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Bound state of a hole and a triplet spin in the t1-t2-J1-J2 model
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We show that a hole and a triplet spin form a bound state in a nearly half-filled band of the one-
and two-dimensional t1-t2-J1-J2 models. Numerical calculation indicates that the bound state is a
spatially small object and moves as a composite particle with spin 1 and charge +e in the spin-
gapped background. Two bound states repulsively interact with each other in a short distance and
move independently as long as they keep their distance. If a finite density of bound states behave
as bosons, the system undergoes the Bose-Einstein condensation which means a superconductivity
with charge +e.

PACS numbers: PACS: 74.20.-z 74.20.Mn 73.90.+f

I. INTRODUCTION

To find an exotic mechanism of superconductivity is a
fascinating and difficult challenge. A category of possible
mechanisms is based on the hole motion in strongly corre-
lated electrons with a nearly half-filled electron band.[1–
6] Then the mechanism of superconductivity is the Bose-
Einstein condensation (BEC) of the holes. Although
the mechanism was originally considered for explaining
cuprate superconductors, it may be appropriate for ma-
terials to be found in future. The hole is also closely
related with metal-insulator transition and magnetism,
since background electron system is affected by the hole
motion. In spite of the importance, we have not ar-
rived at a consensus on the precise role of the hole mo-
tion in superconductivity. This is because the motion of
the strongly-correlated background electrons surround-
ing and forming the holes is a difficult quantum many-
body problem. To overcome the difficulty and achieve a
solid understanding of the hole motion, exhaustive stud-
ies by numerical methods for finite-size systems are de-
sirable.

In previous works,[5–8] we studied the hole motion
for several strongly correlated electron systems in one-
dimensional (1D) and two-dimensional (2D) systems by
the numerical diagonalization. These systems include tri-
angle units of three sites. We illustrate a typical trian-
gle unit in Fig. 1(a). The triangle unit is described by
the Hamiltonian consisting of three hopping terms with
transfer integrals ta, tb, and tc under the restriction rep-
resenting the infinite on-site repulsions. The ground state
of this triangle unit is a singlet state for tatbtc > 0, and
is a triplet state for tatbtc < 0. This is a consequence of
the nonbipartite lattice structure connected by the three
hopping terms. We call this the triangle effect. Based
on the triangle effect, we particularly examined the 1D
t1-t2-J1-J2 model, i. e. the t-J model in a zigzag chain,
as shown in Fig. 1(b), when the number of electrons is
less than that of lattice sites by just one.[7] We obtained
the ground-state phase diagram in the space of parame-

ters t2 and J1 in the case of J2 = (t2/t1)
2J1. Then, we

found a fairly large phase with total spin 1 in the region
of t2 < 0 and J1 > 0 of the phase diagram.

By inspecting the numerically obtained ground-state
wavefunction, we found the picture that the hole and a
short triplet spin pair form a bound state to move in a
singlet electronic background, as illustrated in Fig. 1(b).
The triplet spin pair in the hole-spin bound state is from
the spin degrees of freedom of the background electrons.
In contrast, the charge degrees of freedom of the elec-
trons are dead due to the infinite on-site repulsion except
for the collective charge +e of the hole. As the hole is
transferred, the triplet spin pair changes into a singlet

ta

tc

tb

(a)

t1  J1

t2,  J2

(b)

FIG. 1: (a) Illustration for the triangle effect. The figure
represents a typical triangle unit in nonbipartite lattices. The
transfer integrals are ta, tb, and tc and infinite on-site repul-
sions are considered. An open circle is a site occupied by an
electron and an arrow is the image of the spin. The site filled
by gray is not occupied by an electron, meaning a hole. See
text. (b) 1D t1-t2-J1-J2 model with a nearly half-filled band
for t2 < 0 and J1 > 0. A typical snapshot configuration of a
hole and a triplet spin pair in a bound state is indicated by
the bold dashed loop.
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spin pair and another singlet spin pair close to the hole
changes into a triplet spin pair. By treating the hole-spin
bound state as a free composite particle, we numerically
obtained the dispersion relation approximately propor-
tional to k2 (k: the wave number) for long wavelengths.
The effective transfer integral is then estimated as about
0.24|t1|.[7] If a finite density of hole-spin bound states
are stable and bosonic in more than one dimension, we
expect that the BEC takes place at sufficiently low tem-
peratures. Then the BEC is considered to be an exotic
superconductivity with charge +e.
In this paper, we investigate the hole motion and its

influence to the surrounding electron spins in the 1D and
2D t1-t2-J1-J2 models by the numerical diagonalization
method. We confirm that a hole and a triplet spin pair
form a bound state in the ground-state phase with total
spin S = 1. In the 1D case, we reexamine the existence of
the hole-spin bound state in detail. Further, we examine
the two hole case by calculating low excitation energies
and the density-density correlation function, and show
that two hole-spin bound states exist stably and interact
repulsively with each other. In the 2D case, we argue
the existence of a similar hole-spin bound state by the
numerical diagonalization method for small-size systems.
We thus have a basis to argue the BEC of hole-spin bound
states, i.e. a superconductivity.
This paper is organized as follows. In Sec. II, we

present and explain the Hamiltonian of the t1-t2-J1-J2
model. In Sec. III, we confirm the stability of the hole-
spin bound state in the 1D case by using the numerical
diagonalization method. In Sec. IV, the 2D and quasi-1D
cases are examined and the hole-spin bound state similar
to that of the 1D case is argued. Section V is devoted to
summary and discussion.

II. HAMILTONIAN

We consider the 1D and 2D t1-t2-J1-J2 models. They
are commonly represented by the Hamiltonian:

H =− t1
∑

〈ij〉

∑

σ

(c†i,σcj,σ + h.c.)

− t2
∑

〈〈i′j′〉〉

∑

σ

(c†i′,σcj′,σ + h.c.)

+ J1
∑

〈ij〉

(

Si · Sj −
1

4
ninj

)

+ J2
∑

〈〈i′j′〉〉

(

Si′ · Sj′ −
1

4
ni′nj′

)

, (1)

where c†i,σ is the creation operator of an electron with spin

σ at site i, Si =
∑

σσ′ c
†
i,σ(τ)σσ′ci,σ′ with Pauli matrices

τ , and ni,σ = c†i,σci,σ. The summations with 〈ij〉 and

〈〈i′j′〉〉 are taken over nearest neighbor (NN) and next
nearest neighbor (NNN) pairs of sites, respectively. We

take account of the infinite on-site repulsion by removing
states with doubly occupied sites from the Hilbert space.
The hopping energies between NN sites and between

NNN sites are denoted by t1 and t2, respectively, and
the corresponding exchange energies are denoted by J1
and J2, respectively. For our numerical examination to
be of realistic amount, we need to reduce the number of
parameters. We concentrate on the case of

J2 =

(

t2
t1

)2

J1 (2)

through this paper. This condition preserves the approx-
imate equivalence between our model and the Hubbard
model, as long as J1 and J2 are not very large in com-
parison with t1. In Eq. (1), the sign of t1 has no physical
effect, while the system is sensitive to that of t2. In what
follows we set as t1 = 1 without spoiling generality.
We denote the total number of sites as N , and the

number of holes in the half-filled band as Nh. Then the
hole density is given by nh = Nh/N . We also denote the
magnitude of the total spin as S. We numerically diago-
nalize the Hamiltonian (1) by using the standard Lanczos
algorithm to calculate energies and correlation functions.
The system size N which we consider is maximally 23 for
1D system and 16 for 2D system.

III. ONE-DIMENSIONAL CASE

The 1D t1-t2-J1-J2 model describes the spin chain
shown in Fig. 1(b). We have examined this model by nu-
merically diagonalizing the Hamiltonian (1) up toN = 13
with the free boundary condition.[7] Then we have ob-
tained the ground-state phase diagrams of the one-hole
case (Nh = 1). Each phase diagram has a relatively
large phase of S = 1 penetrating into an extended sin-
glet phase. By inspecting the S = 1 ground state, we
have proposed that the hole and a triplet spin pair form
the bound state in the ground state, as illustrated in
Fig. 1(b).
To ensure the existence of the S = 1 phase, we examine

the case of N = 15 by using both the free and periodic
boundary conditions. The resultant phase diagrams by
the numerical diagonalization are shown in Figs. 2(a) and
(b), respectively. We observe that the shape and size of
the S = 1 region for N = 15 in Fig. 2(a) are almost
the same as those for N = 13.[7] Also the comparison of
Fig. 2(a) to Fig. 2(b) shows that the region of S = 1 is
almost irrespective of the boundary conditions. Since the
finite size effect is small, the S = 1 phase including the
bound state of the hole and the triplet spin is expected
to survive in the thermodynamic limit.
The stability of the hole-spin bound state in the S = 1

phase is reflected in typical excitation energies. We cal-
culate the lowest excitation energies ∆0 and ∆2 to the
S = 0 and S = 2 states, respectively, by the numeri-
cal diagonalization. We employ both the periodic and
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FIG. 2: Ground-state phase diagram for the one hole case in
the 1D t1-t2-J1-J2 model with (a) the free boundary condition
and (b) the periodic boundary condition.

antiperiodic boundary conditions to reduce finite size ef-
fects. Figure 3 shows the calculated ∆0 and ∆2 as func-
tions of N . By extrapolating the values for the finite
systems, we have ∆0 ≃ 0.052 and ∆2 ≃ 0.024 in the ther-
modynamic limit. We explain these excitations by using
the schematic energy-level diagram for systems with and
without hole in Fig. 4; the system without hole is a pure
spin model, i. e. the J1-J2 model. (i) The excitation en-
ergy ∆2 is interpreted as the spin gap of spins except for
the localized hole-spin bound state, and corresponds to

0 0.05
0

0.1

0.2

∆

1/N

t2=−0.65,  J1=0.5

Nh=1

∆2

∆0

anti−periodic
periodic

S=2

S=0

J2=J1t2
2

FIG. 3: Size dependence of the excitation energies from the
ground state with S = 1 to the lowest states with S = 0 and
S = 2 for N = 11, 13, 15, 17, 19, 21, and 23. The open circle
and solid circle stand results of the periodic boundary condi-
tion and the antiperiodic boundary condition, respectively.

S=0

S=1

S=2

S=1 bound state

without a hole with a hole

∆∆∆∆2222

∆∆∆∆0000

∆∆∆∆s

∆∆∆∆s hole
doping

ground state

FIG. 4: Schematic diagram of energy levels of systems with
and without a hole.

the spin gap ∆s of the pure spin system. The energy cor-
respondences are shown as two dotted arrows connecting
the S = 1 levels and connecting the S = 2 levels in Fig. 4.
If the bound state with S = 1 is sufficiently localized, the
spin excitation with S = 1 in the background is almost
independent of the hole motion. In fact, the present value
∆2 ≃ 0.024 is consistently close to the spin gap ∆s ∼ 0.03
of the J1-J2 model at J2/J1 = 0.652 ≃ 0.42[9]. (ii) The
finite gap ∆0 means the stability of the hole-spin bound
state, where the value ∆0 + ∆s corresponds to the for-
mation energy of the hole-spin bound state as shown in
Fig. 4. If the hole-spin bound state vanishes, it resolves
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FIG. 5: Correlation function Chs(r) for N = 15, 17, 19, 21,
and 23 systems. Inset shows the semi-log plot of Chs(r).

into an isolated hole and a triplet spin pair, and then a
triplet pair changes to a singlet pair to be absorbed into
the background electrons.
To see the relative distance between the hole and the

triplet spin in the hole-spin bound state, we introduce
the hole-spin correlation function:

Chs(r) = 〈nh(i) s(i+ r) 〉, (3)

where nh(i) ≡ 1 − ni,↑ − ni,↓ and s(i) ≡ 1

2
(ni,↑ − ni,↓)

are, respectively, the hole number and the z-component
of the spin at site i. Chs(r) characterizes the distance of
the spin density measured from the position of the hole.
By the numerical diagonalization, we obtained Chs(r) for
the cases of N = 15, 17, 19, 21, and 23 in the subspace
of total spin Sz = 1. We only display the result for
the antiperiodic boundary condition in Fig. 5, since the
result for the periodic boundary condition is almost the
same. As is seen, the finite size effect for Chs(r) is very
small. We also show the semi-log plot of Chs(r) against
the distance r in the inset. By the fitting, we find that
Chs(r) decays with an exponential factor exp(−r/3) and
the spin density is concentrated near the hole. Thus the
hole-spin bound state behaves as a compact composite
particle.
Next, we examine the two-hole case (Nh = 2) by the

numerical diagonalization. In Fig. 6, we show the phase
diagram for the system of N = 18 and Nh = 2. There is a
phase of S = 2 including a point of (J1, t2) = (0.3,−0.5).
This S = 2 phase is smaller than the S = 1 phase of the
one-hole case. However, the energies of the lowest S = 1
and S = 2 states are nearly degenerate in the S = 1 and
S = 2 phases which share a common boundary. Hence,
it is possible that the S = 2 phase is large comparable to

0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

S=8

N=18, Nh=2

S=0

S=1
S=2

S=0

5 4 3

4

1

3

6
0

2

J1

t 2

1D,

FIG. 6: Ground-state phase diagram for the two hole case
in the 1D t1-t2-J1-J2 model with the antiperiodic boundary
condition.

that of S = 1 for the one-hole case in the thermodynamic
limit.
If two hole-spin bound states are formed in the S = 2

phase, the interaction between them comes from spin
fluctuations since charge fluctuations are suppressed in
the unmoved background electrons. Spin fluctuations
may propagate as spin waves to induce the interaction
between the hole-spin bound states. The formation of
the spin gap suppresses spin waves with long wavelengths
and confines the interaction in short range. To estimate
the interaction range, we calculate the density-density
correlation function Chh(r) between two holes:

Chh(r) = 〈nh(i)nh(i + r) 〉. (4)

Figure 7(a) shows Chh(r) for N = 22 and Nh = 2 at
(J1, t2) = (0.3,−0.60), and also at (J1, t2) = (0.0,−0.60)
as a reference. We see that the two holes in the state
of (J1, t2) = (0.3,−0.60) avoid each other for short dis-
tances (r < 7) more than those in the reference state. In
other words, the interaction is more repulsive than that
of the reference state. In the reference state, holes behave
as noninteracting fermions, since the ground state is the
fully polarized ferromagnetic state (S = 10) and the ex-
change interactions are completely zero (J1 = J2 = 0.0).
Thus, the hole motion at (J1, t2) = (0.3,−0.60) is really
repulsive.
To examine the shape of the hole-spin bound state in

the above system, we examine normalized spin density
function defined by

R(r, j) =
〈nh(i)nh(i + j)s(i+ r) 〉

〈nh(i)nh(i+ j) 〉 . (5)
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This represents the spin-density profiles of the two hole-
spin bound states in the subspace of Sz = 2, when one
hole is at the site i and the other is i+j. We show R(r, 7)
and R(r, 11) for N = 22, respectively, in the upper and
lower panels of Fig. 7(b). In the upper panel where two
holes are close, the spin density around a hole decreases
in the side closer to the other hole. The result suggests
that the two hole-spin bound states avoid each other.
The above results show that the two hole-spin bound

states are stable and move almost independently by

0 5 10
0

0.005

0.01

C
hh

(r
)

r

N=22, Nh=2

t2=−0.6,J1=0.3

t2=−0.6,J1=0.0

(S=10)

(S=2)

(a)

0

0

0.25

0.25

0 7

0 11

R
(r

,j)

N=22 t2=−0.6
J1=0.3

r

j=7

j=11

Nh=2

r

(b)

FIG. 7: (a) Density-density correlation function Chh(r) be-
tween two holes for N = 22 system with the antiperiodic
boundary condition. (b) Spin-density function R(r, j) for the
same system. j is the distance between the two holes.

avoiding each other with a repulsive interaction for N =
22. For the case of Nh ≥ 3, Sano and Ono have car-
ried out the numerical diagonalization.[10] They found
a partial ferromagnetic phase where the magnetization
becomes weak when nh closes to the unity. We inter-
pret that the ferromagnetism is from incompletely formed
hole-spin bound states due to the small system sizes. We
have not carried out calculations for systems with a finite
density of hole-spin bound states due to the limitation of
the numerical diagonalization method. We expect that
independent hole-spin bound states are formed even for
large systems including a finite density of holes.
Nishimoto et al. studied the zigzag Hubbard chain

with strong on-site repulsion by the DMRG method[11].
They found an anomalous ground state with strong fer-
romagnetic fluctuation near the half filling at t2 ∼ −1.0.
We suppose that the ground state of the t1-t2-J1-J2
model including a finite density of hole-spin bound states
near the half-filling continues to the ground state of the
Hubbard model.

IV. TWO-DIMENSIONAL CASE

The 2D version of the t1-t2-J1-J2 model is shown in
Fig. 8. The hole-spin bound state consisting of a hole
and a triplet spin pair similar to that for the 1D system
is illustrated in this figure. We examine the 3× 3, 3× 5,
and 4× 4 lattice systems with both the free and periodic
boundary conditions by the numerical diagonalization.
For these systems, we obtained the ground-state phase
diagrams in the J1-t2 plane as shown in Figs. 9, 10, and
11. In what follows, we analyze the existence of the hole-

t1,J1

t2 J2

FIG. 8: 2D t1-t2-J1-J2 model with a nearly half-filled band
for t2 < 0 and J1 > 0. Each open circle represents a site
occupied by an electron, and the gray circle does a hole. We
indicate a typical configuration of a hole-spin bound state
consisting of the hole and a triplet spin pair by the loop of
the bold dashed line, where the up-arrows mean electronic
up-spins.
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FIG. 9: Ground-state phase diagram for 3× 3 lattice system
in the 2D t1-t2-J1-J2 model with (a) the free boundary con-
dition and (b) the periodic boundary condition. The phase
boundary between the S = 0 phases are specially shown by
dotted lines with open circles as calculated points; see text.

spin bound state based on the phase diagrams.

The case of the one hole and even number of electrons
is realized in the 3 × 3 and 3 × 5 lattice systems. The
phase diagrams of the systems with the free boundary
condition are shown in Figs. 9(a) and 10(a). At a glance,
large S = 1 phases are seen around (J1, t2) = (0.3,−0.6)

0 0.2 0.4

−1

−0.5

0

S=0

S=1S=2S=3S=7

5

t 2

J1

S=1

S=0

N=15, Nh=1

(a)

Free BC

2D,

0 0.2 0.4

0

S=0

S=1

2

3

S=7

t 2

J 1

S=0

N=15, N  h  =1

4

5

Periodic BC

−0.5

−1

(b)

2D,

FIG. 10: Ground-state phase diagram for the 3×5 lattice sys-
tem with (a) the free boundary condition and (b) the periodic
boundary condition. Inset of (b): The lattice structure under
the periodic boundary condition. The lines representing t2
and J2 are abbreviated.

in both the phase diagrams. The profiles of the phases are
similar to that of the S = 1 phase in Fig. 2(a) for the 1D
t1-t2-J1-J2 model. Hence we expect that the S = 1 phase
includes the hole-spin bound state. Another S = 1 phase
for J1 & 0.3 and t2 . −1.0 in Fig. 10(a) is considered to
be a finite size effect of the 3× 5 lattice system.
The bound-state phase is also seen for the periodic

boundary condition. The phase diagram of the 3× 3 lat-
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tice system for t1 < 0 with the periodic boundary condi-
tion is shown in Fig. 9(b). The S = 1 phase exists with
an area larger than that for the free boundary condition.
We consider that the different size is due to extra frus-
tration from the periodic boundary condition. The phase
diagrams of the 3 × 5 lattice system for t1 < 0 with the
periodic boundary condition is shown in Fig. 10(b). Be-
cause of the periodicity, the lattice structure is of a tube
where triangle units are stacked as shown in the inset of
Fig. 10(b). We know that a hole motion in a triangle
attract spin 1 so that the ground state with S = 1 may
be preferable even for t2 ∼ 0. It is also known that a spin
tube without hole has a ground state with spin gap even
for J2 = 0.[12, 13] These effects make the problem com-
plicated near a regime around t2 = 0, but does not deny
the existence of the hole-spin bound state in a regime of
the S = 1 phase with intermediate value of t2. Anyway,
the different shape of the S = 1 phase of the 3 × 5 lat-
tice system from that of the 3 × 3 lattice system means
that the effect of the periodic boundary effect is too large
to infer the profile in the limit of large system size. In
contrast, the phase shapes of the S = 1 phases with the
free boundary condition are similar to each other and
encourage to consider the large system size limit.

Here we consider the hole motion by beginning from
the large J1 limit; this also means the large J2 limit ow-
ing to Eq. (2). In this limit, the hole does not move and
hence the system reduces to a frustrated spin system,
i. e. the J1-J2 model, with a static defect at the hole
site. The ground state of the J1-J2 model is a Neel state
for J2/J1 . 0.4 and a collinear state for J2/J1 & 0.6.
For J2/J1 ∼ 0.5, it is a plausible argument that there is
a disordered phase with a spin-gapped ground state.[14–
16] Now we reduce J1 to be finite. Then the hole moves
by the transfer terms with t1 and t2, and interacts with
surrounding electrons. Since the hole motion is consid-
ered to destroy the Neel and collinear spin orders, the
spin-gap phase becomes more stable. Hence the spin-gap
phase becomes wider than that in the J1-J2 spin sys-
tem; or else another spin-gap phase may newly appear
owing to the hole motion. The hole-spin bound state
can survive in such a background spin system with spin-
gap. Unfortunately, the 3 × 3 and 3 × 5 systems in the
present calculation are too small to directly detect the
spin gap. However, the S = 1 phase in the small systems
is expected to survive even in the large system-size limit,
by considering the above physical explanation of the de-
struction of the Neel and collinear orders by the hole
motion. Further, in the 1D system, we have shown more
plausibly the existence of the hole-spin bound state by
the numerical diagonalization with relatively large sys-
tem size. This suggests the existence of the hole-spin
bound state in the 2D system which is in the same phys-
ical situation as that for the 1D system; i. e. the triangle
effect (Fig. 1(a)) commonly works in the gapped singlet
backgrounds.

For large J1, we see phase boundaries between two
S = 0 phases in Figs. 9(a), 10(a), and 10(b); in each

figure, the phase boundary is drawn by a dotted line
and calculated points are indicated by open circles. The
level crossing is the change between the Neel ground state
for small J2/J1 and the collinear ground state for large
J2/J1.[14, 17] The phase boundary is terminated by the
S = 1 phase, which has a sharp corner at the terminal
point. We see a single S = 0 phase and do not find any
level crossing in it for the 3×3 lattice system with the pe-
riodic boundary, as shown in the Fig. 9(b). We attribute
the continuity between the Neel and collinear states to
smallness of the system size, where both the states are
mixed by the periodic boundaries toward both the x- and
y-directions.
We examine the relation between the hole-spin bound

state and a spin excited independently from the hole-
spin bound state. For this purpose, we calculated the
ground-state phase diagram for the 4 × 4 lattice system
in the one-hole case (Nh = 1). The phase diagrams for
the free and periodic boundary conditions are shown in
Figs. 11(a) and (b). We find a S = 3

2
phase in each figure.

Since the number of electrons is odd, at least a spin 1

2
is

left unpaired. The profile of the S = 3

2
phase is similar

to that of the S = 1 phase of the 3×3 and 3×5 systems.
This suggests that the S = 3

2
ground state includes an

independently moving 1

2
spin as well as a hole-spin bound

state.
To examine the location of the unpaired 1

2
spin relative

to the hole, we calculate the 2D version of the hole-spin
correlation function

C2D

hs
(j) = 〈nh(0, 0) s(ix, iy) 〉, (6)

where nh(0, 0) and s(ix, iy) are the hole number at site (0,
0) and the z-component of the spin at site (ix, iy), respec-
tively, and j represents the order of the closeness between
the sites (0, 0) and (ix, iy). We calculated C2D

hs
(j) for

the 4× 4 lattice system by the numerical diagonalization
with the periodic boundary condition. The results for
(J1, t2) = (0.4,−0.6) in the S = 3

2
phase and for (J1, t2)

= (0.4,−0.4) in the upper S = 1

2
phase are shown in

Fig. 12.
We indicate the values of j for the 4 × 4 lattice in

the inset: as the distance from the origin is given by
r = (i2x + i2y)

1/2, j = 1, 2, 3, 4, and 5 correspond to r

= 1,
√
2, 2,

√
5, and 2

√
2, respectively. For (J1, t2) =

(0.4,−0.6), C2D

hs
(j) is large for j = 1 and the spin den-

sity is concentrated at the four sites neighboring to the
hole site. Actually, we have 4×C2D

hs
(1) = 1.052 which is

close to spin 1, meaning that a triplet spin pair is formed
in four sites neighboring to the hole. For j = 2 and 3,
the values of the correlation function is fairly small, sug-
gesting that the C2D

hs
(j) rapidly decreases with j. This

result is clearly understood if the hole and a triplet spin
pair form a rigid bound state. We also see a small con-
centration at the sites with j = 4. This suggests that the
unpaired spin is repulsive to the hole-spin bound state.
In contrast, for (J1, t2) = (0.4,−0.4) in the upper S = 1

2

phase, C2D

hs
(j) is relatively uniform and the spin spreads
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J1

S=1/2

N=16,  Nh=1
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Periodic BC

9/2

11/2

13/2
7/2

2D,

FIG. 11: Ground-state phase diagram for the 4×4 lattice sys-
tem with (a) the free boundary condition and (b) the periodic
boundary condition.

over all area. This result reasonably means that the hole
does not attract spin in the upper S = 1

2
phase. Compar-

ing the correlation functions for (J1, t2) = (0.4,−0.6) and
(0.4,−0.4), we argue that the rigid hole-spin bound state
of the hole and a triplet spin pair coexists with unpaired
spin- 1

2
in the S = 3

2
phase.

Finally, we briefly examine a quasi-1D system, the
zigzag chain with interchain couplings. The lattice struc-
ture is shown in the inset of Fig. 13(a), where t3 and

0

0.1

0.2

0.3

t2=−0.6

J =0.4

t2=−0.4

j

C
h
s
(j
)

J =0.4

N=16
Nh=1

2
D 0 1 3 1

1 2 4 2

3 4 5 4

1 2 4 2

1

1

(S=3/2)

(S=1/2)

0 1 2 3 4 5

FIG. 12: Correlation function C2D

hs (j) = 〈nh(0, 0) s(ix, iy) 〉
between the hole and a spin for the 4× 4 lattice system with
the periodic boundary condition. Inset: The 4 × 4 lattice
system. The number attached to each site represents the value
of j which is assigned to the distance between the hole at (0,
0) (the gray circle) and the spin at (ix, iy) (an open circle);
see text.

J3 are the hopping and exchange energies, respectively,
between zigzag chains. We calculated the ground-state
phase diagrams for the free and periodic boundary con-
ditions. The results are shown in Figs. 13(a) and (b). We
have chosen the interchain couplings as t3 = J3 = 0.05,
which is much smaller than t1 = 1, the energy of a typ-
ical intrachain coupling. We see a S = 1 phase around
(J1, t2) = (0.6,−0.6). The phase particularly for the
free boundary condition is of a shape similar to those
for the pure 1D and 2D cases, and also survives for the
periodic boundary condition. The result shows that the
hole-spin bound state is stable for the interchain cou-
plings. Experimentally, it extends the possibility of syn-
thesizing materials which include the present hole-spin
bound state. We notice that there is no fully polarized
ferromagnetic phase in the phase diagrams. The effect
of Nagaoka ferromagnetism[18, 19] produced by one hole
motion cannot overcome the effect of the antiferromag-
netic interaction with small J3 which is finitely fixed in
the thermodynamic limit.

V. SUMMARY AND DISCUSSION

In summary, we investigated the bound state of a hole
and a triplet spin in the 1D and 2D t1-t2-J1-J2 models
by the numerical diagonalization method. In the one-
hole case, we confirmed that a large phase with total spin
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FIG. 13: Ground-state phase diagram of the quasi-1D zigzag
system for t3 = J3 = 0.05 (inter chain) with (a) the free
boundary condition and (b)the periodic boundary condition.
The lattice structure is shown in the inset of (a).

S = 1 exists in the J1-t2 phase diagram for several system
sizes under the free and periodic boundary conditions.
The existence of the large S = 1 phase indicates the
existence and stability of the hole-spin bound state. We
examined features of the hole-spin bound state by the

hole-spin and density-density correlation functions. In
the two-hole case, calculation of a specially defined spin
density function showed that two holes are repulsive to
each other. These results strongly suggest that the hole-
spin bound state behaves as a tightly bounded composite
particle and moves almost freely from the other hole-spin
bound states.
We finally aim to establish that hole-spin bound states

are generally formed and behave as quasiparticles in var-
ious strongly repulsive electron systems on lattices con-
sisting of triangle units. Actually, in this paper, we in-
vestigated the issue by using the 1D and 2D t1-t2-J1-
J2 models as typical cases. Also the present arguments
are based on numerical calculations with relatively small
numbers of electrons and the dimensionality is less than
3 due to the limitation of the calculations. Hence, the
present results are not general. However, we have ob-
tained many substantial evidences, which are consistent
with each other, for the formation of the hole-spin bound
state.
It is plausible that the hole-spin bound state is a

bosonic quasiparticle with charge +e (> 0). Actually,
the motion of the hole-spin bound state is equivalent to
a collective back-flow motion of surrounding singlet elec-
tron pairs which are bosonic. Also a whole triplet elec-
tron pair as well as a whole singlet electron pair does
not move with the hole for long distances due to the
dense electrons with infinite on-site repulsions. Hence
only a moving charge is +e of the hole and not −2e of
the triplet pair near the hole. The hole-spin bound state
consists only of a hole and a spin-1 degree of freedom in
the electrons. According to this picture, a superconduc-
tivity may occur as the BEC of the quasiparticles of the
hole-spin bound states at low temperatures. The super-
current is then carried by the quasiparticles with charge
+e and spin 1. Thus we have come close to a possible
exotic superconductivity of charge +e.
In the case of no hole, the BEC of massive magnons is

argued. Oosawa et al. reported a field-induced magnetic
ordering in TlCuCl3, which is described by a quasi-1D
zigzag spin system.[20] The ordering is explained by the
BEC of massive magnons under strong magnetic field.[21,
22] In contrast, we argued the BEC of charged particles
with spin 1 in no magnetic field. Then the present BEC
means a superconductivity. We expect that this type of
BEC is realized in hole-doped spin-gapped materials with
lattices where the triangle effect works.
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