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Lattice field theory is a useful tool for studying strongly interacting theories in condensed matter

physics. A prominent example is the unitary Fermi gas: a two-component system of fermions

interacting with divergent scattering length. With Monte Carlo methods this system can be studied

from first principles. In the presence of an imbalance (unequal number of particles in the two

components) a sign problem arises, which makes conventional algorithms inapplicable. We will

show how to apply reweighting techniques to generalise the recently developed worm algorithm

to the imbalanced case, and present results for the criticaltemperature, the energy per particle,

the chemical potential and the contact density for equal, aswell as unequal number of fermions

in the two spin components.
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1. Introduction

With the discovery of the renormalization group came the birth of both lattice gauge theory
and statistical field theory as we know them today. Nowhere isthis kinship more obvious than
in the study of critical phenomena. For example, the numerical studies of deconfinement in gauge
theories are identical in most respects to those of demagnetization in spin systems. Now a challenge
in both fields is to develop more efficient methods for systemswith strongly interacting fermions.
Then we could better understand the phases of gauge theorieswith matter and of superfluids and
superconductors.

Given that the common problem lies in dealing with fermionicdegrees of freedom, we are
motivated to consider the unitary Fermi gas, which is beautiful in its simplicity. This is a system of
2-component nonrelativistic fermions (typically ultracold 6Li or 40K atoms in experiments) inter-
acting via a short-range potential. The gas is so dilute thatonly s-wave scattering is relevant, thus it
is sufficient to treat the interaction as a local 4-fermion coupling. On a spatial lattice, the simplest
Hamiltonian is that of the attractive Hubbard model.

The lattice theory describing unitary Fermi gases avoids some of the complications of lattice
gauge theory. With nonrelativistic fermions there is no chiral symmetry, so there is no fermion
doubling problem. Without nonabelian gauge fields, there are no topological sectors to worry about
sampling with the correct distribution. This is an ideal system for concentrating on Monte Carlo
methods for fermions. In addition to both being strongly coupled theories, QCD and unitary Fermi
gas both exhibit spontaneous symmetry breaking at low temperatures, restored at some critical
temperature. Like finite density QCD, the fermion matrix of the unitary gas can have a nonpositive
determinant.

2. Setup

We start from the Fermi-Hubbard model, which in the grand canonical ensemble reads,

H = H0+H1 = ∑
k,σ

(εk −µσ )c
†
kσ ckσ +U ∑

x
c†

x↑cx↑c†
x↓cx↓, (2.1)

whereεk = 1
m ∑3

j=1(1− cosk j) is the discrete dispersion relation,µσ the chemical potential and
c†

kσ (ckσ ) the time-dependent fermionic creation (annihilation) operator. We usēh = kB = 2m = 1.
The indexσ ∈ {↑,↓} labels the fermionic species. The coupling constantU < 0 corresponding to
attractive interaction can be tuned so that the scattering length becomes infinite. The corresponding
value isU =−7.914. We work on a 3D periodic lattice withL3 sites. The continuum limit can be
taken by extrapolation to vanishing filling factorν = 〈∑σ c†

xσ cxσ 〉 → 0.
According to [1] the partition function for this model can bewritten as a series of products of

two matrix determinants built of free finite-temperature Green’s functions. Ifµ↑ = µ↓ (the balanced
case) these determinants are equal so that all terms in the series are positive and it can be used a
probability distribution for Monte Carlo sampling. The order parameter for the phase transition is
given by a two-point correlation function of the operatorcx↑cx↓. To obtainTc from the numerical
data, previous work [2, 3] used a procedure involving an approximation which introduced a sys-
tematic error. We have improved the data analysis method so that this approximation is no longer
necessary [4]. Our final result will be the dimensionless quantity Tc/εF , where the Fermi energy
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Figure 1: Schematic plot of the average sign near the critical point. The shaded area covers the range of
values the sign can take at different values of lattice size and chemical potential. The lower boundary of this
area is the “worst-case” curve of the sign, corresponding tolowest densities and largest lattice sizes used.

εF = (3π2ν)2/3 is the only energy scale of the system. The continuum limit istaken by obtaining
Tc/εF for different values ofν and extrapolating to vanishing filling factor [2, 5].

A detailed description of our numerical setup is given in [4]and [6]. We use the DDMC
algorithm as introduced in [2] with a few modifications whichincrease the efficiency by reducing
autocorrelation effects that are present in the original setup. Also we generalise the algorithm to
the spin-imbalanced case. Ifµ↑ 6= µ↓, a sign problem arises, since the distribution function is no
longer positive for all configurations. To deal with this problem we make use of the “sign quenched
method”, which is based on the “phase quenched method” knownfrom lattice QCD [7]. The idea
is to write the thermal distribution as a product of its modulus and its sign, and to use the positive
function given by the modulus as the new probability distribution. This implies a reweighting of
each MC estimator, in this case simply a multiplication withthe relative sign of the two matrix
determinants. Additionally, each expectation value must be divided by the expectation value of the
sign. If the latter is is close to zero, numerical errors willbe very large, as it happens in QCD.
However, for the unitary Fermi gas the sign remains very close to unity for small imbalances, as
shown in Fig. 1, so that sign quenching is applicable for imbalances up to approximately∆µ =

0.2εF . Our method can provide a useful tool to examine the trend of the critical temperature for
small deviations from the balanced limit.

3. Results

We obtained data at 25 different values(µ↑,µ↓), of which 8 were atµ↑ = µ↓. The lattice
sizes varied between 43 for the highest filling factor and 263 for the lowest, so that the volume
range in physical units was approximately constant. As discussed in [2] for the balanced case, the
dimensionless physical observables scale linearly withν1/3 for sufficiently smallν . With our data
this behaviour is seen forν1/3 / 0.75. This condition was fulfilled for 23 out of the 25 points and
in particular for 7 out of the 8 balanced points.

Since the chemical potential difference is less prone to numerical errors, we use∆µ/εF = |µ↑−

µ↓|/εF instead of the relative density difference∆ν/ν to quantify imbalance. For the values of
imbalance considered in our study these two quantities are proportional to each other, with∆ν/ν =

0.122(2)∆µ/εF , see [4]. Every physical observableX is a function of filling factorν and imbalance
h = ∆µ/εF . We fit our data to a three dimensional surface, where the following assumptions
are made for the form of the fitted function:
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• At fixed imbalance,X is a linear function ofν1/3 with slopeα(X)(h): X(ν ,h) = X(h) +
α(X)(h)ν1/3. This is a generalisation of the relation valid in the balanced case.

• X(h) andα(X)(h) viewed as functions of the imbalanceh can be Taylor expanded.

• Due to symmetry inh all odd powers in the expansions ofX(h) andα(X)(h) have to vanish.

If we expandX(h) andα(X)(h) to leading order inh the fitted function becomes

X(ν ,h) = X0+X2h2+(α(X)
0 +α(X)

2 h2)ν1/3. (3.1)

In the following we will present our fit results for several physical quantities. The results from
sections 3.1, 3.2 and 3.3 were presented in more detail in [4].

3.1 Critical Temperature

Fitting a line through the points withµ↑ = µ↓ results inTc/εF = 0.173(6)−0.16(1)ν1/3 with
χ2/d.o.f = 0.39, as shown in Fig. 2. For comparison we also fit a quadratic through all 8 data
points, resulting in a continuum value ofTc/εF = 0.188(15), which is in excellent agreement with
the linear extrapolation. This confirms that sub-leading corrections proportional toν2/3 can indeed
be neglected for sufficiently smallν .

Now we also include data withµ↑ 6= µ↓. The best fit according to (3.1) yieldsT0 = 0.171(5),

α(T )
0 = −0.154(9), T2 = 0.4± 0.9 andα(T )

2 = −0.7± 1.9 in units of εF , with χ2/d.o.f.= 0.43.
Note that theT2 value corresponding to the minimalχ2 is positive, which is forbidden by physical
arguments – the critical temperature can only decrease withincreasing imbalance. Since theχ2

function is very flat along theT2 direction, forcingT2 = 0 results inχ2/d.o.f.= 0.44. From the
error onT2 we derive the lower boundT2 > −0.5. The best fit values forT0 and α(T )

0 are in
excellent agreement with the ones obtained from the fit of thebalanced data only.

By simplifying the fit model settingα(T )
2 = 0, the lower bound onT2 can be tightened to

T2 > −0.04. The other parametersT0 andα(T )
0 agree with the results from the previous fit. This

fit hasχ2/d.o.f.= 0.41 and is still consistent withT2 = 0. For this reason we also perform a fit to
constantTc(h) andα(T )(h), and obtainTc(ν ,h) = 0.1720(45)−0.156(8)ν1/3 with χ2/d.o.f.= 0.41.
Again the result agrees with the previous fits. We also performed fits using the jackknife method
and several robust fits and obtained consistent results. A three dimensional plot of the data together
with the constant surface fit is presented in Fig. 4 (left).

3.2 Energy per particle

The total energy is composed of the kinetic energyEkin = −
〈

∑x,σ c†
xσ ∇2cxσ

〉

and the inter-

action energyEint = 〈H1〉. For the explicit MC estimators see [4]. Our results are obtained atTc,
but the temperature dependence of the energy per particle was found to be weak. Using only bal-
anced data we obtain the continuum valueE/NεF = 0.276(14), or E/EFG = 0.46(2), in units of
the ground state energy of the free gasEFG = (3/5)NεF . The goodness of fit isχ2/d.o.f. = 2.1.
Since with increasing imbalance interactions become suppressed, the absolute value of the interac-
tion energy must decrease. This in turn means an increase of the total energy, since the interaction
energy is negative. As we did for the critical temperature wefit the energy in units ofEFG to the
function (3.1) and obtain the best fit parametersE0 = 0.440(15), α(E)

0 =−0.17(3), E2 = 3.4±2.2

and α(E)
2 = −3.1± 4.5, with χ2/d.o.f.= 2.8. These results are consistent with the balanced fit.
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Figure 2: Tc versusν1/3 for different values of
the chemical potential atµ↑ = µ↓. The solid line
is the linear extrapolation of the 7 data points with
ν1/3 / 0.75 (filled circles). The dashed line cor-
responds to a quadratic fit through all data points.
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Figure 3: Projection of the data for the average
chemical potential onto the(ν1/3-µ) plane. Red
circles denote the balanced data and blue triangles
data at non-zero imbalance. The solid line is the
constant fit; dashed lines indicate uncertainty.

Figure 4: Tc/εF with the constant fit (left) andE/EFG with the quadratic fit (right) versusν1/3 and∆µ/εF .

Forcing α(E)
2 = 0 yields a best fit result ofE(ν ,h) = 0.444(13) + 1.9(3)h2 − 0.18(2)ν1/3 with

χ2/d.o.f.= 2.7, which agrees with the previous result. For a plot of the data see Fig. 4 (right).

3.3 Chemical potential

For the chemical potential atTc we obtain the continuum valueµ/εF = 0.429(9) with χ2/d.o.f.
= 2.8 using only balanced data. A similar analysis can be performed for the average chemical
potentialµ/εF = |µ↑+ µ↓|/2εF in presence of an imbalance. Since this quantity is not expected
to depend on the imbalance we fit our data to a constant function and obtainµ(ν ,h) = 0.429(7)−
0.27(1)ν1/3 in units ofεF with χ2/d.o.f.= 1.1. This is in very good agreement with our balanced
result. A plot of the data and the fit are shown in Fig. 3.

3.4 Contact density

Another important quantity is the contact density, which can be interpreted as a measure of the
local pair density [8]. The contact plays an important role for several universal relations derived by
Tan [9]. The definition of the contact isC = m2g0Eint, whereg0 is the physical coupling constant
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Figure 5: Left: The contact density versusν1/3 for balanced data together with the linear fit. Right: The
contact density versus filling factor and imbalance. The surface corresponds to the quadratic fit.

[8, 10], and it is related to the contact densityC via C =
∫

C (r)d3r, or for homogeneous systems
simplyC = CV . The dimensionless quantityC /ε2

F can be expressed as

C /ε2
F = (UEint)/(4L3ε2

F). (3.2)

Using only balanced data the best fit isC /ε2
F = 0.1102(11)−0.033(2)ν1/3 with χ2/d.o.f.= 1.8.

In the presence of an imbalance we expect the interaction energy and hence the contact density to
decrease. A three dimensional fit of the data to (3.1) yieldsC0 = 0.1101(9), α(C)

0 = −0.033(2),

C2 = −0.15(16) and α(C)
2 = −0.29(36), with χ2/d.o.f.= 1.5. This is consistent with the bal-

anced fit. The parameterC2 is negative as required. Forcingα(C)
2 = 0 yieldsC0 = 0.1099(8),

α(C)
0 =−0.0322(15) andC2 =−0.01(2), with χ2/d.o.f.= 1.5. Fitting to a constant function yields

C (ν ,h) = 0.1097(8)−0.0320(14)ν1/3 with χ2/d.o.f.= 1.4. Figure 5 summarises our results.

3.5 Comparison with the literature

Our final result forTc using both balanced and imbalanced data,Tc/εF = 0.171(5), is signif-
icantly higher than the previous result from [2], whereTc/εF = 0.152(7). In [11] the result of [2]
was found to agree with a continuous space-time DDMC method.The authors of [3] found an
upper bound ofTc/εF / 0.15(1). They used an auxiliary field Monte Carlo approach and extracted
Tc using the same approximation as [2] and [11], which might explain the discrepancy between
our results. Through extrapolating Monte Carlo results of low-density neutron matter, the authors
of [12] found Tc/εF = 0.189(12), which agrees with our result. There are also results obtained
with the Restricted Path Integral Monte Carlo method [13],Tc/εF ≈ 0.245, and an upper bound of
Tc/εF < 0.14 obtained with a hybrid Monte Carlo method [14]. Results from anε-expansion are
also available [15]. For comparison, the critical temperature in the BEC limit isTBEC = 0.218εF .

Our result for the energy per particleE/EFG = 0.440(15) shows excellent agreement with the
valueE/EFG = 0.45(1) at Tc quoted in [3]. The value quoted in [2] isE/NεF = 0.31(1), which
roughly corresponds toE/EFG = 0.52(2). Our result for the chemical potentialµ/εF = 0.429(7)
differs from µ/εF = 0.493(14) quoted in [2], but is consistent with the valueµ/εF = 0.43(1)
quoted in [3]. Some theoretical predictions for the contactdensity are also available, but to our
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knowledge only at temperatures much lower thanTc (see [8] and references therein).
There are several recent experimental studies of the homogeneous unitary Fermi gas. The di-

rect measurement presented in [16] isTc/εF = 0.157(15), which agrees well with our result, and
µ/εF = 0.49(2) at Tc, which differs from our value. The values from [17],Tc/εF = 0.17(1) and
µ/εF = 0.43(1) at Tc, show excellent agreement with our results. Their result for the energy per
particle E/NεF = 0.34(2) at Tc is higher than our value. In another experimental work [18] an
estimate forTc at zero imbalance is extrapolated from data at higher valuesof imbalance. An ex-
perimental value for the contact density of the homogeneousunitary Fermi gas at zero temperature,
C /ε2

F = 0.1184(64), is presented in [19].

4. Outlook and Acknowledgements

We have presented a Monte Carlo calculation of several thermodynamic observables of the
unitary Fermi gas with equal and unequal chemical potentials in the two spin components. The
improved DDMC algorithm with sign quenching also offers theintriguing possibility to explore
the case of unequal masses of the two species. Ifm↑ 6= m↓ the dispersion relations are different for
the two components and the mass ratio enters as a new parameter. As in the spin-imbalanced case
the two matrix determinants no longer need to be identical, so that sign quenching is required. The
mass ratio is expected to influence the behaviour of the system significantly, so that exploring the
phase diagram promises many new interesting insights.

This work used resources provided by the Cambridge High Performance Computing Facility.
OG is supported by the German Academic Exchange Service (DAAD), the EPSRC and the CET.
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