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Huge progeny production during the transient of a quasi-species
model of viral infection, reproduction and mutation
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Abstract

Eigen’s quasi-species model describes viruses as ensembles of different mutants of a high fitness
“master” genotype. Mutants are assumed to have lower fitnessthan the master type, yet they
coexist with it forming the quasi-species. When the mutation rate is sufficiently high, the master
type no longer survives and gets replaced by a wide range of mutant types, thus destroying the
quasi-species. It is the so-called “error catastrophe”. But natural selection acts on phenotypes,
not genotypes, and huge amounts of genotypes yield the same phenotype. An important conse-
quence of this is the appearance of beneficial mutations which increase the fitness of mutants.
A model has been recently proposed to describe quasi-species in the presence of beneficial mu-
tations. This model lacks the error catastrophe of Eigen’s model and predicts a steady state in
which the viral population grows exponentially. Extinction can only occur if the infectivity of the
quasi-species is so low that this exponential is negative. In this work I investigate the transient
of this model when infection is started from a small amount oflow fitness virions. I prove that,
beyond an initial regime where viral population decreases (and can go extinct), the growth of the
population is super-exponential. Hence this population quickly becomes so huge that selection
due to lack of host cells to be infected begins to act before the steady state is reached. This result
suggests that viral infection may widespread before the virus has developed its optimal form.
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1. Introduction

It seems that an unavoidable consequence of the increase in complexity of a system is the
appearance of parasites. These are entities able to exploitbackdoors, bypasses, holes. . . of the
system for their own benefit, sometimes even at a cost for the system. We see a huge variety
of these parasites in biology, ranging from viruses to humans. Society, in fact, is one of those
complex systems amenable to exploitation by free-riders (the paradigm of the Public Goods
game [1] is but one prominent acknowledgment of the existence of this social parasitism). More
recently, the widespread use of computers and the arrival ofInternet has made us witness the
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emergence and proliferation of computer viruses, trojans,worms, spam, phising, and all kinds
of forms of parasitism, which flood the web using the same mechanisms aimed at allowing the
transmission of information. Apparently, whenever a complex mechanism emerges, it is soon
invaded by its specific parasites.

Parasites need not be complex: on the contrary, by being veryspecific to a particular mecha-
nism, they are able to do their job with very simple mechanisms. Paradigmatic among parasites
for their extreme simplicity are viruses. Their success is such that they are the most abundant life
forms on Earth [2]. Their existence is an unavoidable outcome of the very evolutionary process.
In fact, the most common strategy of RNA viruses is to have a very high reproductive rate which
yields a wide variety of mutants [3]. This ensures their fastadaptation to almost any change.

One of the most important challenges in current medical research is how to fight viruses,
and one of the most studied strategies is the design of therapies able to induce viral extinction.
Increasing the mutation rate has been successful, at least in experimentsin vitro, but there is no
consensus as to why the virus loses infectivity at high mutation rates [4, 5, 6, 7]. The pioneering
work of Eigen [8] explains viral extinction through a mechanism known as error threshold. Ac-
cording to it, the progeny loses its identity if the mutationrate grows above a given value, which
is inversely proportional to the length of the replicating molecule —hence putting an upper bound
to the complexity of viruses. This classical theory is currently questioned. The current state of
the art of the evolutionary paradigm contradicts some of thebasic assumptions of Eigen’s theory,
crucial for the existence of the error threshold. Alternative mechanisms may lead to viral extinc-
tion for reasons other than this hypothetical error threshold (like the presence of defective forms
of the virus [9, 10], the competition induced by geometricalconstraints [11, 12, 13, 14, 15], etc.).

Models of viral evolution need to make simplifying assumptions, and real virus behavior of-
ten deviates substantially from their predictions [16]. Current quasi-species models assume high
mutation rates that give rise to heterogeneous populations. This is consistent with experimental
observations. However, one common approximation is to consider that all new mutations have a
deleterious effect on fitness, thus neglecting beneficial and neutral mutations. This is true if, as
the theory assumes, there is a unique master sequence of highfitness. But we now know that the
genotype-phenotype map is extremely redundant, and that a huge amount of different sequences
—forming so-called neutral networks [17]— yield phenotypes that perform equally well. The
increase in the rate of beneficial and neutral mutations thatthis effect brings about invalidates the
classical theory of the error threshold [7] and calls for alternative models of viral evolution and
extinction.

The aim of this paper is to explore one such model, introducedby Manrubia et al. [18], with
special focus on its transient behavior.

2. Quasi-species equation

Evolution is a result of the simultaneous action of three processes: replication, mutation
and selection. Any set of agents undergoing these three processes evolve —in the direction
determined by selection— regardless of whether they are biological entities, computer programs,
cultural traits, etc.

Replication is the ability of some agents to produce identical copies of themselves. Repli-
cation is normally a stochastic process, characterized by aprobability distributionp(k), k =
0, 1, 2, . . . , representing the probability that after a replication event —however we define it—
there arek replicas of the parent agent (including itself).
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The replication process is usually imperfect. Most often errors in making copies yield invalid
individuals (unable to produce further copies); however sometimes these errors produce valid
individuals albeit of a different type (or species). These kind of altered replicationsare referred
to as mutations. Mutations create new species and maintain variability within populations. New
species may have modified replicative abilities, and so a probability distributionpi(k) must be
introduced for each speciesi, wherek = (k1, k2, . . . , ks) is a vector denoting the number of
offspring of any of thes possible resulting species that an individual of speciesi gives rise to.

The replication with mutation of an individual of any of the valid species generates a Markov
process in discrete time known as multi-type branching process [19]. The variable characterizing
this process is the population of each species at generationt, Z(t) =

(

Z1(t),Z2(t), . . . ,Zs(t)
)

. The
mean value of this variablen(t) = E[Z(t)] has the simple evolution equation

n(t + 1) = n(t)W, (1)

whereW = (wi j ) is the replication-mutation matrix. The numberr i =
∑

j wi j denotes the average
number of offspring that an individual of speciesi produces in a replication event, andqi j = wi j/r i

is the probability that one of this offspring mutates to speciesj. So introducing stochastic matrix
Q = (qi j ) (mutation matrix) and the diagonal matrixR = (r iδi j ) (replication matrix), we can
factorizeW = RQ, thus separating the effect of replication and mutation in the evolution ofn(t).

The asymptotic behavior of this equation is given byn(t) = λtu, whereλ is the largest
eigenvalue ofW and u a (positive) eigenvector of its corresponding eigenspace.Population
grows exponentially ifλ > 1, or vanishes exponentially ifλ < 1.1

We have not considered selection yet. Selection is induced by the environment, usually
through a finite availability of resources for replication.Selection thus acts on the specific
replicative ability of each species —modifying the values of r i . When scarcity of resources
affects species equally, all values ofr i are affected equally. In that case, what determines the
fate of each species is its asymptotic fraction within the population. At generationt the fractions
of population of each species is given by the vectorx(t) = n(t)/n(t) · 1, where1 = (1, . . . , 1).
Equation (1) then becomes

x(t + 1) = φ(t)−1x(t)W, φ(t) = x(t)W1T
=

∑

i

r i xi(t), (2)

where we have used the factorizationW = RQand the fact thatQ is stochastic (henceQ1T
= 1T).

Functionφ(t) represents the mean replicative ability of the populationat generationt. Equa-
tion (2) is referred to as thequasispecies equation.

The steady state of equation (2) is obtained by solving the eigenvalue problemxW = φx,
under the constraint

∑

i xi = 1, xi > 0, i = 1, . . . , s. If Q is an irreducible matrixφ andx are
respectively the largest eigenvalue and its corresponding(unique) normalized left eigenvector of
matrixW [20].

3. Error catastrophe

Eigen proposed the quasi-species equation as a model for theevolution of prebiotic replica-
tors [8] which, in the absence of correction mechanisms, hada high mutation rate and accordingly

1If λ = 1 the process is “critical”, and it can be proven to go extinctin finite time with probability one [19].
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a short length. However it has become a paradigm of viral evolution even for much longer se-
quences (RNA, DNA, proteins. . . ) [5, 21]. To envisage Eigen’s idea we can think of a space of
L long sequences, labelledi = 0, 1, . . . , s. Each position of these sequences can be occupied by
any element of a given set of them (DNA or RNA bases, alleles ofgenes, aminoacids. . . ). Let
us assume that this set containsa elements (a = 4 for bases,a = 20 for aminoacids. . . ). Muta-
tions are point-like, i.e., substitutions of the element ata single position by any other in the set.
Thus sequences ACGGCA and AGGGCA are reached from each otherby a mutation, whereas
ACGGCA and AGGGCC are two mutations apart. Any offspring of the replicated sequence will
carry a point mutation with probability 0< µ≪ 1. The sequence labeled as 0 (master sequence)
is assumed to have a higher replicative ability (henceforthfitness)than any other sequence. For
simplicity, all sequences are assigned fitness 1 whereas themaster sequence has fitnessf > 1.
We shall denote the fraction of population of the master sequence byx.

An important assumption in Eigen’s model is that backward mutations that recover the master
sequence are neglected. This is a reasonable assumption considering that sequences in nature
tend to be very long. The master sequence is recovered with probability (µ/D)h, whereh is the
Hamming distance (number of different positions) between the given sequence and the master
sequence, andD = (a− 1)L is the number of point mutants of anL long sequence.

Under the above assumptions the quasi-species equation (2)reads

x[ f (1− µD) + ǫ] = xφ, φ = 1+ (r − 1)x, (3)

whereǫ contains those backwards mutation that the theory neglects. This equation predicts

x ≈














1− r
r−1µD if µD < 1− 1

r ,

0 if µD > 1− 1
r ,

(4)

in other words, if the mutation rate is above a threshold (which decreases asL−1), the master
sequence accumulates so many mutations that it gets lost in acloud of mutants. This transition is
known as theerror catastropheand has provided a line of research to find a therapy against viral
infections based on increasingµ through the addition of mutagens [22].

4. Phenotype vs. genotype

But Eigen’s model is fundamentally flaw in the assuming the existence of a single master
sequence or genotype. Biology is extremely redundant. DNA codes for proteins using a (nearly)
universal genetic code based on triplets of bases or codons.Each codon codes for an aminoacid.
But the 64 possible codons only code for 20 aminoacids plus a STOP signal. In redundant
aminoacids, typically the third base is irrelevant or nearly so. This means that many mutations
changing a base pair in the DNA sequence remain silent when transcribed into proteins. On
their side, proteins fold in a three-dimensional structurewhich determines their function. And
only a few aminoacids at selected positions are key to this folding. So the replacement of many
of them leaves the protein structure (hence its function) intact. Evolution can only act on the
macroscopic features of living beings (their phenotype), which are blind to a huge amount of
mutations. In other words, the mapping from genotypes into phenotypes is from very many to
one. The existence of a master sequence is therefore an entelechy. At most we can only speak of
a master phenotype.
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The distribution of genotypes corresponding to a given phenotype on genotype space is a
rather complicated one. Basically they form so-called neutral networks [17], i.e., connected
components of the mutation graph through which sequences can be changed by successive muta-
tions without ever changing the phenotype —hence their fitness. The most relevant consequence
of the existence of neutral networks is that backwards (or beneficial) mutations are not negligi-
ble, because recovering the master phenotype (not genotype) is no more an improbable event.
Changing Eigen’s model to account for beneficial mutations eliminates the error catastrophe, as
we will see in what follows.

5. A model with beneficial mutations

A simple model accounting for the existence of neutral networks has been recently pro-
posed [18]. In this model, viral phenotypes are characterized by their replicative abilities,
r ∈ {0, 1, . . . ,R}. The only mutations that the model takes into account are those connecting
neighboring classes (i.e., the effect of a mutation is a slight increase or decrease in the replicative
ability). An offspring undergoes a deleterious mutation from from classr to classr − 1 with
probabilityp, and a beneficial mutation from classr to classr + 1 with probabilityq. In general
it is assumed that 0< q≪ p≪ 1. If we denotenr (t) the mean number of viral particles in class
r at generationt, then

nr(t + 1) = (1− p− q)rnr(t) + p(r + 1)nr+1(t) + q(r − 1)nr−1(t), r = 1, 2, . . .R− 1,

nR(t + 1) = (1− p)RnR(t) + q(R− 1)nR−1(t).
(5)

HereR stands for the maximum replicative ability of the virus. There exists also classr = 0,
with no replicative ability, whose population is maintained because of deleterious mutations from
classr = 1. Hencen0(t) = pn1(t).

Equations (5) have the form of (1) forW = RQwith

Q =















































1− p− q q
p 1− p− q q

. . . . . . . . .

p 1− p− q q
p 1− p















































, R=



































1
2

. . .

R



































. (6)

Notice however thatQ is only sub-stochastic if we do not include classr = 0. This fact may
cause the total extinction of the virus. Still, the eigenvalue equationφu = uW determines the
asymptotic behavior of the systemn(t) ∼ φtu. Bothφ andu are unique becauseW is irreducible.
Vectoru normalized asu ·1 = 1 describes the asymptotic fractions of viral particles in each class
—even in the case that the virus eventually goes extinct.

For q = 0 it is easy to check thatλr = r(1 − p) andvr = (vr1, . . . , vrR), with vrk =
(

r
k

)

(1 −
p)kpr−k, r, k = 1, . . . ,R, are the eigenvalues and left eigenvectors of matrixW, respectively. Since
for everyp the largest eigenvalue isφ = R(1− p), we find thatpc = 1− R−1 defines a transition
value such that the virus proliferates forp < pc but gets extinct forp > pc. This transition is
similar to Eigen’s error catastrophe, except for the fact that the virus becomes extinct in this case
because the lowest fitness class isr = 0, unable to infect further cells.
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6. Transient and the infinite classes model

As for the caseq = 0, for q > 0 we expect that the largest eigenvalueφ = O(R), so a model
with an infinite number of classes will never reach the asymptotic state. However such a model
can be useful to study the initial stages of the transient behavior providedR≫ 1 and initially the
population has a low fitnessr0 ≪ R. The reason is that classes abover0 get populated one by
one, so at least for 0≤ t ≤ R− r0 there is no difference between the model withR< ∞ and with
R= ∞. This is the regime I plan to analyze here.

So consider that the first of equations (5) holds for allr ∈ N and assume thatnr (0) = 0 for all
r > r0. Then the generating function

G(z, t) ≡
∞
∑

r=1

zrnr (t) (7)

will be a polynomial of degree at mostr0 + t. Multiplying (5) by zr and adding up for allr ≥ 1
we obtain

G(z, t + 1) =
[

p+ (1− p− q)z+ qz2
]

Gz(z, t) − pn1(t). (8)

(Subindexes in functions are meant to denote partial derivatives.)
Let us now introduce the generating functions

Nr (s) ≡
∞
∑

t=0

st

t!
nr(t), F(z, s) ≡

∞
∑

t=0

st

t!
G(z, t) =

∞
∑

r=1

zr Nr (s). (9)

In terms of them equation (8) becomes

Fs(z, s) = p

(

1+
z

w−

) (

1+
z

w+

)

Fz(z, s) − pN1(s). (10)

where

w± ≡
1− p− q±Ω

2q
, Ω ≡

√

1− 2(p+ q) + (p− q)2. (11)

The condition forΩ to be real and positive is
√

p +
√

q < 1. This condition holds whenever
0 < q < p < 1/4. As p = 1/4 is an extremely high mutation rate, we shall take for granted that
Ω ∈ R+.

The first order partial differential equation (10) needs to be supplemented with an initial
condition forF(z, s). Indeed, if{nr (0)}r≥1 is the initial condition of the viral populations, then

F(z, 0) = G(z, 0) ≡ g(z) =
∞
∑

r=1

zrnr (0). (12)

The characteristic curves of equation (10) are given by

(

1+
z

w−

) (

1+
z

w+

)−1

eΩs
= ζ, (13)

with ζ an arbitrary constant. We can eliminatez from this equation to get

z= z(ζ, s) =
p(ζ − E)

q(w+E − w−ζ)
, E ≡ eΩs. (14)
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In terms of the variables (ζ, s) and denotingf (ζ, s) = F
(

z(ζ, s), s
)

, equation (10) becomes

− p−1 fs(ζ, s) = N1(s), f (ζ, 0) = g
(

z(ζ, 0)
)

= g

(

p(ζ − 1)
q(w+ − w−ζ)

)

, (15)

whose solution is

f (ζ, s) = g

(

p(ζ − 1)
q(w+ − w−ζ)

)

− p
∫ s

0
N1(u) du. (16)

Substituting (13) into (16) yields

p(ζ − 1)
q(w+ − w−ζ)

=
z+ w+χ(z, s)
1− χ(z, s)

≡ ψ(z, s), χ(z, s) ≡
w− + z

w+ − w−
(E − 1). (17)

It only remains to determineN1(s) = Fz(0, s). This can be achieved by imposingF(0, s) = 0 in
(16), which leads to

p
∫ s

0
N1(u) du= g

(

ψ(0, s)
)

.

Thus the final expression of the generating functionF(z, s) is

F(z, s) = g
(

ψ(z, s)
)

− g
(

ψ(0, s)
)

. (18)

7. Asymptotic behavior of the transient

Settingz = 1 in (9) we getF(1, s) =
∑∞

t=0 n(t)st/t!, the generating function of the total
population of the virusn(t) =

∑∞
r=1 nr (t). From (18),F(1, s) = g

(

ψ(1, s)
)

− g
(

ψ(0, s)
)

, where

ψ(1, s) =
1+ w+χ(1, s)

1− χ(1, s)
, χ(1, s) =

w− + 1
w+ − w−

(

eΩs − 1
)

, (19)

ψ(0, s) =
w+χ(0, s)
1− χ(0, s)

, χ(0, s) =
w−

w+ − w−

(

eΩs − 1
)

. (20)

Let us assume for simplicity thatg(z) = zr , i.e., at timet = 0 only a single viral particle
of classr is present. We can infer the asymptotic behavior ofn(t) from the singularities of
F(1, s) [23]. There are two sets of singularities:s0 + i2πn0/Ω ands1 + i2πn1/Ω, with n0, n1 ∈ Z,
which are the solutions toχ(0, s) = 1 andχ(1, s) = 1, respectively. In each set, the singularity
on the real axis is the one with smallest modulus, so we shall ignore the remaining ones. Denote
E0 = eΩs0 andE1 = eΩs1; then

E0 = 1+
w+ − w−

w−
=

w+
w−

E1 = 1+
w+ − w−
1+ w−

=
1+ w+
1+ w−

. (21)

But
E0

E1
=

w+(1+ w−)
w−(1+ w+)

=
w+ + p/q
w− + p/q

≥ 1,

becausew+ ≥ w− for all p, q ≥ 0 (the inequality is strict if at least one of them is nonzero). Then
s0 ≥ s1, sos1 is the singularity that is closest to the origin. From (21)

Ωs1 = log

(

1+ w+
1+ w−

)

= log

(

(1+ q− p+ Ω)2

4q

)

. (22)
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As lims→s1
d
ds

[

1− χ(1, s)
]

= −Ω w−+1
w+−w−

E1 = −q(w+ + 1) , 0, thens1 is a simple pole ofψ(1, s).
As its residue is−1/q, then

ψ(1, s) ∼ 1
q

1
s1 − s

as s→ s1, (23)

and therefore

F(1, s) ∼ 1
(qs1)r

(

1− s
s1

)−r

=
1

(qs1)r

∞
∑

t=0

(

t + r − 1
t

)

s−t
1 st, s1 ≡ Ω−1 log

(

(1+ q− p+ Ω)2

4q

)

.

(24)
From this we obtain the asymptotic behavior whent → ∞ of the total populationn(t) as

n(t) ∼ 1
qr

(t + r − 1)!
(r − 1)!

s−t−r
1 ∼ Ar

(

t + r − 1
es1

)t+r−1/2

, Ar =
1

(r − 1)!qr

√

2πe
s1
. (25)

8. Discussion

We have analyzed the transient behavior of Manrubia et al.’smodel (5) for a very large num-
ber of classes (R ≫ 1), by transforming it into an infinitely many class model. Although an
explicit solution cannot be found, I have obtained the generating function associated to the vec-
tor of class populations. The singularities of this function provide the time asymptotic behavior
of the total population of the virus, valid as long as the number of generations is smaller thanR.
Surprisingly we find that viral population growssuper-exponentially,unlike in the steady state.

Analyzing eq. (25) more closely, we notice thats1 can have very large values and thus induce
an initial decay of the population. However, this decay getsdominated by the factorial (t+ r −1)!
as soon ast > td ≡ es1 − r + 1. During this decay timetd (which is shorter the largerr)
fluctuations of the branching process can lead the virus to extinction. Beyond that interval the
virus population starts to recover and grows at a faster thanexponential rhythm.

A standard assumption in studies of viral quasi-species evolution is that their population is
in the exponential asymptotic state. But ifR≫ 1 the time to reach this state can be very long
(in fact, it requires at leastR − r generations to reach the optimal class, let alone to attain a
stationary distribution among classes). Before that we have the virus population growing faster
than exponential and it is plausible that resources get exhausted during this transient period. This
means that selection starts playing a role when the steady distribution is not yet established,
leading to a behavior different from what is to be expected in the asymptotic regime. The effects
of this phenomenon are as yet unexplored.
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[9] A. Grande-Pérez, E. Lázaro, P. Lowenstein, E. Domingo, S. C. Manrubia, Suppression of viral infectivity through

lethal defection, Proc. Natl. Acad. Sci. USA 102 (2005) 4448–4452.
[10] J. Iranzo, S. C. Manrubia, Stochastic extinction of viral infectivity through the action of defectors, Europhys. Lett.

85 (2009) 18001.
[11] T. Petermann, P. D. L. Rı́os, Cluster approximations for epidemic processes: a systematic description of correlations

beyond the pair level, J. Theor. Biol. 229 (2004) 1–11.
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