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Abstract

We present a network model in which words over a specific alphabet,
called structures, are associated to each node and undirected edges are
added depending on some distance between different structures.

It is shown that this model can generate, without the use of preferen-
tial attachment or any other heuristic, networks with topological features
similar to biological networks: power law degree distribution, clustering
coefficient independent from the network size, etc.

Specific biological networks (C. Elegans neural network and E. Coli

protein-protein interaction network) are replicated using this model.

1 Introduction

In the last years mathematical and computer science (CS) concepts and method-
ologies and have been successfully used in Biology. This fascinating and fruitful
combination of these disciplines has clear advantages for both of them. When
biological phenomena are regarded as information processes, then they can be
studied using mathematical and CS tools and concepts. This gives to Biology
new ways to approach problems, solutions to them and this deepens the under-
standing of biological processes. At the same time CS enriches itself with new
ways to define and study information process while Mathematics enriches itself
with new concepts and theories.

In the last decade several studies ([2, 13, 9, 12]) showed the importance of the
topology of biological networks. These results proved that biological networks
are composed of motifs, that biological networks with specific functions have an
abundance of certain motifs instead of others, that the number of edges for the
node in the network follows specific laws, etc.

More than studying the features of empirical networks, it is also important
to have algorithms able to generate networks with the same features of empirical
ones. This kind of algorithms, called models, are an invaluable help in the gen-
eration of artificial networks and they provide insights on how certain features
of complex empirical networks arise from the construction rules present in the
model.

Examples of such procedures are: the Erdös-Rényi model [5], the Watts-

Strogatz model [17] and the Barábasi-Albert model [3] and its variants [1, 14].
The E-R model allows to generate random networks able to reproduce the small-
world property (short path from any node to any other node in the network)
but they fail to account for the local clustering characterising many empirical
networks. Both these properties are captures by the W-S model, but unfor-
tunately it does not capture the inhomogeneous degree distribution found in
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many empirical networks. The B-A model can overcome these limitations and
gives rise to the degree distribution. This degree distribution is obtained using
preferential attachment: the probability for a node to receive an edge depends
on the number of edges the node already has. The original B-A model does not
capture the independence of the clustering coefficient from the size (number of
nodes) of a network. This feature is captured by a variant [14] of this model in
which heuristics (replication of networks) are used.

The present study originates from the wish to create a network model able
to reproduce biological networks without the use of heuristics. Despite the
very many successful applications of the B-A model, it was not clear to us how
preferential attachment could have been present in the evolution of, say, gene
networks. Why a gene with many interactions is more likely to get even more
interactions than a gene with few interactions? How can a new added gene
“know” what are the genes with more interactions? In this respect, we believe
that preferential attachment capture the overall effect of something more basic
present in the evolution of biological networks.

The network model introduced and studied in the present paper tries to cap-
ture some basic features present in the evolution of biological networks: network
growth, node structure and distance between node structures.

The node structure represents, for instance, the DNA sequence in genes,
proteins’ secondary structure, the personality features in humans, etc. The dis-
tance between nodes represents, for instance, the fact that proteins will interact
if their tertiary structure (which depends on their secondary structure) allows it,
or that two humans will be friends if the treats of their personality are somehow
close.

In the following we present the model with structured nodes (Section 2), we
analyse it (Section 3) and we use it to generate specific biological networks (Sec-
tion 4). The paper ends with a discussion section (Section 5). Supplementary
material (further technical details, generated networks, program implementing
the proposed network model, etc.) is present at [11].

2 Description of the model

The network model with structured node (SN model) is such that each node in
the network has a structure: a word over a specified alphabet. Given initial
nodes have different structure. Nodes are added to the network one by one.
Each new node has a structure given by the modification of a randomly chosen
structure already present in the network. If the structure of the new node is
already present in the network, then the new node is not added (that is, in
the network all nodes have different structure). If the structure of the new
node is not present in the network and the new node has no edge with the
existing nodes, then the new node is not added (that is, isolated nodes are not
allowed). Undirected edges are added to the network depending on a given
distance between node structures. This process is repeated until the network
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reaches a given number of nodes. A simple example follows.
Let us assume that the alphabet is {A, B, C} and that the network contains

only one initial node with structure ABCABC. Edges between nodes are added
only if the Hamming distance [18] between the structures of the nodes is at
most 1.

A node can be added to the network by mutating one symbol in the structure
of an existing node. For instance, the node ABBABC can be obtained mutating
the third symbol of ABCABC. An edge is added between the two nodes (they only
differ in one symbol).

A third node can be added to the network by adding one symbol to the
structure of a randomly selected existing node. For instance, the node ABBABBC
can be obtained adding a B between B and C in node ABBABC. An edge is added
between the new node and ABBABC (when computing the distance between two
structures exceeding symbols in the longer structure are disregarded). No edge
is added between the new node and ABCABC because there are 2 differences in
their first 6 characters.

The structure ABCBC can be obtained from ABCABC deleting the second B. The
node with this new structure does not become part of the network as no edge
has been added (the distance between ABCBC and the other structures present
in the network is bigger than 1).

The structure ABBBBABBC can be obtained from ABBABBC duplicating the
second and third B. The node with this new structure does not become part of
the network as no edge has been added.

Input parameters define the probabilities to mutate, add, delete and dupli-
cate node structures and their values has to sum up to 1.

We also used a Hamming distance in which the comparison between symbols
considers groups of consecutive symbols. The order of the symbols present in
each such group is irrelevant to the distance. For instance, let us consider the
two structures ABBABC and BABCAB. If the unit distance is 1 (i.e., symbols are
compared one by one), then the distance between the two structures is 5 as
the only matching symbol is the B in the third position. If the unit distance
is 2 (i.e., pairs of symbols are compared), then the distance between the two
structures is 2. This is because the first two pairs are considered equal (AB and
BA differ only in the order of the symbols), and the other two pairs are different
in the symbols they contain. If the unit distance is 3 (i.e., triplets of symbols are
compared), then the distance between the two structures is 0. This is because
the first triples are considered equal (ABB and BAB differ only in the order of
symbols) as well as the second triple (ABC and CAB differ only in the order of
symbols).

An edge between two nodes is present only if their distance is smaller/equal
than the value of the input parameter maximum distance.

When unit distance is bigger than 1, then it is possible to have a file matches

indicating how the different groups of symbols can be matched to eachother. In
other words, a file matches behaves as the genetic code: it denotes which tuples
of symbols have to be regarded as equal (in the same way different codons
translate in the same amino acid). For instance, let unit distance be 2, the
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alphabet be {A, B}, and the file matches be:
AB =

BA =

AA = BB

BB = AA

With this file matches, the strings ABBB and ABAA have distance 0. This is
because the first pair (AB) is the same in both strings, while the second pair (BB
and AA) is defined by the file matches to be equal. Without the file matches,
the two string have distance 1 (due to the second pair).

We call instance a set of input parameters. The complete list of input pa-
rameters together with their description can be found in the user manual of the
program implementing the SN model [11].

3 Analysis of the model

We assessed our network model over the following network topological features
[10]. Given an undirected network G with N nodes and k edges we denote by
〈k〉 the average degree, by L the average path length, by C the average clustering

coefficient, by P (k) the degree distribution and by C(k) the clustering coefficient

distribution.
We also considered the:

3-node motifs distribution, that is the number (normalised to 1) of triples of
nodes having no edge, only 1 edge, only 2 edges and 3 edges between
themselves;

path length distribution, denoted by PL(ℓ), relating the number (normalised
to one) of paths having a certain length ℓ;

heterogeneity index, denoted by ρ(G) (where G is the network), a new for-
mulation of Randić index introduced in [7, 6]. In [7, 6] it is also shown
that the Barabási-Albert model is not able to generate network with a
heterogeneity index as high as the one found in biological networks.

We compared the network generated by an instance our the SN model with
the network generated by the Barabási-Albert model (our implementation of
this model is based on the Fortran implementation present at [16]). For this
purpose we run the Barabási-Albert model starting with a clique of 6 nodes and
adding 6 edges for each new added node. We also run the following instance of
our network model: initial node ABCDEFGHILMN, alphabet A, ..., T, probabil-
ity to mutate 1 (which implies that the length of the node structures is equal
to the one of the initial node), Hamming distance having unit distance 2 and
maximum distance 2. We run these simulation for 3000 iterations storing the
resulting intermediate networks every 500 iterations. These tests run 100 times
for different random seeds.
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Figure 1 shows how the average degree, average path length and average
clustering coefficient change in the Barabási-Albert model and in the SN model.
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Figure 1: (A) average degree, (B) average path length and (C) average cluster-
ing coefficient of a growing Barabási-Albert model network (BA) and a growing
SN model network.

The average path length follows the same curve in both models and the
average degree slowly grows in the SN model while it remain constant in the
Barabási-Albert model. The major difference is present in the clustering co-
efficient: in remains constant in the SN model while it decreases fast in the
Barabási-Albert model. It is known that empirical networks have a clustering
coefficient independent from their size and in [15] a variant of the Barabási-
Albert model generating networks with a power law degree distribution and a
clustering coefficient independent from the size of the network was presented.
The motif distribution was similar in both model (data not shown).

It is well known that the Barabási-Albert model generates networks with a
degree distribution following a power law P (k) ∼ k−γ . The same holds true for
the considered instance of the SN model (this is not true for all instances of the
SN model).

In both models the exponent of the power law does not change during growth.
Anyhow, in the considered instance, the degree distribution of the networks
generated by the SN model is not following a power law in its initial phases.
This is shown in Fig. 2A where it can be seen that only after k = 5 the degree
distribution follows a power law. This difference with the Barabási-Albert model
is mainly due to the fact that in the Barabási-Albert model each new added node
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has a fixed number of edges (6 in the case considered by us), while this request
for a minimum number of edges is not present in the SN model.

We run another instance of the SN model for 55000 iterations and then we
let all nodes having less than 5 edges to be removed from the generated networks
together with their edges. The resulting networks, having around 3000 nodes,
have a power law degree distribution Fig. 2B.
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Figure 2: Degree distribution of two instances of the SN model: (A): keeping
all nodes (final trend having slope γ = −1.72), (B) removing nodes with less
than 5 edges together with their edges (trend having slope γ = −2.98).

As already said, in the SN model new nodes are added to the network first
selecting the structure of a node already in the network, then changing it and
finally adding it to the network. In order to study if the selection criteria had
an influence on the generated network we run a variant of the SN model. In this
variant new nodes are added all at once and their structure is a modification of
the structure of the nodes initially present. So, the difference is that only the
initial structures are used as template for the new added structures.

Network generated in this way showed a very low average clustering coeffi-
cient (around 0.002) and their degree distribution did not follow a power low
(see supplementary material [11]).

From this we conclude that, in the SN model, the incremental addition of
new nodes to the network (as opposed to the addition of the nodes all at once)
is a necessary element in order to have a power low degree distribution and a
high average clustering coefficient.

4 Reproduced networks

Different instances allow the SN model to generate networks with different topo-
logical features. In this section we describe how this model can generate net-
works having topological features similar to the ones of some empirical networks.
We followed a trial-and-error approach in order to find the input parameters to
‘fit the networks’: manually testing different instances until a ‘sufficiently good’
result was found. We are confident that a different approach, either analytical
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or based on heuristics (i.e., evolutionary algorithms [4]), could lead to better
results.

All the (input and output) files related to the reproduced network described
in the following are available from [11]. We successfully generated networks
having strong similarities with the MRSA gene network (data not shown).

C. Elegans neural network. In [17] it is reported that the neural network of
C. Elegans has 282 nodes (neurons), an average degree of 14, an average path
length of 2.65 and an average clustering coefficient of 0.28. We were not able to
retrieve a description of this network, so we only tried to match the just given
network topological features.

Using the described network model we run tests having: {A, T} as alphabet,
ATATATATATAT as structure of the only initial node, probability to mutate equal
to 1, unit distance equal to 2 and nodes have a common edge only if their
Hamming distance is smaller than 1. The generated networks with 282 nodes
have (average on 100 tests): 13.94 as average degree, 3.61 as average path length
and 0.3 as average clustering coefficient.

The 100 generated networks have a low variance on these values: 61% have
at most 10% discrepancy from the average results (see supplementary material
[11]).

E. Coli protein-protein interaction network. In [8] the protein-protein
interaction (PPI) network of E. Coli was published. The biggest connected
component of this network consist of 230 nodes, it has an average degree of
6.04, an average path length of 3.78, an average clustering coefficient of 0.22
and a heterogeneity index of 0.24.

Using the SN model we run tests having: {A, T, C} as alphabet, ATCATCTCATCACT
as structure of the only initial node, probability to mutate equal to 0.4, proba-
bility to duplicate equal to 0.6, unit distance equal to 2, using the file matches
considered to reproduce the MRSA gene network and nodes have a common
edge only if their Hamming distance is smaller/equal than 1.

The generated networks with 230 nodes have (average over 100 tests): 6.03 as
average degree, 3.85 as average path length, 0.47 as average clustering coefficient
and 0.26 as heterogeneity index. The variance of these networks is rather big:
only 3% have at most 10% dicsrepancy from the average results while only
24% have at most 20% discrepancy from the average results (see supplementary
material [11]). In general, we noticed that the probability to duplicate increases
the heterogeneity index of a network but also increases the variance of the
generated networks.

The degree distribution of the given network follows a power low with trend
γ = −1.06. The degree distribution of the networks generated by us also follow
a power law but (average over 100 tests) with trend γ = 0.72. It is remarkable
that the SN model is able to generate networks with a small number of nodes
having a power law as degree distribution.

The motif distribution of the generated networks having at most 20% dis-
crepancy from the average results is equal to the one of the give network. The
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clustering coefficient distribution of the given network has a trend γ = −0.52
while similar trend for the generated networks having at most 20% discrepancy
from the average results is γ = −0.47. The path length distribution of the given
network and of one of the generated networks having at most 20% discrepancy
from the average results is depicted in Fig. 3.
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Figure 3: Path length distribution of the given E. Coli PPI network and a
typical outcome of the SN model (SN).

5 Final remarks

In this section we give some thoughts about the SN model and we suggest
possible directions for research on this model.

It seems that the SN model shows that preferential attachment is not nec-
essary to generate networks having a power law degree distribution. Can it be
the preferential attachment is somehow ‘hidden’ in the SN model? We think
that preferential attachment is ‘hidden’ in the combination of structured nodes
and Hamming distance. Anyhow, it is surprising that these two simple concepts
(Hamming distance is rather simple when compared to the reasons behind the
interactions in gene and protein networks) can behave as preferential attachment
and, in some cases, (as for the average clustering coefficient being independent
from the network size or the high heterogeneity index) be better in reproducing
empirical networks.

The study on the SN model is still in its very early stages in order to allow
us to say something new about biological networks. We do not think that the
SN model can recreate all empirical networks or all features of some empirical
network, anyhow, it is interesting to note that this model can recreate a broad
range of topological features present in empirical networks of different nature.
Of course, the big number of input parameters (and their domain) of the SN
model allows to ‘tune’ some of the features of the generated networks more than
what possible with other network models.

As we said, we used a ‘trial-and-error’ approach in order to find the instances
of the SN model generating the networks considered by us. For some of these
networks we got pretty close results, for others less good results. We did not
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aim to have an exact match for the empirical networks considered by us, we
aimed to show the broad range of topological features that can be matched by
the SN model.

It is definitely interesting to study the classes of networks that can be gener-
ated by the SN model upon changes in its input parameters. Moreover, exten-
sions to the model will allow it to generate directed networks, to evolve networks
or to use the generated networks for other studies. For instance, one might need
to have networks with a specific motif distribution in order to study their dy-
namics.
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