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We investigate the phase diagram and the BCS-BEC crossover of a homogeneous three-component
ultracold Fermi gas with a U(3) invariant attractive interaction. We show that the system at
sufficiently low temperatures exhibits population imbalance, as well as fermionic pairing. We de-
scribe the crossover in this system, connecting the weakly interacting BCS regime of the partially
population-imbalanced fermion pairing state and the BEC limit with three weakly interacting species
of molecules, including pairing fluctuations within a t-matrix calculation of the particle self-energies.

I. INTRODUCTION

Multi-component ultracold atomic systems have re-
cently been the focus of both experiment and theory,
motivated in part by the prospect of simulating a wider
range of many-body models, such as lattice SU(N) mod-
els [1–3] and QCD analogs [4–7], than is possible with
single or two component systems. The possibility of cre-
ating analogs of color superfluid states and the formation
of hadronic states in multi-component systems [4–6] is es-
pecially interesting since the regime of cold dense QCD
matter is not directly achievable in current nuclear ex-
periments or in lattice QCD.

When three species of fermions weakly attract each
other, two species form Cooper pairs, and the third re-
mains a Fermi liquid [8–14]. Which two species pair de-
pends on anisotropies in the interactions and mass differ-
ences between different species. If there is no anisotropy,
the Hamiltonian of the system possesses global U(3)
symmetry with respect to rotation in species-space, and
the pairing breaks this symmetry. In three-component
Fermi systems BCS superfluidity and population imbal-
ance (magnetism), with two independent order param-
eters, can coexist [14], an intrinsic feature of a multi-
component Fermi system.

We consider here U(3) invariant three-component ul-
tracold Fermi gases in three-dimensional free space with
varying interaction, and study the phase diagram in gen-
eral and the BCS-BEC crossover of the system. We first
analyze the system at zero temperature in BCS mean
field to show that the fermion pairing gap and popu-
lation imbalance both develop with increasing bare at-
tractive interaction between the fermions. Then we dis-
cuss nonzero temperature, starting from the BCS region
where the scattering length is small and negative. We
calculate the population imbalance as well as the BCS
transition temperature there as a function of the inter-
action strength and the temperature, to lowest order in
the interaction. We also derive the Ginzburg-Landau free
energy as a function of the two order parameters, pairing
gap and the population imbalance, and discuss a pos-
sible analogy between dense QCD and three-component
ultracold fermions. The BEC limit of three-component
ultracold fermions, where the scattering length is small

and positive, is described by three different weakly in-
teracting species of molecules made of different combina-
tions of fermions. We show that Bose condensation of
the molecules is accompanied by population imbalance.
Finally, we discuss the BCS-BEC crossover connecting
BCS and BEC limits, constructing a summation of ladder
diagrams for the self-energies including pairing fluctua-
tions (or non-condensed pairs), which yields a transition
temperature to the condensate phase that reduces to the
BCS and BEC limits.

Degenerate three-component gases have been experi-
mentally realized using the three lowest hyperfine states
of 6Li [15, 16]; at high magnetic fields, well beyond uni-
tarity, the scattering lengths between the three hyper-
fine states are sufficiently close that the system is ap-
proximately U(3) invariant. In addition, ultracold gases
of alkaline-earth atoms possess good SU(N) invariance
(with N up to 10) [2, 3], and are good candidates to ob-
serve the physics discussed here.

Around the unitarity point, 1/a = 0, in a U(3) in-
variant system (where a is the s-wave scattering length)
three-body Efimov bound states can exist [17–24]. Efi-
mov states have been experimentally observed in a trap
through an increase of the particle loss rate, mediated by
these states [15, 16, 25]. In this paper, we analyze the
system on time scales long enough to see the two-body in-
teraction physics, but short enough that Efimov states or
three-body collisions can be neglected. As we show, the
homogeneous state is unstable against formation of inho-
mogeneous structures with population imbalance; popu-
lation imbalance suppresses formation of Efimov states,
tending to stabilize the inhomogeneous three-component
system.

II. THREE-COMPONENT U(3) INVARIANT
FERMIONS

We consider a three-component fermion system in free
space with equal masses and the same scattering length
between different species. We label the three species by
“colors” in analogy with QCD, “red (r),” “green (g),”
and “blue (b).” At low temperature, the interaction is
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dominated by s-wave scattering, and the Hamiltonian is

H′ ≡ H− µN =
∑

k,α

(

k2

2m
− µ

)

ψ†
α,kψα,k

+
U

2V

∑

α,β

∑

k,k′,q

ψ†
β,k′−qψ

†
α,k+qψα,kψβ,k′ ,

(1)

where ψ†
α,k is the creation operator of a particle with

color α = r, g, b with momentum k; V is the volume, and
we take ~ = 1 throughout. We assume an attractive bare
contact interaction of strength U < 0. Although we take
a common chemical potential µ for all three species, the
numbers of each species in the state of lowest free energy
can be different as a consequence of interactions, an effect
that would be observable, in an experiment that starts
with equal numbers, as an inhomogeneous state. The
Hamiltonian is invariant under global U(3) rotations of
the species.
The attractive interaction leads to pairing of fermions

at low temperature. The pairing order parameter is an-
tisymmetric in color, and thus has the form

∆α(r) ∝ ǫαβγ〈ψβ(r)ψγ(r)〉. (2)

Since under a global U(3) rotation,

ψα,k → Uαβψβ,k, (3)

where Uαβ ∈ U(3) (we use the convention that repeated
indices are summed over), ∆α transforms as

∆α(r) ∝
ǫαβγ
2

〈ψβ(r)ψγ(r)〉 → (detU)U∗
αβ∆β(r), (4)

where ψα(r) is the Fourier transform of ψα,k.

To prove Eq. (4) we consider the operator ∆̂α =
ǫαβγψβψγ , whose expectation value is proportional to

∆α. The combination ψα∆̂α transforms as

ψT ∆̂ ≡ ψα∆̂α = ǫαβγψαψβψγ

→ ǫαβγUαζUβηUγξψζψηψξ

= detUǫζηξψζψηψξ = detUǫαβγψαψβψγ

= detUψT ∆̂. (5)

On the other hand, ψT → ψTUT . Therefore, ∆̂ →
detU(UT )−1 = detUU∗.
As a consequence of the transformation (4) we can

– when the order parameter is independent of position –
always choose appropriate axes of colors to transform the

pairing order parameter into the form ~∆ = (0, 0,∆), i.e.,
by taking appropriate linear combinations of the species
we find that only two colors are paired and one is left
unpaired. By applying a Bogoliubov-Valatin transforma-
tion, we can see that there are two gapped fermionic exci-
tations corresponding to the quasiparticles of the paired
fermions, and one ungapped excitation due to the un-
paired fermions. In the following we assume, without
loss of generality, that the red and green particles are
paired and the blue are not paired.

III. BCS MEAN-FIELD AT T = 0

In this section, we consider the ground state of the
system within mean-field BCS theory. We describe the
pairing between r and g particles and unpaired b particles
with the BCS-like ansatz

|Ψ〉 =
∏

k

(

uk + vkψ
†
r,kψ

†
g,−k

)

∏

|k|≤kb
F

ψ†
b,k|vac〉, (6)

where |uk|2+|vk|2 = 1 and kbF is the b Fermi momentum.
The parameters uk and vk are determined by minimiz-
ing 〈Ψ|H − µN|Ψ〉 at fixed µ. Following the standard
procedure, we obtain

u2k =
1

2

(

1 +
ξk

√

ξ2k +∆2

)

, v2k =
1

2

(

1−
ξk

√

ξ2k +∆2

)

,

(7)

where ξk = k2/2m−µ and the gap ∆ = −(U/V )
∑

k ukvk
is determined by

∆ = −
U

V

∑

k

1

2

∆
√

ξ2k +∆2
. (8)

We use the relation of the bare coupling U and the scat-
tering length a [26, 27],

1

U
=

m

4πa
−

1

V

∑

k

m

k2
, (9)

to rewrite the gap equation for ∆ 6= 0, in terms of a as

m

4πa
=

1

V

∑

k

(

m

k2
−

1

2

1
√

ξ2k +∆2

)

. (10)

The chemical potential is determined by fixing the total
number of particles N :

N = 〈Ψ|
∑

α,k

ψ†
α,kψα,k|Ψ〉

=
∑

k

(

1−
ξk

√

ξ2k + |∆|2

)

+ V
(kbF )

3

6π2
. (11)

We solve the gap equation (10) and the number equation
(11) simultaneously to calculate the pairing gap and the
number imbalance in terms of the scattering length.
In Fig. 1 we plot the pairing gap ∆, measured in

units of ǫF = k2F /2m, and the number of r particles
Nr divided by the total number of particles N , against
−1/kFa, where kF = (6π2N/3V )1/3. The right side of
the figure corresponds to the weak coupling regime (BCS
region); the bare coupling becomes stronger towards the
left side (BEC region) of the figure. As we see, |∆| and
the fraction of red particles, Nr/N , increase with stronger
interaction. The Nr/N axis ranges from 1/3 to 1/2; when
Nr/N = 1/3, all three species are equally populated, but
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FIG. 1: The number of red particles divided by the number of
total particles Nr/N and the pairing gap ∆ at zero temper-
ature, vs. −1/kF a. The solid line shows Nr/N (left vertical
axis) and the dotted line ∆ (right vertical axis) (color online).

for Nr/N = 1/2, only r and g particles are present. In
general, Nr/N is greater than 1/3 in the interacting sys-
tem, and it approaches 1/2 as the interaction becomes
stronger. Thus the ground state of the interacting sys-
tem always exhibits population imbalance, or magneti-
zation (in analogy with a spin system). The magnetiza-
tion arises physically through the gain of pairing energy
when there are more particles in r and g states, and as
remarked earlier, it would reveal itself in experiment as
an inhomogeneous distribution of particle numbers.
With this basic picture in mind, we turn now to

nonzero temperature.

IV. BCS REGION

In the BCS region, where the scattering length a is
negative and small, perturbation theory in terms of the
scattering length well describes the system. We first de-
rive the phase diagram in this region, and then derive the
corresponding Ginzburg-Landau free energy.

A. Mean field phase diagram

The mean-field Hamiltonian HM is

HM − µN

=
∑

k,α

(

ξk +
UH

V
(N −Nα)

)

ψ†
α,kψα,k

−∆∗
∑

k

ψr,kψg,−k −∆
∑

k

ψ†
g,−kψ

†
r,k

−
V

U
|∆|2 −

UH

V
(NrNg +NgNb +NbNr) , (12)

where

∆ = −
U

V

∑

k

〈ψr,kψg,−k〉. (13)

As before, we assume equal numbers of red and green
particles, Nr = Ng. Also, we now include the Hartree
energy, UH = 4πa/m. Defining

ξr,k = ξk +
UH

V
(Nr +Nb), (14)

ξb,k = ξk +
UH

V
2Nr, (15)

we rewrite the mean-field Hamiltonian as:

HM − µN

=
∑

k

ξr,k

(

ψ†
r,kψr,k + ψ†

g,kψg,k

)

+
∑

k

ξb,kψ
†
b,kψb,k

−∆∗
∑

k

ψr,kψg,−k −∆
∑

k

ψ†
g,−kψ

†
r,k

−
V

U
|∆|2 −

UH

V

(

N2
r + 2NrNb

)

, (16)

which is essentially the BCS mean-field Hamiltonian for
paired red and green particles plus normal blue parti-
cles. Diagonalizing by a Bogoliubov-Valatin transforma-
tion we find the thermodynamic potential

Ω(T, µ) = −
2

β

∑

k

ln
[

1 + e−βǫk
]

−
1

β

∑

k

ln
[

1 + e−βξb,k
]

−
∑

k

(εk − ξr,k)−
V

U
|∆|2 −

UH

V

(

N2
r + 2NrNb

)

, (17)

where εk ≡
√

ξ2r,k + |∆|2. The condition ∂Ω/∂|∆|2 = 0

gives the gap equation

1

V

∑

k

1− 2f (εk)

2εk
= −

1

U
, (18)

where f(x) = 1/(eβx + 1) is the Fermi distribution func-
tion. Again, µ is determined by the number equations

Nr =
∑

k

1

2

(

1− ξr,k
tanhβεk/2

εk

)

, (19)

Nb =
∑

k

f(ξb,k) (20)

with

N = 2Nr +Nb. (21)

Numerically solving the gap equation (18) with the num-
ber equation (21), we obtain the gap and number imbal-
ance at given temperature and scattering length, shown
in Fig. 2. The figure plots Nr/N as a function of
−1/kFa and T . The normal phase is the unshaded re-
gion at higher T ; here ∆ = 0 and Nr/N = 1/3. In the
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FIG. 2: Phase diagram of the BCS region: Nr/N vs. −1/kF a
and temperature, in units of ǫF . The z-axis ranges from 1/3
to 0.35. The intersection of the surface and the bottom plane
towards higher T is the transition line between the ordered
and normal phases (color online).

shaded region, ∆ 6= 0 and Nr/N > 1/3, a small num-
ber imbalance. We show in the next subsection using
the Ginzburg-Landau free energy that ∆ 6= 0 implies
Nr/N > 1/3 and vice versa. To extend the theory to the
unitarity and BEC regimes we take pair fluctuations into
account [46], in Sec. VI.
In the next subsection, we derive the Ginzburg-Landau

free energy of the system in the BCS regime, and derive
the relations between the pairing gap and the number
imbalance.

B. Ginzburg-Landau free energy

The interplay between pairing and number imbalance
is most easily seen from the Ginzburg-Landau free en-
ergy, the expansion of the free energy in terms of the
corresponding order parameters around the transition
temperature. We define the order parameter for num-
ber imbalance, φ, by

φ =
Nr

V
−

N

3V
, (22)

Fixing the total number of particles N = 2Nr +Nb, we
have equivalently

φ = −
1

2

(

Nb

V
−

N

3V

)

. (23)

To derive the Ginzburg-Landau free energy it is conve-
nient (in the derivation only) to let the chemical potential

µb for b to be different from µr, that for g and r. The
thermodynamic potential Ω(T, µr, µb) can be derived as
in the previous subsection. The Helmholtz free energy is
then

F (∆, φ) = Ω + 2µrNr + µbNb, (24)

in terms of which the Ginzburg-Landau free energy den-
sity can be obtained by expanding

FGL(∆, φ) ≡
1

V
(F (∆, φ) − F (0, 0)) . (25)

We define

ξ̃r,k =
k2

2m
− µr +

UH

V
(Nr +Nb) (26)

ξ̃b,k =
k2

2m
− µb +

UH

V
2Nr, (27)

and ε̃k ≡
√

ξ̃2r,k +∆2, and the chemical potential of the

normal phase µ0 implicitly through

N

3
=
∑

k

1

eβξ
0

k + 1
, (28)

where ξ0k = k2/2m− µ0 + 2UHN/3V . In terms of these
quantities, the Ginzburg-Landau free energy density is

FGL(∆, φ)

= −
2

βV

∑

k

ln
[

1 + e−βε̃k
]

−
1

βV

∑

k

ln
[

1 + e−βξ̃b,k
]

+
3

βV

∑

k

ln
[

1 + e−βξ̃0
k

]

−
1

V

∑

k

(

ε̃k − ξ̃r,k

)

−
∆2

U

+ 3UHφ
2 + 2(µr − µb)φ+

N

3V
(2µr + µb − 3µ0) ; (29)

in the expansion in φ and ∆ we keep in mind that µr and
µb are implicit functions of ∆ and φ through the number
equations,

φ =
1

V

∑

k

1

2

(

1− ξr,k
tanhβε̃k/2

ε̃k

)

−
N

3V
(30)

and

−2φ =
1

V

∑

k

1

eβξ̃b,k + 1
−

N

3V
. (31)

The Ginzburg-Landau free energy up to fourth order in
the order parameters is

FGL(∆, φ)

= a∆2 +

(

b+
(c2)

2

c1

)

∆4 + 3

(

1

c1
− UH

)

φ2

+ c3φ
3 + c4φ

4 − 2
c2
c1
∆2φ+ c5∆

2φ2, (32)
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where c1 ∼ c5 and b are all positive, but the sign of a
depends on temperature. The detailed coefficients are
given in Appendix A.
The physically realized values of the order parameters

minimize the Ginzburg-Landau energy; to leading order
in the order parameters, we then have

∂FGL

∂φ
= 6

(

1

c1
− UH

)

φ− 2
c2
c1
∆2 = 0, (33)

∂FGL

∂∆
= 2∆

[

a+ 2

(

b+
(c2)

2

c1

)

∆2 − 2
c2
c1
φ

]

= 0. (34)

The first condition implies

φ =
c2

3(1− c1UH)
∆2, (35)

indicating that if the pairing gap is nonzero, the num-
ber imbalance is nonzero, and vice versa. The second
condition, combined with Eq. (35), implies

∆

[

a+ 2

(

b + 2
(c2)

2

c1
−

(c2)
2

3c1(1− c1UH)

)

∆2

]

= 0. (36)

In addition to the solution ∆ = 0, when a < 0 this
equation has a second solution, with lower free energy,

∆2 =
|a|

2(b+ c22/c1 − c22/(3c1(1− c1UH)))
. (37)

The transition to fermion pairing is at the temperature
at which a = 0.
The Ginzburg-Landau free energy of three-component

ultracold fermions has certain similarities to the
Ginzburg-Landau free energy of dense QCD derived in
Refs. [30–32], which makes multi-component ultracold
atoms a promising analog of dense QCD. The Ginzburg-
Landau free energy of dense QCD has the form

ΩQCD(d, σ) =
α′

2
d2 +

β′

4
d4 +

a′

2
σ2 −

c′

3
σ3 +

b′

4
σ4

− γ′d2σ + λ′d2σ2, (38)

where d is the quark-quark pairing order parameter and
σ is the chiral symmetry breaking order parameter. We
attach primes to the coefficients to avoid possible confu-
sion with similarly labeled quantities above. The signs of
α′ and a′ depend on the temperature and the strength of
the couplings. As argued in Refs. [30–32], β′, c′, γ′, and
λ′ are positive.
With the correspondence between the present system

and dense QCD system, ∆ ↔ d and φ ↔ σ, we see
that the two Ginzburg-Landau free energies have a simi-
lar structure. Differences are that the sign of a′ becomes
negative at low temperature whereas the coefficient of
φ2 is always positive; in addition the coefficients of σ3

and φ3 are opposite in sign. These differences are due
to the fact that dense QCD system can undergo chi-
ral symmetry breaking without quark-quark pairing, but

the three-component ultracold fermion system, beginning
with equal populations, cannot spontaneously develop
local number imbalance without fermion pairing; with
the symmetric interaction we are assuming, number im-
balance arises from the gain of pairing energy with in-
creasing number of paired particles. It would be inter-
esting to see how the analogy can be sharpened in multi-
component atomic systems where spontaneous number
imbalance and fermion pairing occur independently, e.g.,
with increased numbers of species or with deviations from
fully symmetric interactions.

V. BEC LIMIT

We turn now to the BEC limit where the scattering
length between fermions is small and positive. We can
regard the system here as a collection of three types
of weakly interacting bound Bose molecules, each made
of two fermions, which can be red-green, green-blue, or
blue-red. The molecules Bose condense at sufficiently
low temperature. The condensate of molecules can be
reduced to a condensate of one type of molecule by ap-
propriately choosing the color axes, as with pairing in the
BCS regime. The condensate in the BEC limit is com-
posed of the same two colors that are paired in the BCS
limit.
At high temperature, the system is not condensed, but

is simply a gas of thermally excited molecules. Unlike
in the condensate, one cannot exclude the existence of
three types of thermally excited molecules. Whether the
high temperature system develops a number imbalance
depends upon the intermolecular interactions. For the
same type of molecules, the effective scattering length is
0.6a [33], where a is the scattering length of the con-
stituent fermions. Between different molecules, as we
show below, the effective scattering length is still 0.6a.
Thus, above the condensation temperature, the system is
described by three kinds of thermally excited molecules
with the same interaction between all molecules. As we
show in Appendix B, the uncondensed Bose system does
not develop a spontaneous number imbalance as long
as the interaction between the same types of bosons is
greater than half of the interaction between the different
bosons. Thus the present system does not exhibit number
imbalance above the condensate transition temperature.
We have therefore the following picture of the BEC

limit. At high temperature the system is a homo-
geneous mixture of three types of molecules. The
Bose-Einstein condensation temperature is that of non-
interacting bosons of mass 2m and density N/6V ,

TBEC =
π

m[ζ(3/2)]2/3

(

N

6V

)2/3

≈ 0.137TF . (39)

Below TBEC, the system is a mixture of the condensate
of one type of molecule and a cloud of thermal molecules
of three types, which vanishes at T = 0.
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We now show that the scattering length between dif-
ferent molecules is the same as that, 0.6a, between like
molecules. The derivation of Ref. [33] of the scatter-
ing length between similar molecules depended on the
symmetry of the four-particle scattering wavefunction.
Since, as we show, the wavefunction for scattering of
different molecules has the same symmetry, the argu-
ments of Ref. [33] lead to the same scattering length.
We write the four-particle scattering wavefunction be-
tween similar molecules, e.g., red-green on red-green, as
Ψs(r1, r2; r3, r4), where r1 denotes the position of the red
fermion of the first molecule, r2 the position of the green
fermion of the first molecule, r3 the red fermion of the
second molecule, and r4 the green fermion of the second
molecule. The symmetries due to Fermi statistics are

Ψs(r1, r2; r3, r4) = −Ψs(r3, r2; r1, r4)

= −Ψs(r1, r4; r3, r2). (40)

��

�

��

�
��

�

��

�

FIG. 3: Two different molecules colliding.

On the other hand scattering between different
molecules, e.g., red-green and red-blue shown in Fig. 3,
described by the four-particle scattering wavefunction
Ψd(r1, r2; r3, r4) – where r4 now denotes the position of
the blue fermion – has only a single symmetry due to
Fermi statistics,

Ψd(r1, r2; r3, r4) = −Ψd(r3, r2; r1, r4). (41)

However, for s-wave scattering, the wavefunction is sym-
metric with respect to the interchange of molecules, so
that

Ψd(r1, r2; r3, r4) = Ψd(r3, r4; r1, r2). (42)

Conditions (41) and (42) imply that

Ψd(r1, r2; r3, r4) = −Ψd(r1, r4; r3, r2), (43)

which is exactly the same symmetry that was present due
to the exchange of green fermions in Ψs.
The Schrödinger equation in the two cases has one ap-

parent difference, the delta-function interaction between
the green and blue fermions. However, the antisymme-
try (43) for exchange of green and blue fermions im-
plies that the product of the green-blue potential and

the wavefunction in the Schrödinger equation vanishes,
so that the Schrödinger equation is the same as for identi-
cal molecules, and the scattering length is also the same.
This argument depends crucially on the two molecules
having one color (here red) in common.

VI. CROSSOVER THEORY

The crossover, in a two component system, from BCS
pairing in the weak coupling region to a BEC of weakly
interacting molecules in the strong coupling region is con-
tinuous, as seen in experiment [34–36], and understood
theoretically [27, 37–42]. A common feature of theories of
the BCS-BEC crossover at nonzero temperature is the in-
corporation of pairing fluctuations which allow thermally
excited Cooper pairs to exist above the condensate tran-
sition temperature. We now apply this idea to develop a
theory of the crossover, at nonzero temperature, in the
three component system to connect the BCS and BEC
regimes discussed above, and see that the crossover is
also continuous [47]. We incorporate pairing fluctuations
through a self-consistent summation of ladder diagrams,
and then numerically solve for the transition temperature
between the condensate and non-condensate phases.

A. Self-consistent summation of ladder diagrams

We construct the crossover theory in terms of the finite
temperature normal and anomalous Green’s functions:

Gα(r− r′, t− t′) = −i
〈

T
(

ψα(r, t)ψ
†
α(r

′, t′)
)〉

F(r− r′, t− t′) = −i 〈T (ψr(r, t)ψg(r
′, t′))〉 , (44)

where T denotes time ordering. We assume still that
pairing takes place between r and g particles. The pair-
ing gap is given in terms of the Fourier transform of
F(r− r′, t− t′) by

∆ = −U

∫

d3k

(2π)3
F(k, t = 0) = −

U

β

∫

d3k

(2π)3

∑

ωk

F(k),

(45)

where k denotes (k, ωk); the summation is over the
fermionic Matsubara frequencies ωk = iπνk/β with odd
integer νk. The Schwinger-Dyson equations for the
Green’s functions, illustrated in Fig. 4, are

Gr(k) = G0(k) + G0(k)
(

Σrr(k)Gr(k) + Σrg(k)F
†(k)

)

,

F†(k) = G0(−k)
(

−Σgr(k)Gr(k) + Σgg(−k)F
†(k)

)

,

Gb(k) = G0(k) + G0(k)Σbb(k)Gb(k), (46)

where G0(k)
−1 = ωk − ξk is the free particle Green’s

function, and Σαβ are self energies with an incoming α
particle and an outgoing β particle. Solving this system
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FIG. 4: The Schwinger-Dyson equations for the normal and
anomalous Green’s functions.

of equations, we obtain

Gr(k) =

(

G0(k)
−1 − Σrr(k) +

Σrg(k)Σgr(k)

G0(−k)−1 − Σgg(−k)

)−1

,

Gb(k) =
1

G0(k)−1 − Σbb(k)
,

F†(k) = −Σgr(k) · {Σrg(k)Σgr(k)

+(G0(k)
−1 − Σrr(k))(G0(−k)

−1 − Σgg(−k))
}−1

.

(47)

The main contribution to the off-diagonal self energies is
the gap:

Σrg(k) =
U

β

∫

d3k′

(2π)3

∑

ωk′

F(k′) = Σgr(k) = −∆, (48)

where we assume without loss of generality that ∆ is real.
Then the r-particle self energy, for example, is given by

Σrr(k) = −

∫

d3q

(2π)3
1

β

∑

ωq

[Γrg(k, k; q)Gg(−k + q)

+Γrb(k, k; q)Gb(−k + q)] , (49)

where Γαβ(k, k
′; q), is the two particle t-matrix for in-

coming particles of color α with momenta k and β with
−k + q, and outgoing with momenta k′ and −k′ + q,
respectively; the ωq are bosonic Matsubara frequencies.
The corresponding diagram is Fig. 5. Note that there is

���

� �

�

� �
���

�

�

� �
���

�

FIG. 5: Self energy written in terms of t-matrices.

no process of this form in which the top line is anomalous
since such a process would involve scattering between two
r particles, either initially or finally, which is forbidden
by the Pauli principle; the internal lines can, however, be
anomalous.
On the other hand, in the self energy of b particles,

the top line can in principle be anomalous; however, this
process would involve particle-hole scatterings either ini-
tially or finally, which is negligible for short-range inter-
actions [43]; the self-energy involves only a sum of rb
and gb particle-particle scatterings. The Bethe-Salpeter
equation for the rb t-matrix becomes

Γrb(k, k
′; q)

= −U − U

∫

d3p

(2π)3
1

β

∑

ωp

Gr(p)Gb(−p+ q)Γrb(p, k
′; q).

(50)

As one sees by iterating this equation, Γrb(k, k
′; q) is inde-

pendent of k and k′; we write Γ(k, k′; q) = Γ(q). Solving
Eq. (50), we obtain

Γrb(q) = −





1

U
+

∫

d3p

(2π)3
1

β

∑

ωp

Gr(p)Gb(−p+ q)





−1

;

(51)

Γgb takes the same form mutatis mutandis.
In Γrg we must take the rg anomalous Green’s func-

tions into account, as illustrated in Fig. 6. Solving the

�

� � �

� �

�

�

�

�

�

�

FIG. 6: An anomalous contribution to rg t-matrix.

Bethe-Salpeter equation in Nambu matrix notation, we
have

Γrg(q) =
χ11(−q)

χ11(q)χ11(−q)− χ12(q)2
, (52)

where

χ11(q) = −
1

U
−

∫

d3p

(2π)3
1

β

∑

ωp

Gr(p)Gg(q − p), (53)

χ12(q) =

∫

d3p

(2π)3
1

β

∑

ωp

F(p)F†(q − p). (54)

To determine the gap and the number imbalance as
a function of temperature and scattering length involves
self-consistently solving the gap equation (47), which can
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be rewritten as

−
1

U
=

∫

d3k

(2π)3
1

β

∑

ωk

·
1

(G0(k)−1 − Σrr(k))(G0(−k)−1 − Σgg(−k)) + ∆2
,

(55)

together with the number equations

Nr

V
= lim

η→+0

∫

d3k

(2π)3
1

β

∑

ωk

eiωkηGr(k), (56)

Nb

V
= lim

η→+0

∫

d3k

(2π)3
1

β

∑

ωk

eiωkηGb(k). (57)

However in this paper we focus only on calculating the
transition temperature.

B. Evaluation of Tc

We now use the formalism of the previous subsection
to evaluate the transition temperature, where the pairing
gap ∆ becomes zero. The gap equation at Tc is equivalent
to the condition that Γrg(q) diverges at q = 0. Therefore,
at Tc, we can make the approximations,

Σrr(k)

= −

∫

d3q

(2π)3
1

βc

∑

ωq

(Γrg(q)Gg(q − k) + Γrb(q)Gb(q − k))

≈ −

∫

d3q

(2π)3
1

βc

∑

ωq

(Γrg(q)Gg(−k) + Γrb(q)Gb(−k)) ,

(58)

and

Σbb(k) =−

∫

d3q

(2π)3
2

βc

∑

ωq

Γbr(q)Gr(q − k)

≈ −

∫

d3q

(2π)3
2

βc

∑

ωq

Γbr(q)Gr(−k). (59)

For T ≥ Tc, the t-matrices do not depend on the color
indices. Then, using the final line of Eq. (58) we see that
the Green’s function for r particles becomes

Gr(k) =
(

G−1
0 (k)− Σrr(k)

)−1

≈
(

G−1
0 (k) + G0(−k)∆

2
pg

)−1

= −
ωk + ξk

|ωk|2 + ξ2k +∆2
pg

, (60)

where we introduce a “pseudogap” ∆pg at Tc by writing

∆2
pg =

2

βc

∫

d3q

(2π)3

∑

ωq

Γ(q), (61)

with Γ = Γrg = Γrb = Γbr. The final line of Eq. (60) is
just a BCS Green’s function with the gap replaced by the

pseudogap. We write Ek =
√

ξ2k +∆2
pg for convenience.

Similarly Gb(k) has the same form at T = Tc.
The number equations then reduce to

N

3V
=

1

2

∫

d3k

(2π)3

(

1−
ξk
Ek

tanh
βcEk

2

)

, (62)

while the equation for the pseudogap is

−
1

U
=

∫

d3k

(2π)3
1

βc

∑

ωk

Gr(k)Gg(−k)

=

∫

d3k

(2π)3

{

(

1 +
ξ2k
E2

k

)

tanh(βcEk/2)

4Ek

−
∆2

pg

E2
k

f ′(Ek)

2

}

;

(63)

as before, the bare coupling U is related to the scattering
length a through Eq. (9).
In the BCS limit, kF a → 0−, ∆2

pg tends to zero, as
we can see by considering the BCS gap equation at Tc
(not the mean-field BCS transition temperature, but the
same Tc that we are using here) with a gap ∆

−
1

U
=

∫

d3k

(2π)3

{

tanh(βc
√

ξ2k +∆2/2)

2
√

ξ2k +∆2

}

. (64)

Expanding the right sides of (63) and (64) in terms of ∆2
pg

and ∆2, we see that the zeroth order terms are identical.
Also, since the final line of Eq. (63) decreases monoton-
ically with ∆2

pg, the limit ∆2 → 0, as in weak coupling

BCS, implies ∆2
pg → 0.

Determining Tc requires estimating ∆2
pg, which we do

by expanding Γrg(q)
−1 around q = 0, recalling that

Γrg(0)
−1 = 0 at Tc:

− Γrg(q, ωq)
−1 =

1

U
+

∫

d3p

(2π)3
1

βc

∑

ωp

Gr(p)Gg(q − p)

≈

∫

d3p

(2π)3
1

βc

∑

ωp

Gr(p)

·

{

∂

∂ω
Gg(k, ω)

∣

∣

∣

∣

k=−p

ωq +
1

6
∇2Gg(k, ω)

∣

∣

k=−p
q2

}

≡ Zωq − γq2. (65)

Explicit forms for Z and γ are given in Appendix C. The
pseudogap then becomes

∆2
pg = −2

∫

d3q

(2π)3
1

βc

∑

ωq

1

Zωq − γq2

= 2
1

Z

∫

d3q

(2π)3
1

eβcγq2/Z − 1
=
ζ(3/2)

4Z

(

Z

πβcγ

)3/2

.

(66)



9

Solving number equation (62), the gap equation (63),
and the expression for the pseudogap (66) self consis-
tently, we obtain the transition temperature, plotted
against −1/kFa in Fig. 7. The solid line in the fig-
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FIG. 7: The phase diagram of three component ultracold
Fermi gas. The solid line is the transition temperature cal-
culated with pairing fluctuations incorporated through the
summation of ladder diagrams. The dotted line is the tran-
sition temperature calculated from mean field BCS theory.
The mean field line corresponds roughly to the temperature
at which fermions start to form (non-condensed) pairs. The
line calculated from ladder summation is where the Cooper
pairs start to condense. Towards the left end of the figure,
the transition temperature approaches the BEC limiting value
Tc ∼ 0.137 TF (color online).

ure is the transition temperature calculated with the lad-
der summation formalism described here, and the dotted
line is the result from mean-field BCS theory. The lad-
der summation line approaches the mean-field line in the
BCS limit. On the other hand, in the BEC limit, the
ladder summation correctly yields Tc → 0.137TF . The
crossover theory presented here connects both limits con-
tinuously.
Throughout, we have kept a common chemical poten-

tial for the different species, and found that below Tc the
number of b particles becomes smaller than the number
of r or g particles. In ultracold atomic experiments, the
number of the particles in each species is usually fixed
at the start, and thus the simplest scenario that may
occur experimentally is that the number imbalance ap-
pears through the formation of population-imbalanced
domains. Formation of population-imbalanced domains
leads to a gain of condensation energy of order EcV/2
for the fully imbalanced state where Ec is the conden-
sate energy density in a balanced system; the factor
1/2 = 3/2 − 1 is the increase in the relative number
of Cooper pairs in the imbalanced state over that in the
balanced state. On the other hand, formation of a sin-
gle domain wall costs a net surface energy Esurf of or-
der EcV ξc/L, where ξc is the coherence length and L

is the linear size of the system. The condition that the
formation of the domain is beneficial for the system is
EcV/2 > Esurf , or roughly L/ξc >∼ 1, which typically
holds well. Domain formation is expected to decrease
the free energy from that of the homogeneous state at
low temperature. Other possible realizations of popula-
tion imbalance include the formation of a “color density”
wave or the formation of an inhomogeneous (FFLO) su-
perfluid; we leave analysis of these states as future prob-
lems. Also to apply the present theory quantitatively
under realistic experimental conditions it will be neces-
sary to investigate effects of Efimov states.
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Appendix A: The coefficients of the
Ginzburg-Landau free energy

We outline here the derivation of the Ginzburg-Landau
free energy (32) from the free energy FGL(∆, φ), Eq. (29).
Since ∆ always appears squared in the equations, odd
powers of ∆ do not occur in the free energy. To find
the coefficients of ∆2 and ∆4, we set φ = 0, and expand
FGL(∆, 0) in powers of ∆2. Taking the derivative of the
number equation for blue particles (31) with respect to
∆2, we see that µb (here allowed to differ from µr) does
not depend on ∆2. Differentiating the number equation
for red particles (30), we obtain

∂µr

∂∆2

∣

∣

∣

∣

0

= −
c2
c1
, (A1)

where the subscript 0 denotes the derivative at ∆ = φ =
0, and

c1 = −
1

V

∑

k

f ′(ξ0k), (A2)

c2 =
1

V

∑

k

(

tanhβξ0k/2

4(ξ0k)
2

+
f ′(ξ0k)

2ξ0k

)

. (A3)

Note that both c1 and c2 are positive. Then

∂FGL(∆, 0)

∂∆2

∣

∣

∣

∣

0

= −
1

U
−

1

V

∑

k

tanhβξ0k/2

2ξ0k
, (A4)

1

2

∂2FGL(∆, 0)

∂(∆2)2

∣

∣

∣

∣

0

= b+
(c2)

2

c1
, (A5)

where

b =
1

V

∑

k

(

tanhβξ0k/2

8(ξ0k)
3

+
f ′(ξ0k)

4(ξ0k)
2

)

> 0. (A6)
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We similarly derive the coefficients of φ, φ2, φ3, and
φ4:

∂FGL(0, φ)

∂φ

∣

∣

∣

∣

0

= 0, (A7)

1

2

∂2FGL(0, φ)

∂φ2

∣

∣

∣

∣

0

= 3

(

1

c1
− UH

)

, (A8)

1

6

∂3FGL(0, φ)

∂φ3

∣

∣

∣

∣

0

=
κ1

(c1)3
, (A9)

1

24

∂4FGL(0, φ)

∂φ4

∣

∣

∣

∣

0

=
3

4(c1)4

(

3
(κ1)

2

c1
− κ2

)

, (A10)

where

κ1 =
1

V

∑

k

f ′′(ξ0k), κ2 = −
1

V

∑

k

f ′′′(ξ0k). (A11)

Finally, the coefficients of φ∆2 and φ2∆2 are

∂2FGL(∆, φ)

∂φ∂∆2

∣

∣

∣

∣

∆=φ=0

= −2
c2
c1
, (A12)

1

2

∂3FGL(∆, φ)

(∂φ)2∂∆2

∣

∣

∣

∣

∆=φ=0

=
c2κ1
(c1)3

+
1

(c1)2

(

1

V

∑

k

f ′′(ξ0k)

2ξ0k
− 4b

)

≡ c5. (A13)

Therefore, the Ginzburg-Landau free energy up to fourth
order in the order parameters is

FGL(∆, φ)

=

(

−
1

U
−

1

V

∑

k

tanhβξ0k/2

2ξ0k

)

∆2 +

(

b+
(c2)

2

c1

)

∆4

+ 3

(

1

c1
− UH

)

φ2 +
κ1

(c1)3
φ3

+
3

4(c1)4

(

3
(κ1)

2

c1
− κ2

)

φ4 − 2
c2
c1
φ∆2 + c5φ

2∆2

≡ a∆2 +

(

b+
(c2)

2

c1

)

∆4 + 3

(

1

c1
− UH

)

φ2

+ c3φ
3 + c4φ

4 − 2
c2
c1
∆2φ+ c5∆

2φ2. (A14)

Note that the ci and b are all positive. Also, since UH is
negative, the coefficient of φ2 is positive.

Appendix B: Population imbalance in a Bose
mixture above the condensation temperature

We derive the condition for the homogeneous state
with population balance to be stable. Although the three
component ultracold Fermi gas can form three types of
molecules, the basic physics of the instability towards
inhomogeneous states can be captured by considering a
two-component Bose system.

We derive the Ginzburg-Landau free energy of a system
of two species of bosons, a and b, as a function of their
population imbalance at fixed total numberN = Na+Nb.
With ak and bk the annihilation operators of bosons a
and b of momentum k, the Hamiltonian is

H − µaNa − µbNb

=
∑

k

(

k2

2m
− µa

)

a†kak +
∑

k

(

k2

2m
− µb

)

b†kbk

+
U0

2V

∑

k,k′,q

(

a†k+qa
†
k′−qak′ak + b†k+qb

†
k′−qbk′bk

)

+
U1

V

∑

k,k′,q

a†k+qb
†
k′−qbk′ak, (B1)

where U0 = 4πa0/m and U1 = 4πa1/m are the s-wave
interaction strength between the same type and between
different types of bosons, and a0 and a1 are the corre-
sponding scattering lengths.
We assume sufficiently high temperature that neither

system is condensed. In the Hartree-Fock approximation
we obtain

H − µaNa − µbNb

≈
∑

k

(

ξa,k + 2U0

Na

V
+ U1

Nb

V

)

a†kak

+
∑

k

(

ξb,k + 2U0

Nb

V
+ U1

Na

V

)

b†kbk

−
U0

V

(

N2
a +N2

b

)

−
U1

V
NaNb, (B2)

where ξa,k ≡ k2/2m − µa and ξb,k ≡ k2/2m − µb. The
number of particles Na and Nb satisfy the self-consistent
equations,

Na =
∑

k

g (ξa,k + 2U0na + U1nb) (B3)

Nb =
∑

k

g (ξb,k + 2U0nb + U1na) , (B4)

where g(x) = 1/(eβx − 1) is the Bose distribution func-
tion, and na = Na/V and nb = Nb/V . Then the ther-
modynamic potential is

Ω

V
= −U0

(

n2
a + n2

b

)

− U1nanb

+
1

βV

∑

k

ln {1− exp (−β (ξa,k + 2U0na + U1nb))}

+
1

βV

∑

k

ln {1− exp (−β (ξb,k + 2U0nb + U1na))} ,

(B5)

and the Helmholtz free energy is

F

V
=

Ω

V
+ µana + µbnb. (B6)
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The condition for the stability of the homogeneous
state is found by expanding the Helmholtz free energy
in terms of the deviation of the number of particles from
the homogeneous state. We write the deviation of the
numbers of particles from the balanced case as

ϕ = na −
n

2
= −

(

nb −
n

2

)

; (B7)

then

∂

∂ϕ

F

V

∣

∣

∣

∣

ϕ=0

= 0 (B8)

∂2

∂ϕ2

F

V

∣

∣

∣

∣

ϕ=0

= 2

(

2U0 − U1 −
1

G

)

, (B9)

where

G =
1

V

∑

k

g′
(

k2

2m
− µ0 + 2U0

n

2
+ U1

n

2

)

< 0, (B10)

and the homogeneous chemical potential µ0 is determined
by

n

2
=

1

V

∑

k

g

(

k2

2m
− µ0 + 2U0

n

2
+ U1

n

2

)

. (B11)

The homogeneous state is stable if and only if
∂2(F/V )/∂ϕ2 > 0. Since G < 0, we immediately con-
clude that when 2U0 > U1, as in the present system, the
homogeneous state is always stable at T > TBEC. [For
2U0 < U1, one finds G→ 0− as T → ∞, and G→ −∞ as
T approaches TBEC from above, implying a phase tran-
sition from the homogeneous to an inhomogeneous state

at T > TBEC. The transition temperature increases with
increasing U1− 2U0. As U1 → 2U0 from above, the tran-
sition temperature approaches TBEC from above.]

Since the interaction is the same as that between
identical and different molecules in the BEC limit of
three-component ultracold fermions, the result derived
here implies that the system is homogeneous above the
condensation temperature.

Appendix C: Expansion of Γrg(q, ωq)
−1

The expansion of Γrg(q, ωq)
−1 can be explicitly car-

ried out using Eq. (60), with the result of Eq. (65),
−Γrg(q, ωq)

−1 ≈ Zωq − γq2 where

Z =

∫

d3k

(2π)3

(

tanh(βcEk/2)

2Ek

+ f ′(Ek)

)

ξk
2E2

k

(C1)

and

γ =

∫

d3k

(2π)3
1

2mE7
k

[{

ξ2k∆
2
pg

k2

3m
+

1

8
ξkE

2
k

(

2ξ2k −∆2
pg

)

+
k2

24m

(

∆2
pg − ξ2k

) (

E2
k + ξ2k

)

}(

tanh
βcEk

2
+ 2Ekf

′(Ek)

)

+

{

ξk∆
2
pgE

2
k

4
+

k2

12m

(

2ξ4k − ξ2k∆
2
pg +∆4

pg

)

}

E2
kf

′′(Ek)

+
k2

18m
ξ2k∆

2
pgE

3
kf

′′′(Ek)

]

. (C2)
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