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Abstract

The author studied the effects of the environment described by Tsallis statistics in quan-
tum mechanics, when the deviation from Boltzmann-Gibbs (BG) statistics is small. The
x4 model was used and the squeeze angle caused by the difference between Tsallis and
BG statistics was calculated perturbatively in the mean field approximation as a function
of the dimensionless parameters: the inverse temperature βp and the coupling strength
λp. The author found that the effect of the deviation from BG statistics is relatively
large at high temperature. The squeeze angle as a function of βp has a dip structure,
and the dip is deeper with the increase of λp. The angle as a function of βp changes
the sign. These facts indicate that the frequency is modulated by the difference between
these statistics.
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1. Introduction

An extended equilibrium statistics, so-called Tsallis statistics [1], was introduced
and have been investigated in the past few decades. This statistics shows a power-
law distribution and a non-additive entropy. A weighted integral of Gauss distribution
(superstatistics) is equal to a Tsallis distribution [2]. It was shown that a certain Langevin
equation leads to a Tsallis distribution [3]. These facts imply that the non-extensivity
should appear generally. Some physical origins of Tsallis distribution were suggested [4].
For an example, long-range forces may cause power-law distributions. The distribution of
such a system whose ingredients interact with each other through long-range forces, may
be different from that in the Boltzmann-Gibbs (BG) statistics. Then some environments
should be described by Tsallis statistics.

This non-extensive statics has been widely applied to various phenomena and meth-
ods, such as particle distribution at high energies [4], non-extensive network [5], gener-
alized simulated annealing algorithm[6] and so on. This statistics has two parameters:
one is the inverse of the temperature β and the other is the parameter q which indicates
the difference between Tsallis statistics and BG statistics. The parameter q obtained by
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fitting the particle distribution [4] is close to the value q = 1 at which the distribution
corresponds to BG distribution.

The effects of the environment described by Tsallis statistics in Quantum Field
Theory were also studied. An example is the calculation of gluon propagator in the
environment[7]. It is well-known that the propagator in the thermal environment de-
scribed by BG statistics is modified, and then the propagator in the environment de-
scribed by Tsallis statistics is also modified. Similarly, it is expected that the expectation
values of other physical quantities are affected by the environment.

The study of the modification of a physical quantity by the environment described
by Tsallis statistics is important to clarify the effects of the Tsallis distribution, because
power-like distributions appear in many systems. The absolute value |1 − q| (the index
of the deviation from BG statistics) is small in many cases, as shown in other studies.
Therefore I attempt to calculate the physical quantities, such as the expectation value of
the square of the coordinate, under the influence of the environment described by Tsallis
statistics, when the deviation from the BG statistics is small enough. I use the x4 model
to study the effects of the environment through the anharmonic potential. I apply a
mean field approximation and Bogoliubov transformation. The energy depends on the
dimensionless parameters, the inverse temperature βp and the coupling strength λp, and
is calculated in the self-consistent manner. The effects of the deviation from BG statistics
are given numerically by estimating the squeeze angle. I found that the squeeze angle
as a function of βp has a dip structure and the angle changes the sign. The frequency
is modulated by the difference between these statistics, because the coefficient of the
x2 term is modified. These results provide the insight in the study of the phenomena
described by the model with self-coupling, such as the φ4 theory.

2. Squeeze angle

2.1. Squeeze angle in a mean field approximation

I deal with the x4 model in the present paper. The Hamiltonian is

H =
1

2m

(

p2 +m2ω2x2
)

+
1

4!
mω2λx4, (1)

where x is the coordinate, p is the momentum, m is the mass, ω is the frequency and λ
is the coupling strength. The mean field approximation [8, 9] is applied:

x2n →
(2n)!

2n(n− 1)!

(

〈x2〉q
)n−1

x2 −
(n− 1)[(2n)!]

2nn!

(

〈x2〉q
)n

, (2a)

x2n+1 →
(2n+ 1)!

2nn!

(

〈x2〉q
)n

x, (2b)

where 〈O〉q is the statistical average of a physical quantity O in Tsallis statistics. The
mean field Hamiltonian is given by

HMF =
1

2m

(

p2 +M2(q, β)ω2x2
)

−
1

8
mω2λ

(

〈

x2
〉

q

)2

, (3)

where β is the inverse of the temperature and M2(q, β) is defined as m2

[

1 + λ
2

〈

x2
〉

q

]

.

The coefficient of the x2 term is influenced by the environment [10] through
〈

x2
〉

q
. I
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introduce an arbitrary mass M and define creation and annihilation operators, a† and a,
which are related to x and p:

x =

√

h̄

2Mω

(

a† + a
)

, p = i

√

Mωh̄

2

(

a† − a
)

. (4)

With eqs.(4), the mean field Hamiltonian is given by

HMF =
M

m

h̄ω

2

{(

1 +
M2(q, β)−M2

2M2

)

(

aa† + a†a
)

+

(

1 +
M2(q, β)−M2

2M2

)

(

a2 +
(

a†
)2
)

}

−
1

8
mω2λ

(

〈

x2
〉

q

)2

. (5)

The Bogoliubov transformation [11] is applied to diagonalize HMF:

a = cosh θ · aq + sinh θ · a†q, a† = cosh θ · a†q + sinh θ · aq, (6)

where the parameter θ is the squeeze angle. The quantum state |0, q;β〉 is defined by the
equation, aq|0, q;β〉 = 0. Here, the function g(q, β) is defined by

g(q, β) :=
M2(q, β) −M2

2M2
. (7)

The mean field Hamiltonian is diagonalized, if the following equation is satisfied:

tanh(2θ(q, β)) = −
g(q, β)

1 + g(q, β)
. (8)

The mean field Hamiltonian is given by

HMF =
Ω(q, β)

2

(

aqa
†
q + a†qaq

)

−
1

8
mω2λ

(

〈

x2
〉

q

)2

, (9)

where Ω(q, β) is defined by

Ω(q, β) :=

(

M

m

)

h̄ω

(

1 +
g(q, β)

1 + g(q, β)

)

cosh(2θ). (10)

I show another way to obtain eq. (8). Similarly to eq. (4), the operators, x and p, are
related to aq and a†q:

x =

√

h̄

2M(q, β)ω

(

a†q + aq
)

, p = i

√

M(q, β)ωh̄

2

(

a†q − aq
)

. (11)

From eqs. (4), (6), and (11), I obtain the following equation:

exp (θ) =

√

M

M(q, β)
. (12)
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Apparently, this equation satisfies eq. (8). Then I define θij as follows:

exp (θij) :=

√

Mi

Mj
. (13)

Equation (13) indicates that
θ13 = θ12 + θ23. (14)

This relation is useful to find the value of the parameter θ.
The Hamiltonian is reduced to be harmonic in the mean field approximation. The

expressions of
〈

x2
〉

q
and

〈

p2
〉

q
for the Hamiltonian are given by

〈

x2
〉

q
=

(

h̄

2Mω

)

e2θ
(

2
〈

a†qaq
〉

q
+ 1

)

,
〈

p2
〉

q
=

(

Mh̄ω

2

)

e−2θ
(

2
〈

a†qaq
〉

q
+ 1

)

,

(15)

where the equation 〈aq〉q = 0 is satisfied. Here I note that the mass M is not specified
in the previous discussion.

2.2. The squeeze angle caused by the difference between Tsallis and Boltzmann-Gibbs

statistics

In Tsallis statistics, the statistical average of a physical quantity O is given by

〈O〉q =

∑

i

〈

i
∣

∣O

{

[

1− (1− q)
β

cq
(H − 〈H〉q)

]

q

1−q

}

∣

∣i
〉

∑

j

〈

j
∣

∣

[

1− (1 − q)
β

cq
(H − 〈H〉q)

]

q

1−q
∣

∣j
〉

, (16)

where
∣

∣i
〉

is a quantum state labelled i, cq is the normalization factor and 〈H〉q is the
expectation value of the Hamiltonian.

I use the approximated Hamiltonian HMF instead of H in eq. (16). To simplify, I
introduce the Hamiltonian H̃ shifted as H̃ = HMF − 〈0, q;β|HMF|0, q;β〉. When the
quantity O is the Hamiltonian H̃ , I obtain the self-consistent equation for H̃ by using
the number state |n, q;β〉 which is the n particle state constructed with a†q on the vacuum
|0, q;β〉:

〈H̃〉q =

∞
∑

n=0

{

Ω(q, β) n

[

1− (1− q)
β

cq
(Ω(q, β) n− 〈H̃〉q)

]

q

1−q

}

∞
∑

n=0

[

1− (1− q)
β

cq
(Ω(q, β) n− 〈H̃〉q)

]

q

1−q

. (17)

In this paper, I attempt to find the quantum state (namely squeeze angle θ) in Tsallis
statistics with small deviation from q = 1. Conventionally, the deviation ǫ from q = 1 is
defined by ǫ := 1− q. I use this parameter ǫ instead of q in the following calculations. I
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assume that the lowest contribution of θ for small ǫ is proportional to ǫ. The functions,
Ω(q, β), cq and θ(q, β), are expanded as series of ǫ:

Ω(q, β) ≡ Ω(1− ǫ, β) = Ω0 − ǫΩ1 +O
(

ǫ2
)

, (18a)

cq ≡ c1−ǫ = c0 − ǫc1 +O
(

ǫ2
)

, (18b)

θ(q, β) ≡ θ(1 − ǫ, β) = θ0 − ǫ Θ+O
(

ǫ2
)

. (18c)

I specify the mass M explicitly to calculate the parameter θ. I choose M(q = 1, β)
as M . To avoid the confusion, I define the symbol Mβ by Mβ = M(q = 1, β). In such
the case, the angle θ satisfying eq. (8) reaches zero as ǫ → 0. Therefore, the term θ0 in
eq. (18c) is equal to zero in the case that M is equal to Mβ .

The expectation value 〈H̃〉q is also a function of ǫ. I expand this expectation as
follows:

〈H̃〉q ≡ 〈H̃〉1−ǫ = E0 − ǫE1 +O(ǫ2) (19)

The expressions of c0 and c1 can be obtained by using the relation between cq and the
partition function Zq:

cq = (Zq)
1−q . (20)

In the similar way, Zq is expanded as Z1−ǫ = Z0− ǫZ1+O(ǫ2), where Z0 is the partition
function at q = 1. From eq. (20), these quantities are given by

c0 = 1, c1 = − lnZ0. (21)

The quantities, E0 and E1, are obtained by substituting eqs. (18a), (18b), (19) into
eq. (17). The quantity E0 is given by

E0 = Ω0

(

S1

S0

)

, (22)

where Sp is defined by

Sp :=

∞
∑

n=0

np exp

[

−β

(

Ω0

c0

)

n

]

. (23)

The quantity Ω0 is apparently given by

Ω0 =

(

Mβ

m

)

h̄ω. (24)

I obtain easily the expression of
〈

x2
〉

q=1−ǫ
by the perturbation with respect to ǫ:

〈

x2
〉

q=1−ǫ
=

h̄

2ωMβ
R1

+
ǫh̄

ωMβ

{

−ΘR1 +

[

β

(

1−
c1
c0

)(

Ω0

c0

)

+ β

(

Ω1

c0

)

+ β2

(

Ω0

c0

)(

E0

c0

)]

R2

+
β2

2

(

Ω0

c0

)2

R3

}

+O
(

ǫ2
)

. (25)
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The functions R1, R2 and R3 are defined by

R1 := 1 + 2

(

S1

S0

)

, R2 :=

(

S1

S0

)[(

S2

S1

)

−

(

S1

S0

)]

, R3 :=

(

S1

S0

)[(

S2

S0

)

−

(

S3

S1

)]

.

(26)

Apparently, the quantity 〈x2〉q - 〈x2〉q=1 is O(ǫ). Then the order of g(1 − ǫ, β) is O(ǫ).
By using the definition of g(q, β) and eq. (25), the expression of g(1− ǫ, β) for small ǫ is
given as follows:

g(1− ǫ, β)

= ǫ

κ

{

−R1Θ+
[

β
(

1− c1
c0

)(

Ω0

c0

)

+ β
(

Ω1

c0

)

+ β2

(

Ω0

c0

)(

E0

c0

)]

R2 +
1

2
β2

(

Ω0

c0

)2

R3

}

1 + κR1

+O(ǫ2), (27)

where κ = (λh̄)/(4ωMβ). Therefore, eq. (10) gives the equation between Ω1 and g(1−ǫ, β)
to the order ǫ by ignoring O(ǫ2) terms:

ǫΩ1 = −Ω0g(1− ǫ, β). (28)

Similarly, eq. (8) gives us the equation to the order ǫ:

2ǫΘ = g(1− ǫ, β). (29)

I finally obtain the expression of Θ with eqs. (27) (28) and (29):

Θ =

κ

{

[

β
(

1− c1
c0

)(

Ω0

c0

)

+ β2

(

Ω0

c0

)(

E0

c0

)]

R2 +
1

2
β2

(

Ω0

c0

)2

R3

}

2 + 3κR1 + 2κβ
(

Ω0

c0

)

R2

, (30)

where c1 is given by

c1 = − lnZ0 = − lnS0 − β

(

Ω0

c0

)(

S1

S0

)

. (31)

The function Sp is simplified with the functions f(x) and f̃(x) which are defined by

f(x) :=
ex

ex − 1
, f̃(x) :=

1

ex − 1
. (32)

For an example, the quantity S1/S0 is equal to f̃ (βΩ0/c0).
The squeezing also occurs due to the difference between Mβ and m. The correspond-

ing squeeze angle is given by

exp (ϕm(β)) =

(

m

Mβ

)1/2

. (33)

The quantity M(q = 1,∞) is not equal to m when λ is not zero. Therefore ϕm(∞) is
not zero generally. From eq. (14), the total squeeze angle ϕtot of the order ǫ is given by

ϕtot = ϕm(β) + θ(1 − ǫ, β) = ϕm(β)− ǫΘ+O
(

ǫ2
)

. (34)

The angle ϕtot is calculated by solving the temperature dependence of Mβ and using
eq. (30).
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(a) The value of ϕm (b) The value of Θ

Figure 1: The squeeze angle in the ranges of 1.0 ≤ βp ≤ 10 and 0 ≤ λp ≤ 10.

3. Numerical Estimation of the Squeeze Angle

In this section, I calculate numerically the angle Θ given by eq. (30) and the angle
ϕm(β) given by eq. (33). I introduce the dimensionless parameters, βp and λp, by

βp = βh̄ω, λp = λ
h̄

mω
. (35)

The parameters in these numerical calculations, h̄, ω and m, are set to 1.
I show the values of ϕm and Θ at various values of βp and λp. Figure 1(a) is the map

of ϕm in the ranges of 1 ≤ βp ≤ 10 and 0 ≤ λp ≤ 10. As is well-known, the temperature-
dependent mass Mβ increases generally with the temperature, because of the existence
of the term m2λ〈x2〉q=1/2. Then ϕm is negative at finite temperature and decreases with
the temperature β−1

p and the coupling λp, as shown in Fig. 1(a). Figure 1(b) shows the
map of Θ in the same range. The value of Θ goes to zero from negative value as βp goes
to infinity, as seen in this figure. This behavior is reasonable because the parameter βp

corresponds to the inverse of the temperature. As shown in this figure, Θ has a local
minimum as a function of βp at a fixed λp and the sign of Θ changes in the vicinity of
βp = 2 ∼ 3, while ϕm decreases monotonically and the sign of ϕm is negative.

The sign of Θ depends on the values of βp and λp, and this fact indicates that the
sign of θ = −ǫΘ does not depend on only the sign of the parameter ǫ. In other words, the
sign of θ cannot be determined by only the property of statistics, subextensive (ǫ < 0)
or superextensive (ǫ > 0). From eq. (12) and (18c), I have

M(q = 1− ǫ, β) = Mβ exp (2ǫΘ) . (36)

Then M(q, β) is larger than Mβ for ǫΘ > 0. Figure 1 indicates that M(q, β) at q 6= 1 is
smaller than Mβ for small and positive ǫ in the large area of the parameters, where Θ
is negative. This tendency is probable intuitively. The cutoff exists in Tsallis statistics
of q < 1 (ǫ > 0), then the fluctuation should be smaller than that in BG statistics.
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(a) The value of ϕm (b) The value of Θ

Figure 2: The squeeze angle in the ranges of 0.01 ≤ βp ≤ 1 and 0 ≤ λp ≤ 10.

Therefore 〈x2〉 in Tsallis statistics of q < 1 should be smaller than that in BG statistics.
Then M(q < 1, β) should be smaller than Mβ. However Θ is positive for small βp, and
then M(q < 1, β) is larger than Mβ even when ǫ is positive. In addition, the modification
of ϕtot due to the deviation from q = 1 is at most O (|ǫϕm|) in the large area of this
figure, because the absolute value of Θ is less than that of ϕm.

The absolute value of Θ becomes large as βp goes to zero in Fig. 1(b). Therefore I show
the map of Θ at small βp. Figure 2(a) is the map of ϕm in the ranges of 0.01 < βp < 1
and 0 < λp < 10. Figure 2(b) is the map of Θ in the same ranges. The absolute value
of Θ is close to that of ϕm in this region. Therefore the difference between BG statistics
and Tsallis statistics will be important. The modification due to q 6= 1 is given as −ǫΘ,
and then the ratio of modification is O (|ǫ|) in the present case. The quantity M(q, β) is
larger than Mβ for ǫ > 0, because the sign of Θ is positive at small βp.

From Fig. 1 and Fig. 2, the effects of the discrepancy between q 6= 1 and q = 1 is
relatively large at small λp (weak coupling) and small βp (high temperature). Therefore
the experiment to measure the deviation from the Boltzmann-Gibbs statistics should be
performed at weak coupling and high temperature in the system described by the x4

potential.

4. Discussion and Conclusion

I studied the effects of the environments described by Tsallis statistics in quantum me-
chanics, when the deviation from Boltzmann-Gibbs (BG) statistics is small. I calculated
the squeeze angle (the angle in Bogoliubov transformation) in the mean approximation.
I used the x4 model, and the effects of q 6= 1 in Tsallis statistics were taken into the
coefficient of the x2 term through the expectation value 〈x2〉q. The squeeze angles were
displayed for various sets of the dimensionless parameters, the inverse of the temperature
βp and the coupling strength λp.
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In the numerical calculations, I showed that the sign of the squeeze angle Θ changes
as a function of βp and λp. Then the sign of θ(q, β) = −ǫΘ(β) is not determined by only
the sign of the parameter ǫ which is defined by 1− q, where this parameter indicates the
property of the statistics, subextensive or superextensive. Intuitively, it seems that the
expectation value 〈x2〉q=1−ǫ is large in the superextensive case. However, the fact that
Θ changes the sign due to the values, βp and λp, indicates that this conjecture is not
always correct.

The squeeze angle as a function of βp has a dip structure, and this structure is easily
seen at large λp. This structure is characteristic, because the angle due to the thermal
effect is a monotone function. Considering the ratio of the squeeze angle caused by the
difference between BG statistics and Tsallis statistics to the squeeze angle caused by BG
static (thermal contribution), I found that the absolute value of this ratio at high tem-
perature and weak coupling is relatively large in the ranges of the numerical calculations.
From these facts, the effects caused by the difference between Tsallis statistics and BG
statistics will be observed at high temperature.

The effect of the environment was included in the quantity M(q, β). The x2 term in
eq. (3) can be rewritten as follows:

1

2m
M2(q, β) ω2x2 =

1

2m
m2

(

M2(q, β)

m2
ω2

)

x2 (37)

The right-hand side of eq. (37) is interpreted as the modulation of the frequency of a
particle with mass m. This effect may be found experimentally in a quantum mechanical
system.

I studied the effects of the environment described by Tsallis statistics in this paper.
I hope that this work is useful in the future studies of the non-extensive statistic.
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