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In his Comment [see preceding Comment, Phys. Rev. A 82, 037601 (2010)] on the paper by Roux [Phys.
Rev. A 79, 021608(R) (2009)], Rigol argued that the energy distribution after a quench is not related to standard
statistical ensembles and cannot explain thermalization.The latter is proposed to stem from what he calls the
eigenstate thermalization hypothesis and which boils downto the fact that simple observables are expected to be
smooth functions of the energy. In this Reply, we show that there is no contradiction or confusion between the
observations and discussions of Roux and the expected thermalization scenario discussed by Rigol. In addition,
we emphasize a few other important aspects, in particular the definition of temperature and the equivalence of
ensemble, which are much more difficult to show numerically even though we believe they are essential to the
discussion of thermalization. These remarks could be of interest to people interested in the interpretation of the
data obtained on finite-size systems.

PACS numbers: 67.85.Hj; 05.70.Ln; 75.40.Mg

As an introduction, we briefly summarize our point of view
regarding Rigol’s Comment and then discuss in more details
the arguments supporting it. We do agree with Rigol that the
fine structure of the energy distribution may not, in principle,
affect the thermalization scenario after a quantum quench.We
also agree that the ETH would participate in explaining why
simple observables can look thermalized after a unitary evolu-
tion from an initial state. However, this is expected to be true
only in the thermodynamical limit, and provided the model is
well-behaved (in this respect). We show below that there is
no contradiction nor confusion with the statements of Ref. 1
which are correct on finite systems and, we believe, actually
relevant to interpret the BHM numerical data at stake. We
lastly point out some difficulties with the interpretation of the
data of Rigol’s Comment, basically that there is no use of the
microcanonical entropy to define the temperature because en-
semble equivalence is not reached. In this respect, Ref. 1 pro-
vides evidence that the Shannon entropy of the time-averaged
density-matrix, on finite systems, depends on the initial state
(something that may disappear in the thermodynamic but is
much more difficult to prove numerically than checking the
ETH on simple observables).

As a preamble, we recall a general result on statistical en-
sembles and their equivalence, something important in the
context of quantum quenches and relevant to the present dis-
cussion. On finite systems, the microcanonical and canonical
ensembles are not equivalent and will lead to different pre-
dictions. The two ensembles lead to identical predictions for
the entropy v.s. mean-energy relation (useful for thermody-
namics) only in the thermodynamical limit and under some
rather general assumptions (scaling of the density of states
with the number of particles, behavior of the energy fluctu-
ations and mean-energy of the system) allowing for a saddle-
point approximation of the energy distribution. This is called
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the ensemble equivalence (EE). From these arguments, which
can be found in usual statistical mechanics textbooks [2], it
sounds sensible to think that any well-behaved diagonal en-
semble (coming from a “generic” initial state, including the
possibility of a quench process) will be equivalent to both the
microcanonical and canonical ensembles, leading to the same
thermodynamics. Statistical mechanics is mostly focused on
the energy distribution as it tells, independently of the behav-
ior of observables, which states are relevant to the physics, or
in a more semi-classical approach, which parts of the phase
space contribute and how.

In addition to the energy distribution, the behavior of the
observables with energy is also an important issue when one
wants to average observables over statistical ensembles. The
fact that observables should behave smoothly with the energy
is sometimes called the semi-classical approximation (SA)
and appears in standard statistical physics textbooks [2] on
phenomenological grounds, when one needs to go from a sum
over micro-states to an integral over energy. What is called
ETH by Rigol is based, in our opinion, on these two phe-
nomenological ideas that seem to help explain thermalization
in a closed quantum systemonly in the thermodynamical limit
and that are certainly correct for most “generic” systems. The
question is rather one can provide evidences or proofs sup-
porting these arguments. In this respect, we point out some
analytical work supporting SA [4–7] and numerical simula-
tions on small systems [8–10, 12]. As numerics are done on
finite systems, one is not in the regime of validity of both the
EE and SA and one has to try to understand the finite size ef-
fects in order to give convincing data supporting the ETH. In
addition, equilibrium statistical mechanics is not meant to ex-
plain only thermodynamics, it also describes fluctuations and
finite size effects that are essential for many systems, includ-
ing experimental ones such as cold atoms. Hence, the features
of the diagonal distribution other than the mean-energy canbe
physically relevant and interesting in themselves, motivating
the discussion of their shape.

The motivation of Ref. 1 was to discuss the behavior of the
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diagonal ensemble only and to leave the discussion of the ETH
for a later study [11] since comparison between time-averaged
observables and equilibrium predictions were already avail-
able [3]. It provided the bare data of the distribution to see
whether they were supporting or not results of Ref. 3, which
could have been spoiled, for example, by the use of a finite
time window. Other motivations were to systematically inves-
tigate the variation of the quench parameter (which tunes the
mean-energy of the system), to look at finite size effects, the
energy fluctuations and Shannon entropy of the diagonal en-
semble. The manuscript did not intend to make general claims
about a thermalization mechanism (something on which the
first sentence of Rigol’s Comment could shed some confu-
sion). It is never mentioned that a Boltzmann distribution is
expected in general and in the thermodynamical limit, and that
this would be the explanation of thermalization in a generic
closed quantum system. If the title, abstract and conclusion
were not clear enough, this Reply clarifies the motivations.

We now turn to the observation of an “approximate” Boltz-
mann law and Rigol’s criticism. The first point is whether it
is confusing or not to state that observing a Boltzmann-like
(or exponential-like) behavior for the diagonal weights sup-
ports the observation of a “thermalized” regime as in Ref. 3
(notice the quotation marks, as in the manuscript). Although
we agree that we would have expected that the shape does not
matter, we have strong finite size effects (large weight on the
targeted ground-state and mean-energy close to the ground-
state [11]) and then, the ensembles are not equivalent (they
would give different observables). In this case, the shape of
the finite-size distributions are crucial to understand thetime-
averaged observables calculated previously. Notice that the
comparison in Ref. 3 was carried out using quantum Monte-
Carlo, i.e. usinga (grand)-canonical ensemble. The state-
ment of Ref. 1 is that this observation on finite systems sup-
ports the previously obtained results, carried out with similar
system sizes, in an approximately independent way of how
behave the observables. Consequently, there is no contradic-
tion with the ETH and Rigol’s argument (or EE) is actually
not relevant to explain the observed “thermalized regime” of
the BHM on finite size systems (in our opinion). In Ref. 11,
we give anotherexampleof a quench distribution displaying a
Boltzmann-like behavior on finite size systems in the pertur-
bative regime, based on analytical calculations.

Rigol’s Comment introduces a unique definition of the ef-
fective temperature while it was not discussed in Ref. 1. We
would like to stress that the introduction of an effective tem-
perature is actually involved and shows the limitations of
Rigol numerical “proof” of the ETH. Firstly, for the param-
eters of the BHM where the distributions are Boltzmann-like,
one can ask whether the temperature is well defined due to the
presence of finite size effects: the answer is no [11], i.e. dif-
ferent observables or definitions of temperature yield different
results. We don’t know how the distributions will evolve when
one works on very large systems and is yet in the perturbative
regime; there is no claim on this in Ref. 1. Secondly, similar
finite size effects occur in Rigol’s data: the definition usedis
valid only in the thermodynamical limit. Indeed, the effective
temperature is actually taken from thecanonical ensemble.

Thus, EE is implicitly assumed so that the temperature would
have to agree with the one obtained using1/T = ∂S/∂E us-
ing Boltzmann’s formulaS = kB lnΩ andΩ given by the
microcanonical ensemble. However, we see from the fluc-
tuations (for instance) that the EE is not reached in the data
of Ref. 10 and in the Comment. The advantage of using the
canonical ensemble to define an effective temperature is that
it is a continuous and increasing function of the mean-energy.
As discussed in Ref. 1, the statistical entropy of the diagonal
ensemble on a finite system is different for two mixed states
with the same mean-energy. The reason is that the statisti-
cal/Shannon entropy is much more sensitive to the details of
the distribution because of the log term. In Rigol’s Comment,
we may guess that the two data sets with the same mean-
energy will have different statistical entropies and different
effective microcanonical temperatures. Another possibledef-
inition of the temperature, more likely to be useful for experi-
ments, would be to fit the momentum distributionn(k) using
the canonical ensemble withT as a free parameter. In Ref. 10
and in the Comment, this would certainly give another differ-
ent temperature. Consequently, one cannot consider Rigol’s
data as corresponding to a fully thermalized system either,al-
though the ETH arguments are certainly reasonable. A last
striking difference between the data of the Comment and the
perturbative regime of the BHM is that the mean-energy are at
very different places: in the bulk of the spectrum for the first
set and very close to the ground-state for the second. The sec-
ond regime is expected to have stronger finite-size effects [11].

Finally, there is another issue when discussing thermaliza-
tion with putting the emphasis only on the SA as in the Com-
ment. To give an exaggerated picture of the ETH, consider the
situation where a “simple” observable has a totally flat behav-
ior with the energy: any distribution in phase space would lead
to thermalization according to the mere comparison of observ-
ables. Hence, the energy distribution in itself is a centralob-
ject. In Fig. 3(b) of Ref. 10 and in the figure of the Com-
ment, we see that, although the ensemble are not equivalent,
the comparison between the averaged observables gives very
close results because the observable varies smoothly enough.
In other words, the finite size effects on checking the SA/ETH
are here smaller than the one on checking the EE. Thus, the
discussion on a finite system in Rigol’s approach can be very
observable-dependent (which is well discussed in Ref. 10 on
the basis of general arguments and earlier results from the lit-
erature, but not addressed numerically/quantitatively).

In conclusion, showing the bare data of the diagonal en-
semble distribution corresponding to the BHM is, in our view,
important to explain the numerical findings. There is no con-
tradiction nor confusion between the statements of Ref. 1 and
the ETH. Rigol’s Comment, although very interesting, does
not bring clarifications on the particular issues of the BHM.
The Comment actually reuses numerical results and ideas that
could already be found in Refs. 10 and 12 (up to an insignif-
icant change in one parameter). The current numerical inves-
tigations, though they provide remarkable results, yield fully
conclusive answers neither for hard-core bosonic models or
the BHM, and are not in contradiction with each other (in our
view). For instance, the thermalization of the BHM at large
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but finite U on very large systems is still an open question, although the default answer is that we expect that it occurs.
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