically defiNedgif- interactions. However, most social networks are constdict

ferent groups of players. Namely, each of these groups is dérom real data containg information about the groups formed



One-mode projected
network Groups Bipartite graph

FIG. 2: Schematic representation of the two different foohencoding collaboration data. In the central plot seveddlaboration groups
represent the original data. The interactions among ageantbe translated into a projected complex network (lefgwever, if one aims at
preserving all the information about the group structunepaiesentation as a bipartite graph (right) is more appatgor

by individuals. Well-known examples are collaboration-net gaged in group wheneverB;; = 1 while B;; = 0 when she
works in which agents can be scientists collaborating te peris absent (note that no#;; needs not be zero as rows and
form researcH [23—25]. In FiguEé 2 we plot how collaborationcolumns represent different entities). Alternativelye thth
data are usually collected to form a projected (or one-modegolumn contains the information about the groups contginin
complex network of the interactions among agents (the coagenti: B;; = 1 when agent participates in groug and
author network). The central plot corresponds to the orig-B;; = 0 otherwise. Given the biadjacency matrix we can cal-
inal data containing several collaboration groups amorg siculate the number of groups agénakes partg;, as

agents. These groups are then translated into a complex net-

work by projecting the original data (left plot). The colec P
tion of groups then transforms into a star-like graph in vahic g = ZBﬁ’ (i=1,..,N). (3)
there is a central hub (nodg with five neighbors, some of =

them connected and thus forming triangles with the central

hub. One easily realizes that groups defined on the projectegliternatively, the number of participants contained inuge,
network itself (following the definition given in sectidnB) m,, reads

are rather different from the original ones.

On the other hand, one can take advantage of the informa- N
tion available in collaboration data by constructing a biipa m; = Z Bi;, (i=1,...,P). (4)
graph [38535]. The structure of this bipartite graph is eepr =1
sented in the right plot of Figufé 2. As observed, the biparti
representation contains two types of nodes denoting agents yaying introduced the structure of the bipartite graph de-
(left column of round nodes) and collaborations (right @fu  griping the relations between agents and groups, we model
of sq_uared nqdes) respectlvgly. Itis clear that CONNES®EIA  he PGG. At each time step, each playér= 1, .., N) plays
rgstrlcted to link nodes of d|fferent_ types (i. e. belongtog a round of the PGG each at every group she participates in
different columns). Thus, such a bipartite representgiif@? 55 gefined by the biadjacency matrix of the bipartite graph,
servesthe mfor.matlon aboutthe group structure ofthen!nlg Bj; = 1(j = 1,...,P). Obviously, the benefit obtained by
data and constitutes a well-suited framework for studyig d e agent depends on both her strategy and those of the agents

namical processes intrinsically defined at a system memsc%articipating in the same groups. The net benefit after ptayi
[3€] (in our case defined by the collaboration groups) asds th roundt of the PGG now reads

case of the PGG.

Let us now formalize the bipartite graph in which the evo- P rBj; N . .
lutionary dynamics of the PGG takes place. The graph will be fi(t) = Z e Z Bjizja| — ziciqi - (5)
composed ofV agents playing the PGG withi groups. The j=1 7 Li=1

particular way agents engage into groups will be encoded by

aP x N matrix B;; usually called biadjacency matrix. Given Note that the sum in the above expression accounts;for
the bipartite structure of the graph, th¢h row accounts for PGGs played by while the last term is for the cost associ-
the individuals participating in group so that agenj is en-  ated to partipating as cooperator.
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D. Strategy update: Evolutionary Dynamics (strong selection limit) the saturated Fermi function uimto
a Heaviside step function thus mimicking the behavior of Ul.

After a round of the PGG is played, agents update thejfiowever, the differences in the degree of knowledge about
strategies. This update is driven by the benefits obtained bjeighbors of both setting persist. In the following, we widle
the agent and her neighbors in the last round of the gamel = 1 for_the Fermi update since the results are quite robust
Thus, the update stage keeps the local character, by testri@round this value.
ing the information available to agents about the benefits of
other players to their local (one-mode) network neighbor-
hoods. Note that the group structure described in the lii@art |||. COOPERATION IN SCIENTIEIC COLLABORATIONS:
representation plays no role in this stage, as update rid&s m PROJECTED VERSUS BIPARTITE NETWORKS
use of the network of contacts. Thus, the update process take
place in the same way regardless of the representation (one-
mode network or bipartite graph) of the PGG we are using.
In this work we will use three different update rules in order
to test the robustness of the results obtained. In all thetepd

rules each agent decides to use the strategy of agiven rmiglhbpreprint servel [23]. This collection of papers is obtainédr

.. 1 _ ot
Jmn thetJr:lext rt:und of the gamer("" = zf) or to stay the computing the giant connected component of the (projected)
same ¢, = ;). The three update rules work as follows:  coauthor network of the original data set which h&326 au-

e Unconditional Imitation (U1) [[14]: agent compares th_ors_ and22015 papers. In Figurg]3 we plot the deg“?e di_s—
her payoff with her neighbor with the largest payoff, tribution of the coauthor network and tho_sg of th_e b_|part|te
say agentj. Agenti will copy the strategy of agent (authors-_papers) graph. Both the probab|llty of finding one
provided, < 7, Otheruise, agentwil remain - 24100 ) coautors((), and it of naving an author

- . . . q q), .
gganged. The probability of copying agents given other hand, the probability that a paper is coauthoreqhvg-
searchersP(m), shows an exponential decay. This homoge-
P; =0O(f; — fi) with f; = max{fj|A; =1}, (6) neous distribution for the number of authors coauthoring on
paper is a very important difference arising when comparing
where©(z) is the Heaviside step functio®(z) = 1 the (one-mode) coauthor network with the bipartite represe
whenz > 0 andO(z) = 0 forz < 0. tation of the collaboration data.

« Fermi rule [37/38]: agent chooses one neighbor at The structural differences between the coauthor network
random, say agerit and compares their respective ben-and the bipartite graph imply that the dynamical processes

efits. The probability that copies the strategy of the implemented on top of them can yield different results. In

chosen neighbor obeys a saturated Fermi function of th@articular, modelling the PGG without any knowledge of the
benefit differencef; — f;. Thus, the probability that real group structure will give as a result the definition ofa
K2 J" 1

In this section we implement the PGG on top of a real col-
laboration network. The network is composedy= 13861
scientist and the collaboration data is obtained frem=
19465 papers %peared in tleend-matsection of the arXiv

decides to take the strategy of an agereads groups centered around hubs of the coauthor network (see
Figure[3.a). However, this definition strongly contrastshwi
P Aij 1 7 the homogenenous distributidi(m) for the number of au-
g i R —

ki 14+ e8(fi—f) " thors collaborating in one paper. Thus, we will compare the

outcome of the PGG evolutionary dynamics using the one-

e Moran rule (MOR)[15] 39]: agentchooses one of her mode coauthor network as in [21] with the results obtained by
neighbors proportionally to her payoff. Subsequently,working with the real collaboration datiag. with the bipartite
agenti adopts automatically the state of the chosengraph, in which the group structure arises in a natural manne

neighbor. Therefore, the probability of choosing agentas defined by the set of papers.

J is given by We will focus on the evolution of the asymptotic value of
i f; the cooperation level(c), as a function of the enhacement

i = % ) (8)  factorr. The cooperation level usually represents the fraction

=1 Aufi of the N individuals that cooperate in the stationary regime.

o ) ) Thus, in our simulations we start by assigning randomly the
These three update rules contain different evolutionagyen  intial strategies of the player$z?}, so that half of the popu-
dients. In particular, Ul and MOR use global knowledge aboutations plays initially as cooperators and the other onecas d
the benefits of the neighbors since they evaluate all of themys defectors. Then, we let the evolutionary dynamics evolve
On the contrary, the Fermi update chooses one neighbor ragsy - — 10> rounds of the PGG and measure the station-

domly. Concerning the stochastic character of the ageat's d ary value of the cooperation level durifig= 10* additional
cisions, we note that both Fermi (for small and moderate valrounds. Thus, the final value ¢f) is computed as

ues of 3) and MOR updates are purely stochastic and they
even allow mistakes,e. it is possible to copy the strategy of 1 +T N
i i I i - _ t
a neighbor with smaller benefit. In contrast, Ul is purely de (¢) = T ( E E xl> ) (9)

termistic and errors are not admitted. Note that whes- 1 Pl



a different set of initial conditions) ends up into eithefl fu

. . ﬁf—i ,,,,,,,,,,, defection or full cooperation. The strong ergodicity of the
107 " ", Pl) = namics, due to the stochastic character of these updagss rul
102 drives the system evolution into one of those two absorbing
_ L states. Therefore, it is mandatory to perform a large number
T 10° " (at leastl0? in our case) of different realizations (correspond-
10 - ."__'__ ing to different initial conditions) of the evolutionary dgm-
ics. Obviosuly, in those cases where the dynamical evalutio
10° ¢ always finishes in one of the two absorving states, the regdort
o1 @ ‘ ‘ value of(c) is defined as the fraction of realizations in which
10 10t 102 the dynamics ends up in full cooperation.
k Figurel4 shows the functiofa) (r) for both the (one-mode)
1 S A coauthor network and the bipartite graph in six differemt-sc
10 . L5 (L5 /ﬁ?q; ,,,,, - narios. Namely, plotsl4.g] 4.b and 4.c show the results for th
[ e PGG payed with fixed cost per game (FCG) while in pldts 4.d,
107 ¢ T [4.e and4.f we show the case of the PGG played with fixed
B 103 -""‘l-_,._‘ cost per individual (FCI). As introduced in sectibn ]I D, for
e _-'_ both the FCG and FCI versions of the PGG we show the out-
107 —— s come of the evolutionary dynamics when three update dynam-
s ics are at work. Namely, in plofs 4.a dnd 4.d we use the MOR
W07y ®) (strongly stochastic and using global knowledge) scheme, i
100 ‘ plots[4.b and¥.e the Fermi rule (slightly stochastic andhwit
10" 10* limited knowledge), and finally, plofs 4.c alnd 4.f corresptm
a Ul update (purely deterministic and using global knowlédge
‘. | Sz As can be seen from the plots, the average level of coopera-
101t . Pm) = tion (c) increases fromc) = 0 to (¢) = 1 when the value
s of r exceeds some threshotg. The precise value of this
1072 =y threshold and the velocity of this transition depends sgjlyn
g Rl on the particular dynamical rule and the substrate of ictera
10 " tions used. Itis clear that our main interest here is to anifr
"a the results of the PGG obtained using the one-mode network
10" " . and the bipartite graph. The plots corresponding to the PGG
© with FCG clearly show that the cooperation level is always
10° > 4 6 8 10 12 14 16 18 20 larger (meaning that it sets on for lower valuesradnd in-

m

creases faster) when the structure of groups is that of tie re
collaboration data, i. e. of the bipartite representatitiris
also clear that the MOR update rule (p[dt 4.a) gives rise to

FIG. 3: Structural analysis of theond-matscientific collaboration
network. In(a) we plot the degree distribution?(k), of the pro-  larger differences between the two substrates. Integdgfin
jected (one-mode) network (coauthor network). This distion ~ we observe that the curye)(r) corresponding to the bipar-
display a long tail decaying aB(k) ~ k™. The average connec- tite graph is much more stable under update rule changes than
tivity is (k) = 6.44 as indicated (in this and subsequent plots) by jts one-mode counterpart. On the other hand, for both the one
a red vertical line. Plotgb) and(c) show the characteriztic of the mode and the bipartite substrates cooperation increases wh
associated bipartite graph. (b) we show the degree distribution of the stochastic character of the update rule decreasego-

authors,P(q), i.e. the probability of finding and author contributing - . :
to g papers. The behavior of this distribution denotes a shacpyde Ir:?efigT“MOR update to the Fermi rule and from the Fermi

thus indicating that the initial power law behavior truresafor large
q. The average number of papers per authdgjs= 3.87. On the The FCI setting is probably the most appropriate version
contrary, in(c) we plot the probability that a paper is coauthored by of the PGG to model scientific collaborations. The reason is
m authors,P(m). In this caseP(m) decays exponentially (note clear, researchers have a limited amount of time/resotioces
normal scale orr axis) and, on average, papers are coauthored bynvest in collaborating and it has to be partitioned amotg al
(m) = 2.76 researchers. the collaborations they share. In general, researchetigpar
ipating in a large number of projects tend to contribute less
(in terms of time and lab work) to each paper in which they
The above definition ofc) assummes that the evolutionary appear. On the other hand, those researches involved in few
dynamics ends up in a dynamical equilibrium in which co-collaborations tend to assume the largest part of the work to
operators and defectors coexist. However, for the Fermi ando. In the plots of Figurkl4 corresponding to the PGG in its
MOR updates, depending on the precise values, dhis is  FCI version we find the same result as for the PGG with FCG:
not the case. Quite on the contrary, each run of the evoluthe group structure (contained in the bipartite graph) mi@s
tionary dynamics for the same valueofcorrresponding to  cooperation. Again, the differences between both sulestrat
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FIG. 4: Cooperation levelc) as a function of the enhancement factofor the PGG played on top of the one-mode (projected) coautho
network and the bipartite graph preserving the originatigrstructure. The first three plofa), (b) and(c) correspond to the PGG with fixed
cost per game (FCG) while the pldi), (e) and(f) account for the PGG with fixed cost per individual (FCI). Facle of the two versions of
the PGG we show the evolution of the cunie$(r) for three different update rule¢a) and(d) MOR update(b) and(e) Fermi rule, andc)

and(f) UL.

are larger when using the MOR update while the stochasticitgontacts each individual has in the projected (coauthdr) ne

of the update rules decrease the level of cooperation in botvork and the nearly constant value for the number of authors
appearing in a paper. In fact, this latter feature is used as a

cases.

tunable parameter, in our network model allowing us to
explore the effect that this size has on the evolution of eoop
eration. In the following we will fix the size of the network to
N = 5000 and we will work withm = 3, 5 and7.

Having shown that the mesoscopic group structure of col: Following the same strategy as in the previous section we
. . will compare the outcome of the evolutionary dynamics mak-
laboration networks strongly affects the promotion of camep ing use of three update rules (MOR, Fermi and Ul) and we
atiqn, We now consider the _issue of the_ size_ of t_he groups | ill also analyze the PGG in both its,FCG and FCI versions.
Wh'Ch PGG is played. To this end, and inspired in the r_node n Figure[® we show the six plots corresponding to these sce-
introduced by Ra_masoa al. [@]’ W€ propose the following narios. The initial setup and the numerical procedure istide
way for constructing synthetic collaboration graphs. Wgtst cal to that used in the previous section. The only noveltyés t
with an initial core ofm nodes that defines the first group of se of the rescaled enhancement faatén: r/m, S0 10 COM-
our bipartite graph. At each time step of the growth pr_oces%are the outcome of the PGG dynamic"s in di’fferent network
we add anew element, that will define a new group of size opologies (they depend heavily an) [21,[40] here labeled
To do this, the newcomer chooses one of the nodes alreal th ;
present in the graph. The probabili® that a node receives € group sizen.
the link from a newcomer is proportional to the number of Let us start by analyzing the case of the PGG played with
FCG. In this case the curves)(r/m) in plots[8.a andl5.b,

IV. INFLUENCE OF GROUP SIZE IN THE PROMOTION
OF COOPERATION

groups it belongs tay;,
9 corresponding to the MOR and Fermi (stochastic) updates,
P = S g (10)  behave as expected: Cooperation dominates-for > 1
393 (i. e., when the enhancement factor is larger than the group

Once the newcomer has chosen the first node, say with noddze) while forr/m < 1 it decays fast towards full defection.

Jj, it closes the group by choosing othler. — 2) nodes ran- The decay becomes sharperrasncreases so that we con-
domly from the neighbors of, i.e. among those nodes that clude that small groups benefit cooperation. The case of Ul
participate in one or more groups wifh The above process (plot[H.c) confirms this conclusion about the negative éffec
is iterated until the graph contaidé nodes (andV — m + 1 of large groups. However, in this case the cury@€sr/m)
groups). The above model, being extremely simple, allows tdor m = 5 and7 point out a dramatic scenario for the survival
reproduce two main structural features observed in collaboof cooperation. While for the rest of the curvesm = 1
ration networks: the scale-free distribution for the numiife  represent the point beyond which full cooperation domimate
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for three different update ruleéa) and(d) MOR update(b) and(e) Fermi rule, andc) and(f) UL.

in those curves corresponding to Ul with = 5 andm = 7  dynamics behaves as in the stochastic settings,the dy-
the transition is very slow. Therefore, the effects of ggdar namics always ends up into full defection or full coopenatio
ing the group size in the mesoscopic structure of collabmrat This convergence, at variance with the stochastic settisgs
networks seem to have negative effects over cooperatien, spachieved in few rounds of the PGG, thus pointing out that the
cially in the case when Ul is the update mechanism at work. dynamical outcome is strongly dependent on the initial con-
ditions. For Ul updates the influence of the most connected
Now we turn our attention to the PGG played wit FCI. As players, here represented by those agents participatiag in
before, we first focus on the stochastic update rules (MORarge number of groups, is the key role driving the evolution
and Fermi). In the corresponding plofs (5.d and 5.e) we obof the system. Therefore, the existence of large groups en-
serve that, for the same value of the group sizecoopera- hances both the ubiquity of those players and their benefits.
tion is significantly enhanced with respect to the case of therhe imitation process provides with an efficient way to sgrea
PGG with FCG. In the case of the MOR update we also obtheir initial strategy and trap the system dynamics in one of
serve again (as in the PGG with FCG) that by increasing thénhe two absorbing states.
group size the cooperation level decreases. However, éor th
Fermi rule this is not the case (at variance with the PGG with
FCG) and the curve&)(r/m) collapse in the transition re-
gion, placed around/m ~ 0.2. The case of the Ul turns to
be the most intriguing as in the PGG with FCG. However, in
the case of the FCI version the effects of enlarging the size Summarizing our main results, we have shown that it of ut-
of the groups have worse consequences as observed from tim®st importance to include the mesoscopic details about the
plot[E.f. As expected, for a group size of = 3 cooperation real group structure when dealing with the PGG on networks.
is enhanced with respect to the FCG situation, however folhe intrinsic group structure (described by means of a bipar
m = 5 andm = 7 both curves are nearly the same and thetite graph) promotes cooperation in PGGs, this being a new
situation is completely different to that observed for= 3. mechanism for this phenomenon beyond the scale-free char-
First, for low values ofr/m the cooperation levels observed acter [21] and other features [411-44] of the one-mode (pro-
for m = 5,7 are rather large compared to the case= 3  jected) complex network. Regarding the size of the groups in
and the other curves corresponding to different updatesrule wich the PGG takes place, we have shown that they affect the
This sudden onset of cooperation is however followed by amutcome of the evolutionary dynamics in an important way: In
extremely slow increase of the cooperation level. We havenost of the cases, increasing the number of the participants
checked the roots of this behavior by looking at the dynameach of the groups leads to a decrease of the cooperatidn leve
ical evolution of the fraction of cooperators for severallre However, this decrease is influenced by the update rule used.
izations of the dynamics. The result is that, despite of théNhile for MOR and Fermi updates the influence of the size of
deterministic character of Ul dynamics, we observe that thehe groups is quite soft for the case of Ul we have shown that

V. CONCLUSIONS
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large group sizes slow down the development of cooperatiotors as well, because they observe the large payoff received
due to the large influence of those players participating in @y the hub (arising from his many collaborations), and only
large number of groups. under MOR dynamics larger valuesioére needed to support
Our work allows us to draw important conclusions regard-cooperation.
ing the application of these models and the corresponding re  On a different note, our research confirms the intuition that
search. Thus, looking again at the difference in the behaviathe larger teams are, the more difficult it becomes to foster
observed on the bipartite network and on the projected one, tollaborative work. This is a very relevant insight in so far
is clear that the fact that the mean group size in both se&tt&g  as it can not be obtained by looking at the projected network,
different plays a role in the promotion of cooperation: lade  where the information about group size is lost. Our simula-
as is known for PGGs, smaller group sizes require smallefions on a simple model of collaborative network lead to the
values ofr for cooperation to become a profitable strategy.prediction that, generally speaking, group sizes around 3
This obvious fact does not decrease the relevance of our coare best to promote cooperation. Note, however, that under
clusions, because what we are showing is that considering Bermi dynamics, the group size is not that important, patic
projected network leads to an overestimating of the amphfic |arly in the more realistic FCI scenario, for which the i
tion factor needed for cooperation, arising from the aréfig value ofr appears to be linearly dependentonthus making
increased group size. The results in the FCG setting demorihe group size lose influence. The opposite case arises when
strate that amplification factors betweeand?2 already lead Ul is used to update strategies, showing that it might be im-
to cooperation, which are reasonable values in the context wpossible to reach full cooperation even for very large value
are dealing with, namely collaboration in research and papeof r. It is then clear that accurately modeling the collabora-
writing. On the other hand, the large value obtained for theijon structure is a key issue when trying to understand why
MOR rule indicates that this is not likely to be a good mOde|peop|e work together in small groups, with group size and the
of human behavior in this context, while local imitativeesl  bipartite character of the network being particularly velet
like Fermi or Ul yield lower estimates for the criticalprob-  aspects. Further research is needed to ascertain the way in
ably closer to reality. Note also that we have seen importanjhich individuals update their strategies to complete ifis
differences between a setup in which the amount one can irgipient modeling toolbox.
vestis unlimited (FCG) or bounded (FCI). This latter scamar
which is closer to reality in the sense that we all have lichite
time and energy to devote to collaborative work, gives rise t
very low (or even smaller than) critical values forr. This
might seem strange at first glance, but when considering this
issue on the light of the structure of the bipartite networie This work has been partially supported by MICINN
realizes that even with the bipartite description thereaare (Spain) through Grants FIS2008-01240 (J.G.G.), MOSAICO
thors with a large number of collaborations, i. e., there argD.V. and A.S.), and MTM2009-13838 (J.G.G., M.R. and
hubs. These hubs invest very little on every collaborati@yt R.C), and by Comunidad de Madrid (Spain) through Grant
are involved in, and in practice become free-riders. Howeve MODELICO-CM (A.S.). D.V. acknowledges support from a
imitative update rules forces their neighbors to be cooperaPostdoctoral Contract from Universidad Carlos Ill de Mddri
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