
1 

Quantum fluctuations can promote or inhibit glass formation 

Thomas E. Markland,
1
 Joseph A. Morrone,

1
 B. J. Berne,

1,*
 Kunimasa Miyazaki,

2
 Eran Rabani,

3,*
 

David R. Reichman
1,*

  

1
Department of Chemistry, Columbia University, 3000 Broadway, New York, New York, 10027, 

United States 

2
Institute of Physics, University of Tsukuba, Tsukuba, Japan 

3
School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 

69978, Israel 

*
To whom correspondence should be addressed. E-mail: 

 
bb8@columbia.edu (B.J.B), 

rabani@tau.ac.il (E.R), drr2103@columbia.edu (D.R.R) 

 

The very nature of glass is somewhat mysterious: while relaxation times in glasses are of 

sufficient magnitude that large-scale motion on the atomic level is essentially as slow as it is 

in the crystalline state, the structure of glass appears barely different than that of the liquid 

that produced it.
1,2,3,4

  Quantum mechanical systems ranging from electron liquids to 

superfluid helium appear to form glasses, but as yet no unifying framework exists 

connecting classical and quantum regimes of vitrification. Here we develop new insights 

from theory and simulation into the quantum glass transition that surprisingly reveal 

distinct regions where quantum fluctuations can either promote or inhibit glass formation. 

While a wide variety of glassy systems ranging from metallic to colloidal can be 

accurately described using classical theory, quantum systems ranging from the electronic to 

magnetic appear to form glassy states.
5,6

  Perhaps the most intriguing of these is that the 

coexistence of superfluidity and dynamical arrest, namely the “superglass” state. Recent 

numerical, theoretical and experimental work has given convincing evidence for the reality of 

this unusual arrested state of matter.
7,8,9

 However, while such intriguing examples exist there 
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currently exists no unifying framework to treat the interplay between quantum and glassy 

fluctuations in the liquid state. 
 

To attempt to formulate a theory for a quantum liquid to glass transition we may first 

appeal to the classical case for guidance. Here, a microscopic theory exists in the form of mode-

coupling theory (MCT), which only requires simple static structural information as input and 

produces a full range of dynamical predictions for time correlation functions associated with 

single particle and collective fluctuations.
10

  Although MCT has a propensity to overestimate a 

liquid’s tendency to form a glass it has been shown to account for the emergence of the non-

trivial growing dynamical length scales associated with vitrification.
11

  Perhaps more 

importantly, MCT has made numerous non-trivial predictions ranging from logarithmic temporal 

decay of density fluctuations and reentrant dynamics in adhesive colloidal systems to various 

predictions concerning the effect of compositional mixing on glassy behaviour
12,13

. These have 

been confirmed by both simulation and experiment
14,15,16

. 

A fully microscopic quantum version of MCT (QMCT) that requires only the observable 

static structure factor as input may be developed along the same lines as the classical version. 

Indeed, a zero temperature version of such a theory has been developed and successfully 

describes the wave vector dependent dispersion in superfluid helium.
17

  In the supplementary 

information, we outline the derivation of a full temperature dependent QMCT. In the limit of 

high temperatures, this theory reduces to the well-established classical MCT, while at zero 

temperature our theory reduces precisely to the aforementioned T=0 quantum theory. The 

structure of these two theories is dramatically different, suggesting the possibility of non-trivial 

emergent physics over the full range of parameters that tune between the classical and quantum 

limits.  
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The fully microscopic QMCT allows for a detailed description of the dynamical phase 

diagram that separates an ergodic fluid region from an arrested glassy one as a function of both 

thermodynamic control variables as well as the parameters (e.g. ℏ ) that control the size of 

quantum fluctuations. To illustrate this, we perform detailed QMCT calculations on a hard-

sphere system as a function of the system’s volume fraction φ and the dimensionless parameter 

Λ
*
 (the ratio of the de Broglie thermal wave length to the particle size) that controls the scale of 

quantum behaviour.  Despite their simplicity, hard sphere systems are well characterized, 

experimentally realizable, and show all the features of glassy behaviour that are exhibited by 

more complex fluids. It is well-known from experiment and simulation that classical hard 

spheres enter a glassy regime for volume fractions in the range φ = 50 – 60% independent of 

temperature.
18,19

  Figure 1 shows the full structure of the dynamical phase diagram.  The QMCT 

calculations are consistent with this in the classical limit (Λ
*
→ 0), but upon departure from this 

show a rather remarkable reentrant behaviour. In particular, as the scale of quantum fluctuations 

are tuned from small to high values an initially flat regime is followed by the system becoming 

glassier and then finally favouring the fluid when quantum fluctuations are large.  This behaviour 

is surprising given the fact that reentrance is not hinted at in the static structure factor. We also 

show the behaviour produced by a strictly classical MCT calculation performed with the 

quantum structure factor as input where only a featureless border separating liquid from glass is 

demonstrated. This fact clearly shows that the reentrant behaviour predicted by QMCT is a non-

trivial product of the properties of the theory and not the static structure factor input. 

To obtain a physical understanding of this surprising prediction we turn to the ring 

polymer molecular dynamics (RPMD) approach to quantum dynamics.
20

 This method exploits 

the path integral formulation of quantum mechanics in which a quantum particle is mapped onto 



4 

a classical ring polymer consisting of a series of replicas linked by harmonic springs.  Static 

properties can be calculated exactly using this mapping while RPMD utilizes the classical 

evolution of the polymers to provide an approximation to quantum dynamics. This approach has 

been previously shown to give accurate dynamical properties for systems ranging from nearly 

classical to those where tunnelling is dominant.
21,22

 

We performed RPMD simulations for a binary Lennard-Jones system at a density and 

temperature that classically exhibits glassy behaviour (details provided in supplementary 

information).
23

 Figure 2(a) shows the change in the diffusion coefficient of the particles as the 

quantum fluctuations of the system, controlled by varying Λ
*
, are increased. This property shows 

the same reentrance seen in the QMCT results. The structure factor, shown in Figure 2(b), 

reveals only a monotonic broadening over the entire region under study. 

Analysis of the RPMD trajectories allows us to deduce the origin of this effect. In Figure 

2(c), we show the ratio of the average radius of gyration of the polymers representing each 

particle, a static property given exactly by the RPMD simulations, to its free particle value which 

is proportional to Λ
*
. The spread of each polymer (or the width of the thermal wave packet) is 

directly related to the quantum mechanical uncertainty about its position.  Hence, the uncertainty 

principle dictates that decreasing the width of the packet corresponds to an increase in kinetic 

energy. 

The trend in the spread of the particles as shown in Figure 2(c) is in excellent agreement 

with that seen in the diffusion coefficient (see Figure 2(a)) and provides insight into the reentrant 

behaviour. As quantum fluctuations are introduced into the system the wave packet of each 

particle attempts to delocalize. Initially (Λ
*
<0.1) thermally accessible space is available in the 
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system for the particle to expand into, allowing the radius of gyration to increase almost freely. 

The ratio of the spread of the particles to their free particle values is near unity and the diffusion 

is largely unchanged.  However as Λ
*
 is increased further, the width of the packet becomes 

comparable to size of the cage in which it resides. There is now little free space into which the 

packet may expand, leading to a dramatic decline in the ratio.  Figure 3(a) shows a configuration 

typical of this regime in which the particle is localized in its cavity. This confinement in its 

position causes a large rise in the kinetic energy of localization exerting, as Λ
*
 increases, a 

progressively larger quantum pressure on the cavity. 

For diffusion to occur, the particles must rearrange in this highly crowded environment. 

This requires contraction of their wave packets as they pass through the narrow gaps, localizing 

them further and incurring an additional increase in their kinetic energy. This higher energy 

required to push through the gaps acts as a bottleneck to diffusion and leads to the slowing 

reflected in the intermediate Λ
* 

region (see Figure 2(a)). This is also shown in the inset of Figure 

3(a) which depicts the mean square displacement of the particle. A long intermediate beta 

relaxation regime is observed in which the particle is caged before being becoming mobile again 

at long times. When Λ
*
 is raised further, the thermal wavelength becomes comparable to the 

particle size and the kinetic energy becomes sufficient to flood the barriers between cavities 

leading to a rise in the radius of gyration and the occurrence of tunnelling between the cavities, 

thereby facilitating diffusion. This can be seen in the representative snapshot shown in Figure 

3(b) in which the particle is stretched across two cavities. Accordingly, the ratio of the radius of 

gyration to its free value recovers with a corresponding increase in diffusion and diminishing of 

the caging regime as shown in the inset of Figure 3(b). 
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The theory we have developed for the quantum glass transition predicts interesting 

generic dynamical anomalies such as a reentrant border between the disordered arrested and fluid 

regimes. Semi-classical quantum dynamics simulations display similar features and physically 

illuminate the origin of the predicted relaxation motifs. The physical interplay between crowding 

and quantum delocalization reported here, a generic feature of quantum glassy systems, might 

also be responsible for other physical phenomena. For example, it has been experimentally 

observed that lighter isotopes of hydrogen diffuse more slowly than heavier ones in water
24

 and 

palladium
25

 which has been recently elucidated by theory.
26

 The regime where reentrance is 

observed is therefore realizable in chemical systems near ambient temperatures. 

It is likely the reentrant transition observed here may also have implications beyond 

glassy systems. Intuition suggests that increasing quantum fluctuations monotonically enhances 

the exploration of the energy landscape. This forms the basis of the quantum annealing approach 

to optimization
27,28

. However, our work indicates that in certain regimes increasing quantum 

fluctuations can lead to dynamical arrest and hinder optimization. Indeed, reentrance has recently 

been observed in the dynamical phase behaviour of simple models of quantum optimization 

currently under investigation in the field of quantum information science.
29

  Thus deep 

connections exist that unite these seemingly distinct physical systems and processes. 
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Figure Captions 
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Figure 1: Dynamic phase diagram calculated from the QMCT for a hard-sphere fluid. φ is 

the volume fraction, * 2 2
mβ σ=Λ ℏ

 
is the thermal wavelength in units of inter-particle 

separationσ , and 1
B
Tkβ =  is the inverse temperature.  Inset: Dynamic phase diagram using the 

quantum mechanical input with a classical MCT.  
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Figure 2: Diffusion as function of quantumness from RPMD simulations. (a) The diffusion 

constant as a function of the quantumness, *
Λ obtained from the RPMD simulations for a 

quantum Kob-Anderson Lennard Jones binary mixture for T* = 2.0 (red curve) and T
*
=0.7  

(black curve) . (b) Classical and quantum static structure factor of the “A” type particles. (c) 

Root-mean-square of the radius of gyration as a function of Λ
*
=0 for the two systems shown in 

panel (a).  The radius of gyration is defined as the average distance of the replicas from the 

polymer centre. 
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Figure 3: Snapshots from the RPMD simulations taken from the caged (ΛΛΛΛ
*
=0.7, panel (a)) 

and tunnelling (ΛΛΛΛ
*
=1.3, panel (b)) regimes at T

* 
= 0.7.  For clarity all but one ring polymer in 

each snapshot is represented by its centre of mass.  The red spheres represent the replicas of the 

polymer.  Insets depict the mean square displacement,
2

( ) (0)R t R−
� �

, calculated from RPMD 

(solid curves) and classical MD (dashed curves) in Lennard Jones reduced units. The inset of 

panel (a) shows a long beta relaxation regime compared to the classical simulation and the 

tunnelling case shown in (b).  
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The quantum mode coupling theory

We first outline the derivation and explicit expressions of the quantum mode coupling theory

(QMCT). As discussed in the caption of Fig.1, the magnitude of quantum fluctuations may be

measured by a dimensionless parameter that sets the ratio of the thermal wave length, λ to the

particle size, σ namely:

Λ∗ =

√
~2

kBTmσ2
=
λ

σ
(1)

where ~ is Planck’s constant divided by 2π, kB is Boltzmann’s constant, T is the temperature, m is

the particle mass, and σ is the particle diameter.

Note that even for hard-spheres a temperature appears that defines the scale of kinetic fluctu-

12



ations. This may be thought of as an intrinsic noise temperature following the quantum fluctuation-

dissipation theorem (QFDT). Defining a projection operator based on the Kubo transformation,

(A|B) =
1

~β

∫ ~β

0

dλ〈A(−iλ)B(0)〉 =
1

~β

∫ ~β

0

dλ〈A(0)B(iλ)〉, (2)

where time evolution is defined via the standard Heisenberg picture:

A(t) = eiHt/~Ae−iHt/~, (3)

an exact quantum mechanical equation of motion is found for the Kubo-transform of the density-

density correlation function,

φ̈q(t) + Ω2
qφq(t) +

∫ t

0

dt′Mq(t
′)φ̇q(t− t′) = 0, (4)

where Ω2
q = kBT

mφq(0)
q2, φq(0) is the Kubo-transformed static structure factor, and Mq(t) is the

memory function.

At high temperature the frequency coefficient in the second term reduces to

lim
T→∞

Ωq =

√
kBTq2

mSq
, (5)

and at low temperature becomes,

lim
T→0

Ωq =
~q2

2mSq
≡ ωq (6)

which may be recognized as the well-known Bijl-Feynman dispersion at zero-temperature.1, 2

Following the mode-coupling approach generalized to the quantum mechanical context, the

following expression for the memory function of Eq. (4) may be derived (in what follows we use

13



the notation C̃(ω) =
∫∞
∞ dte−iωtC(t) for quantities in frequency space):

M̃q(ω) ≈ ~mβ2

4πωq2N

∑
k

v2
q (k, q − k)

∫ ∞
−∞

dω′ω′ (7)

×(ω − ω′)T (ω′, ω − ω′)φ̃q−k(ω′)φ̃k(ω − ω′),

where

T (ω1, ω2) = n(−ω1)n(−ω2)− n(ω1)n(ω2), (8)

and the vertex is given by

vq(k, q − k) =
∆n(Ωq−k)∆n(Ωk)Cq,k,q−k
Sq−kSkK(Ωq−k,Ωk)

[
(Ωk + Ωq−k)

2 − Ω2
q

(Ωk + Ωq−k)

]
(9)

with

Cq,k,q−k =
ΩqSqSkSq−k − ∆n(Ωq)

2m
[q · kSq−k + q · (q − k)Sk]

Ωq∆n(Ωk + Ωq−k)− (Ωk + Ωq−k)∆n(Ωq)
. (10)

Here K(Ωq−k,Ωk) =
T (Ωq−k,Ωk)

Ωq−k+Ωk
+

T (−Ωq−k,Ωk)

Ωq−k−Ωk
, ∆n(ω) = n(ω)−n(−ω) and n(ω) = 1

eβ~ω−1
is the

Bose distribution function at temperature T .

The above expressions close the equation of motion 4 , and require only the static structure

factor to produce a full approximation to the time dependence of the quantum density-density time

autocorrelation function. To derive the full expressions quoted above we have resorted to a finite

temperature generalization of the “resonance approximation” of Götze and Lücke.3, 4 However, the

results presented in Fig. 1 (and thus the predicted reentrance effect) are robust and do not depend on

this approximation. This can be demonstrated by substituting a variety of different approximations

to remove the dependence of various static terms in the verticies on the integrations over imaginary

time induced by Kubo transformation.

14



Using the input of accurate quantum structure factors (as described in the next subsection)

one can make predictions as to the role of quantum fluctuations on the glass transition. A version

of QMCT has previously been developed to treat the quantum liquid regime.5 This theory is not

capable of treating the regime where dynamics become glassy. A future article will detail the

relationship between the theory used here and the previous version of QMCT.

It may be shown analytically that the above equations reduce to the venerable classical mode-

coupling equations in the high temperature limit and to the Götze Lücke theory at T = 0. The latter

theory produces a representation of the dispersion of superfluid helium that is at least as accurate

as the Feynman-Cohen (FC) theory 6 at low values of q and exhibits Pitaevskii-bending of the

spectrum at high q, unlike the FC theory. In particular at high T ,

lim
β→0

Mq(t) =
kBTn

16π3mq2

∫
d3k (q · kck + q · (q − k)cq−k)

2 φq−k(t)φk(t), (11)

where n is the number density and cq = 1
n

(
1− 1

Sq

)
is the direct correlation function. In addition,

φq(t) reduces to the classical intermediate scattering function, F (q, t) as β → 0. This is recognized

as the classical MCT memory function.7

At T = 0 the equation for the memory function reduces to:

Mq(ω) =
mβ2

2nωq2

∫
dk

(2π)3
v2
q (k, q − k)

∫ ω

0

dω′

π
ω′(ω − ω′)φ̃q−k(ω′)φ̃k(ω − ω′), (12)

with

vq(k, q − k) =
n

2m
(ωk + ωq−k + ωq) (q · kck + q · (q − k)cq−k) (13)

which are the T = 0 equations for quantum density fluctuations in superfluid helium first derived

15



by Götze and Lücke.3, 4 Note that in the T = 0 case, the entire structure of the memory function

differs greatly from that of its high temperature counterpart and the convolution structure is lost.

Eqs.(12) and (13) do not imply a memory function that is a product of correlators at identical

times. This is a consequence of the QFDT that must be satisfied. At T = 0 the function T (ωq, ωk)

becomes proportional to the difference of a product of step-functions in frequency, dramatically

altering structure of the theory. This distinction between the low and high temperature limits has

important consequences. In addition to the robust prediction of reentrance, we also find that glassy

behavior cannot be supported in the strict T = 0 case. Some or all of these features seem to emerge

both in certain quantum spin glasses and in recent work on quantum versions of lattice models of

glassy liquids8. A future paper will be devoted to both a more explicit derivation of the theory

outlined here as well as the physical implications of our work and the connection to other models

of quantum glass behavior.

Quantum integral equations for static structure

The quantum integral equation approach used in this work to generate the input required by the

QMCT is based on the early work Chandler and Richardson.9, 10 For completeness, we provide an

outline of the approach. We begin with the Ornstein-Zernike relation applicable to the quantum

liquid. The quantum system composed ofN particles can be mapped on a classical system consist-

ing of N ring polymers, each polymer being composed of P beads. Then, we can write the matrix

RISM (reference interaction site model 9, 10) equation for the classical isomorphic system by:

h(|r− r′|) = ω ∗ c ∗ ω(|r− r′|) + nω ∗ c ∗ h(|r− r′|), (14)

16



where ∗ denotes a convolution integral and n is the number density. In the above equation, h(r),

ω(r), and c(r) are the total correlation function, the self correlation function, and direct correlation

function, respectively, defined by:

h(r) =
1

~β

∫ ~β

0

dλh(r, λ)

ω(r) =
1

~β

∫ ~β

0

dλω(r, λ)

c(r) =
1

~β

∫ ~β

0

dλc(r, λ)

(15)

and h(r, λ), ω(r, λ), and c(r, λ) are the imaginary time total, self, and direct correlation functions,

respectively. In the classical limit Eq. (14) reduces to the classical Ornstein-Zernike equation with

ω(r) = 1. In what follows, we will use the notation ω̃q(λ) for the Fourier transform of ω(r, λ), and

similarly for c̃q(λ) and h̃q(λ):

h̃q =
1

~β

∫ ~β

0

dλh̃q(λ)

ω̃q =
1

~β

∫ ~β

0

dλω̃q(λ)

c̃q =
1

~β

∫ ~β

0

dλc̃q(λ)

(16)

We now use the mean-pair interaction approximations along with the quadratic reference

action 9 and rewrite:

ω̃q(λ) = exp{−q2R2(λ)}, (17)

where

R2(λ) =
∑
j

1− cos(Ωjλ)

βmΩ2
j + αj

, (18)

m is the particle mass, Ωj = 2πj/~β is the Matsubara frequency and αj is given by:

αj =
1

6π2~β

∫ ∞
0

dq

∫ ~β

0

dλq4ṽq(1− cos(Ωjλ)ω̃(q, λ). (19)

17



In the above the solvent induced self-interaction is given by:

ṽq = −c̃2
q(nω̃q + n2h̃q). (20)

We now need to close the quantum Ornstein-Zernike equations, which in q-space can be

written as:

h̃q = ω̃q c̃qω̃q + nω̃q c̃qh̃q. (21)

We use the Percus-Yevick closure of the form (in r-space):

c(r) = (h(r) + c(r) + 1)(exp(−βv(r))− 1), (22)

where v(r) is the pair interaction between two particles.

RPMD Simulations

We performed RPMD simulations of the Kob-Andersen11 binary Lennard-Jones (LJ) glass forming

system. The Lennard Jones potential between particles i and j is given by,

Vij(rij) = 4εij

[(σij
r

)12

−
(σij
r

)6
]
. (23)

The parameters and their conversion to atomic units as used in this work is given in Table 1. The

systems consisted of 1000 particles, 800 of type A and 200 of type B in a cubic box of length 9.4

σAA. The equations of motion were integrated using a timestep of 0.005 LJ units (0.35 fs) using the

scheme of reference 12. The simulations were carried out at constant volume for consistency with

the QMCT results. The RPMD simulations were performed for distinguishable particles which is

a valid approximation in the regime where the reentrance is observed.
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The number of beads, P , used was given by the formula,

P =
11.2~
T ∗

(24)

which was found to give good convergence for all the regimes studied.

Initial configurations were generated by annealing from a temperature T ∗=5.0 to the target

temperature over a period of 1,000,000 timesteps. From these initial configurations we ran a further

200,000 steps of equilibration using the a targeted Langevin equation normal mode thermostatting

scheme12. This was followed by microcanonical dynamics for 2,000,000 steps during which the

results were collected. The quantum effect, Λ∗, was varied by changing the parameter ~. Five

simulations were run for each temperature and value of ~ and the results averaged.

The root mean square radius of gyration is defined as,

rGi =

〈
1

P

P∑
k=1

|r(k)
i − r

(c)
i |2
〉1/2

, (25)

where

r
(c)
i =

1

P

P∑
k=1

r
(k)
i (26)

is the center of mass of the ring polymer representing particle i. In the free limit the radius of

gyration is 13,

rGi =
1

2

√
~2

kBTmi

= λ/2 (27)

which is related to the De Broglie thermal wavelength as defined in Eq. 1 via multiplication by

two.
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Parameter LJ units Atomic Units

εAA 1 3.8x10−4

εBB 0.5 1.9x10−4

εAB 1.5 5.7x10−4

σAA 1 6.43

σBB 0.88 5.65

σAB 0.8 5.14

MassA 1 3646

MassB 1 3646

Table 1: Parameters used in our RPMD simulations on the Andersen-Kob Lennard-Jones glass

forming system.
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