arXiv:1011.2079v1 [g-bio.PE] 9 Nov 2010

Huge progeny production during the transient of a quastisge
model of viral infection, reproduction and mutation

José A. Cuesta

Grupo Interdisciplinar de Sistemas Complejos (GISC), Dwaento de Matematicas, Universidad Carlos Ill de
Madrid, Avenida de la Universidad 30, 28911 Leganés, Midspain

Abstract

Eigen’s quasi-species model describes viruses as enseofli#ferent mutants of a high fitness
“master” genotype. Mutants are assumed to have lower fitthessthe master type, yet they
coexist with it forming the quasi-species. When the mutatate is stficiently high, the master
type no longer survives and gets replaced by a wide range tfnhtypes, thus destroying the
guasi-species. It is the so-called “error catastrophe™ rizural selection acts on phenotypes,
not genotypes, and huge amounts of genotypes yield the shem®type. An important conse-
guence of this is the appearance of beneficial mutationshwhitrease the fitness of mutants.
A model has been recently proposed to describe quasi-spediee presence of beneficial mu-
tations. This model lacks the error catastrophe of Eigerssdehand predicts a steady state in
which the viral population grows exponentially. Extinatican only occur if the infectivity of the
guasi-species is so low that this exponential is negativehik work | investigate the transient
of this model when infection is started from a small amourbuef fitness virions. | prove that,
beyond an initial regime where viral population decreaaed ¢an go extinct), the growth of the
population is super-exponential. Hence this populatiacldy becomes so huge that selection
due to lack of host cells to be infected begins to act befarestbady state is reached. This result
suggests that viral infection may widespread before thesviias developed its optimal form.
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1. Introduction

It seems that an unavoidable consequence of the increaseniplexity of a system is the
appearance of parasites. These are entities able to ekpltktioors, bypasses, holes. .. of the
system for their own benefit, sometimes even at a cost forybe®m. We see a huge variety
of these parasites in biology, ranging from viruses to husn&ociety, in fact, is one of those
complex systems amenable to exploitation by free-riddrs ftaradigm of the Public Goods
gamel[[l] is but one prominent acknowledgment of the exig@fithis social parasitism). More
recently, the widespread use of computers and the arrivaitefnet has made us witness the
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emergence and proliferation of computer viruses, trojaresms, spam, phising, and all kinds
of forms of parasitism, which flood the web using the same raeisims aimed at allowing the

transmission of information. Apparently, whenever a cawrphechanism emerges, it is soon
invaded by its specific parasites.

Parasites need not be complex: on the contrary, by beingspeific to a particular mecha-
nism, they are able to do their job with very simple mechasisRaradigmatic among parasites
for their extreme simplicity are viruses. Their successichghat they are the most abundant life
forms on Earth/[2]. Their existence is an unavoidable outofithe very evolutionary process.
In fact, the most common strategy of RNA viruses is to haverg kigth reproductive rate which
yields a wide variety of mutants|[3]. This ensures their &aiptation to almost any change.

One of the most important challenges in current medicalaredeis how to fight viruses,
and one of the most studied strategies is the design of tiesraple to induce viral extinction.
Increasing the mutation rate has been successful, at teagperimentén vitro, but there is no
consensus as to why the virus loses infectivity at high noratates|[4, 5,16,/ 7]. The pioneering
work of Eigen [8] explains viral extinction through a mecksan known as error threshold. Ac-
cording to it, the progeny loses its identity if the mutatiate grows above a given value, which
is inversely proportional to the length of the replicatingletule —hence putting an upper bound
to the complexity of viruses. This classical theory is caotlequestioned. The current state of
the art of the evolutionary paradigm contradicts some obtsc assumptions of Eigen'’s theory,
crucial for the existence of the error threshold. Altenvmathechanisms may lead to viral extinc-
tion for reasons other than this hypothetical error thrékfiike the presence of defective forms
of the virus[9] 10], the competition induced by geometraaistraintsi[11, 12, 13, 114,/15], etc.).

Models of viral evolution need to make simplifying assurops, and real virus behavior of-
ten deviates substantially from their predictions [16]ri@uat quasi-species models assume high
mutation rates that give rise to heterogeneous populatibnis is consistent with experimental
observations. However, one common approximation is toidenthat all new mutations have a
deleterious ffect on fitness, thus neglecting beneficial and neutral nunsitiThis is true if, as
the theory assumes, there is a unique master sequence dith@gs. But we now know that the
genotype-phenotype map is extremely redundant, and thag@dmount of dferent sequences
—forming so-called neutral networks [17]— yield phenotgptlat perform equally well. The
increase in the rate of beneficial and neutral mutationghiig#tect brings about invalidates the
classical theory of the error threshold [7] and calls foemdative models of viral evolution and
extinction.

The aim of this paper is to explore one such model, introdbgeldanrubia et al. [18], with
special focus on its transient behavior.

2. Quasi-species equation

Evolution is a result of the simultaneous action of threecpeses: replication, mutation
and selection. Any set of agents undergoing these threeeggses evolve —in the direction
determined by selection— regardless of whether they atedi@al entities, computer programs,
cultural traits, etc.

Replication is the ability of some agents to produce idehttopies of themselves. Repli-
cation is normally a stochastic process, characterized pyobability distributionp(k), k =
0,1,2,..., representing the probability that after a replicationrgve-however we define it—
there arek replicas of the parent agent (including itself).
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The replication process is usually imperfect. Most ofteniesrin making copies yield invalid
individuals (unable to produce further copies); howevanstimes these errors produce valid
individuals albeit of a dferent type (or species). These kind of altered replicattwageferred
to as mutations. Mutations create new species and mairdaizbility within populations. New
species may have modified replicative abilities, and so aadrility distributionp;(k) must be
introduced for each specigswherek = (ki,ko,...,Ks) is a vector denoting the number of
offspring of any of thes possible resulting species that an individual of speicggeges rise to.

The replication with mutation of an individual of any of thalid species generates a Markov
process in discrete time known as multi-type branchingges(f19]. The variable characterizing
this process is the population of each species at genetaédt) = (Zy(t), Zz(%), . . ., Zs(t)). The
mean value of this variablg(t) = E[Z(t)] has the simple evolution equation

n(t + 1) = n()W, 2)

whereW = (w;;) is the replication-mutation matrix. The numbsee 3’ ; wi; denotes the average
number of dfspring that an individual of specieproducesin a replication event, agfl= wi; /r;
is the probability that one of thisfspring mutates to specig¢sSo introducing stochastic matrix
Q = (g;) (mutation matrix) and the diagonal matfk = (rid;;) (replication matrix), we can
factorizeW = RQ, thus separating thefect of replication and mutation in the evolutionrdf).

The asymptotic behavior of this equation is givenrfy) = A'u, where2 is the largest
eigenvalue ofW andu a (positive) eigenvector of its corresponding eigenspdeepulation
grows exponentially ift > 1, or vanishes exponentially if < 10

We have not considered selection yet. Selection is indugethd environment, usually
through a finite availability of resources for replicatioselection thus acts on the specific
replicative ability of each species —modifying the valudésrio When scarcity of resources
affects species equally, all values mfare dfected equally. In that case, what determines the
fate of each species is its asymptotic fraction within thpiydation. At generatiohthe fractions
of population of each species is given by the vest@y = n(t)/n(t) - 1, wherel = (1,...,1).
Equation[(1) then becomes

X(t+1)= s XOW g = xOWLT =} rix), 0

where we have used the factorizath= RQand the fact tha® is stochastic (hend®1" = 17).
Functiong(t) represents the mean replicative ability of the populatibgeneratiort. Equa-
tion (@) is referred to as thguasispecies equation.

The steady state of equatidd (2) is obtained by solving thermialue problemW = ¢x,
under the constraing; xi = 1, % > 0,i = 1,...,s. If Qis an irreducible matrixy andx are
respectively the largest eigenvalue and its correspor(dinigue) normalized left eigenvector of
matrix W [20].

3. Error catastrophe

Eigen proposed the quasi-species equation as a model fevttation of prebiotic replica-
tors [8] which, in the absence of correction mechanismsattdagh mutation rate and accordingly

1If 1 = 1 the process is “critical”, and it can be proven to go extindinite time with probability one[[19].
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a short length. However it has become a paradigm of viralutias even for much longer se-
guences (RNA, DNA, proteins.. .[)l[5,121]. To envisage Eigedea we can think of a space of

L long sequences, labelléd- 0,1, ..., s. Each position of these sequences can be occupied by
any element of a given set of them (DNA or RNA bases, allelegenfes, aminoacids...). Let

us assume that this set contamslementsd = 4 for basesa = 20 for aminoacids. ..). Muta-
tions are point-like, i.e., substitutions of the elemerd atngle position by any other in the set.
Thus sequences ACGGCA and AGGGCA are reached from eachlptreemutation, whereas
ACGGCA and AGGGCC are two mutations apart. Arfispring of the replicated sequence will
carry a point mutation with probability @ 4 <« 1. The sequence labeled as 0 (master sequence)
is assumed to have a higher replicative ability (henceffitrtess)}than any other sequence. For
simplicity, all sequences are assigned fithess 1 whereandister sequence has fithdss- 1.

We shall denote the fraction of population of the master saqe byx.

Animportantassumption in Eigen’s model is that backwardations that recover the master
sequence are neglected. This is a reasonable assumptisidexdmg that sequences in nature
tend to be very long. The master sequence is recovered vathapility (/D)", whereh is the
Hamming distance (number offtkrent positions) between the given sequence and the master
sequence, anbd = (a— 1)L is the number of point mutants of &nlong sequence.

Under the above assumptions the quasi-species equaltiora®

X[f(1—uD) + €] = x¢, ¢=1+(—-1) 3)

wheree contains those backwards mutation that the theory negl€hts equation predicts
« 1--5uD if uD<1-1, @)
0 if uD>1-1,

in other words, if the mutation rate is above a threshold ¢widecreases ds?), the master
sequence accumulates so many mutations that it gets lostaud of mutants. This transition is
known as thearror catastropheand has provided a line of research to find a therapy agairadt vi
infections based on increasipghrough the addition of mutagens [22].

4. Phenotype vs. genotype

But Eigen’s model is fundamentally flaw in the assuming thistexce of a single master
sequence or genotype. Biology is extremely redundant. DdbRes for proteins using a (nearly)
universal genetic code based on triplets of bases or cod@t$ codon codes for an aminoacid.
But the 64 possible codons only code for 20 aminoacids plu3@FPSsignal. In redundant
aminoacids, typically the third base is irrelevant or ngad. This means that many mutations
changing a base pair in the DNA sequence remain silent wiagrsdribed into proteins. On
their side, proteins fold in a three-dimensional structuhéch determines their function. And
only a few aminoacids at selected positions are key to thikrfg. So the replacement of many
of them leaves the protein structure (hence its functiotgcitn Evolution can only act on the
macroscopic features of living beings (their phenotypdjiciv are blind to a huge amount of
mutations. In other words, the mapping from genotypes ihtnptypes is from very many to
one. The existence of a master sequence is therefore ar@nteAt most we can only speak of
a master phenotype.



The distribution of genotypes corresponding to a given phgre on genotype space is a
rather complicated one. Basically they form so-called rautetworks|[17], i.e., connected
components of the mutation graph through which sequencelsecehanged by successive muta-
tions without ever changing the phenotype —hence theirditn&€he most relevant consequence
of the existence of neutral networks is that backwards (oebeial) mutations are not negligi-
ble, because recovering the master phenotype (not gedsype more an improbable event.
Changing Eigen’s model to account for beneficial mutatidimsieates the error catastrophe, as
we will see in what follows.

5. A model with beneficial mutations

A simple model accounting for the existence of neutral neltwdnas been recently pro-
posed [[18]. In this model, viral phenotypes are charaaedriay their replicative abilities,
r € {0,1,...,R}. The only mutations that the model takes into account arsettomnnecting
neighboring classes (i.e., thfect of a mutation is a slight increase or decrease in thecagple
ability). An offspring undergoes a deleterious mutation from from ctagsclassr — 1 with
probability p, and a beneficial mutation from clas$o class + 1 with probabilityg. In general
it is assumed that @ g < p < 1. If we denoten,(t) the mean number of viral particles in class
r at generation, then

n(t+1)=(1-p-agrn:(t) + p(r + )ne;a(t) + q(r — D)ne_1 (1), r=212,...R-1,

et + 1) = (1 — PR + AR Le 1(0). ®)

HereR stands for the maximum replicative ability of the virus. Tdexists also class = 0,
with no replicative ability, whose population is maintaiiteecause of deleterious mutations from
classr = 1. Hencenp(t) = pm(t).

Equations[(b) have the form dfl(1) fo¥ = RQwith

l1-p-a q
P 1-p-q q
Q= , R= . . (6)
p l1-p-q ¢ R
P 1-p

Notice however thaQ is only sub-stochastic if we do not include class 0. This fact may
cause the total extinction of the virus. Still, the eigemeaéquatiorpu = uW determines the
asymptotic behavior of the system(t) ~ ¢'u. Both¢ andu are unique becaus# is irreducible.
Vectoru normalized asi - 1 = 1 describes the asymptotic fractions of viral particlesdnleclass
—even in the case that the virus eventually goes extinct.

Forq = 0 it is easy to check that; = r(1 — p) andv; = (Vi1,...,%R), With vy = (L)(l -
PP r k=1,...,R, are the eigenvalues and left eigenvectors of matttixespectively. Since
for everyp the largest eigenvalue is= R(1 - p), we find thatp, = 1 — R™* defines a transition
value such that the virus proliferates fpr< pc but gets extinct fop > pc. This transition is
similar to Eigen’s error catastrophe, except for the faat the virus becomes extinct in this case
because the lowest fitness class is 0, unable to infect further cells.



6. Transient and the infinite classes model

As for the casel = 0, for q > 0 we expect that the largest eigenvajue O(R), so a model
with an infinite number of classes will never reach the asytipstate. However such a model
can be useful to study the initial stages of the transienabieh provided? > 1 and initially the
population has a low fithesg <« R. The reason is that classes aboy@et populated one by
one, so at least for 8 t < R-— rg there is no dierence between the model wih< co and with
R = . This is the regime | plan to analyze here.

So consider that the first of equatiofb (5) holds for @IN and assume that (0) = O for all
r > ro. Then the generating function

G =) Zn() (7)
r=1

will be a polynomial of degree at mosg + t. Multiplying (8) by Z and adding up for ait > 1
we obtain

G(zt+1)=[p+(1-p-az+aZ|GAz1) - pru(t). ®)

(Subindexes in functions are meant to denote partial dérés)
Let us now introduce the generating functions

N9 =) an(t).  Fz9=) 56@D =) ZN(s) (9)
t=0 t=0 r=1
In terms of them equation](8) becomes
Fiz 9 =p1+ o )[1+ o) iz 9 - (o) (10)
where 1 o
-p-0g=
wo= =P EE a= 1200+ (002 (11)

The condition forQ to be real and positive is/p + /g < 1. This condition holds whenever
0<g< p<1l/4. Asp = 1/4is an extremely high mutation rate, we shall take for gréuthet
Qe R*.

The first order partial dierential equation[{10) needs to be supplemented with aialinit
condition forF(z s). Indeed, if{n,(0)};»1 is the initial condition of the viral populations, then

F(z0)=G(z0)=9@ = ), Zn(0) (12)
r=1
The characteristic curves of equati@nl(10) are given by
-1
z z s
(1+W)(1+W+) e’ =y, (13)

with ¢ an arbitrary constant. We can eliminatiom this equation to get

_ __P(¢-E) _ 08
Z_dg’s)_—q(WJrEéW{)’ E = e (14)



In terms of the variableg(s) and denotind (¢, s) = F(z(Z, 9), S), equation[(10) becomes

PG -NE, (@O g o s) as)
whose solution is
(6.9 =9 g )P [ M au (16)

Substituting[(IB) into(16) yields

PC-1) _z+wx(z9)
qw: —w-g)  1-x(z9)

It only remains to determinB;(s) = F;(0, s). This can be achieved by imposikd0, s) = 0 in
(18), which leads to

=09, (29=—(E-1.  @7)

[ " Ny(u) du = g (0. 9).

Thus the final expression of the generating functidn s) is

F(z9) = 9W(z 9) - 9¥(0.9)). (18)

7. Asymptotic behavior of the transient

Settingz = 1 in (9) we getF(1,5) = Y2on(t)s/t!, the generating function of the total
population of the virusi(t) = .2, ni(t). From [I8),F (1, s) = 9(¥(1, 9)) — 9(¥(0, 5)), where

¥(l,9) = 1;_\/\/;—)((1(15)3) x(1,9) = v‘\;\i‘fvi (*°-1), (19)
00.9= 4 (09= (e -1). (20)

Let us assume for simplicity thaiz) = Z, i.e., at timet = 0 only a single viral particle
of classr is present. We can infer the asymptotic behavion@j from the singularities of
F(1, s) [23]. There are two sets of singularitie®; + i27rny/Q ands; + i27n1/Q, with ng, n; € Z,
which are the solutions tp(0, s) = 1 andy(1, s) = 1, respectively. In each set, the singularity
on the real axis is the one with smallest modulus, so we djradire the remaining ones. Denote
Ep = €% andE; = e?%; then

—W. W, W, —W.  1+w,

W,
Eh=1+ — = — Ei=1+ = . 21
0 W_ W_ ! 1+w 1+w (21)

But
Eo_ W(l+w) W.+p/g

B w.(l+w,) w+p/q°

becausev, > w_ for all p,q > 0 (the inequality is strict if at least one of them is nonzeiidjen

S > S1, S0 is the singularity that is closest to the origin. Frdml(21)

_ 2
= Iog(%) = Iog(%). (22)
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As lims.s, £[1-x(L 9)] = -Qg==-E1 = —q(w, + 1) # 0, thens; is a simple pole of/(L, ).
As its residue is-1/q, then

1 1
1,9 ~— as s , 23
(L9~ 5 oo — (23)

and therefore

oo

I Y PO R TR oV L5 A P o[+ G- p+ Q)
F(1,9 (qsl)f(l 81) _(q&)’tz(;( ) )sl§, s1=Q Iog(—4q )
(24)

From this we obtain the asymptotic behavior when « of the total populatiom(t) as

(A t+r—1\"Y? 1 [2ze
n() g (r-1) 51 A,( es ) ’ Ar_(r—l)!qf s (25)

8. Discussion

We have analyzed the transient behavior of Manrubia etrabdel [3) for a very large num-
ber of classesR > 1), by transforming it into an infinitely many class model.thdugh an
explicit solution cannot be found, | have obtained the gatireg function associated to the vec-
tor of class populations. The singularities of this funetpgrovide the time asymptotic behavior
of the total population of the virus, valid as long as the namdf generations is smaller th&n
Surprisingly we find that viral population growsiper-exponentiallynlike in the steady state.

Analyzing eq.[(2b) more closely, we notice tisatan have very large values and thus induce
an initial decay of the population. However, this decay getsinated by the factoriat ¢ r — 1)!
as soon as > ty = eg —r + 1. During this decay timéy (which is shorter the largen)
fluctuations of the branching process can lead the virus tinaion. Beyond that interval the
virus population starts to recover and grows at a faster ¢éixponential rhythm.

A standard assumption in studies of viral quasi-specieli@iga is that their population is
in the exponential asymptotic state. BUuRf> 1 the time to reach this state can be very long
(in fact, it requires at lead® — r generations to reach the optimal class, let alone to attain a
stationary distribution among classes). Before that weelthg virus population growing faster
than exponential and it is plausible that resources getuestbd during this transient period. This
means that selection starts playing a role when the steadsibdition is not yet established,
leading to a behavior fierent from what is to be expected in the asymptotic regime. dilects
of this phenomenon are as yet unexplored.
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