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Theory of interacting topological superfluids and superconductors
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We investigate the three-dimensional, time-reversal invariant topological superconductors with
generic interaction by their response to external fields. The first description is a gravitational
topological field theory, which gives a Z2 classification of topological superconductors, and predicts
a half-quantized thermal Hall effect on the surface. The second description introduces a s-wave
proximity pairing field on the surface, and the associated topological defects give an integer Z

classification of the topological superconductor phases. Generally, charge conserving, time reversal
breaking fields probe the Z2 sector, and charge conservation breaking and time reversal breaking
fields probe the Z sector of the interacting topological superconductor.
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Recently, topological insulators(TI) and topological
superconductors(TSC) have attracted great attention in
condensed matter physics[1–4]. Topological insulators
are states which are incompressible in the bulk but have
topological surface states protected by the bulk topologi-
cal properties which remain robustly metallic upon arbi-
trary perturbation on the surface, within the given sym-
metry class. Time-reversal invariant topological insula-
tors in two and three dimensions (2D and 3D) have been
theoretically predicted and experimentally realized in re-
cent years[5–11]. Topological superconductors are ana-
log of topological insulators in superconductors, which
has a full superconducting gap, and gapless Majorana
edge states propagating on the boundary. Time-reversal
breaking topological superconductors in 2D[12] and time-
reversal invariant topological superconductors in 2D and
3D[13–15] have been theoretically predicted but have not
been verified experimentally. The most promising candi-
date for 3D topological superconductor (more precisely,
superfluid) is the He3B phase.

There are two approaches for the classification and
description of TIs and TSCs: topological field the-
ory(TFT) and topological band theory(TBT). In the
TFT approach, topological insulators are defined by the
quantized responses derived from low-energy effective
actions[16]. TFT also reveals the relations among TIs in
various dimensions. For instance, the 4D Chern-Simons
insulator[17] is the root state of 3D and 2D time re-
versal invariant(TRI) TIs. The 3D topological insula-
tor is characterized by the topological effective theory
S = θ

32π2FµνFστ ǫ
µνστ with θ = π mod 2π, which de-

scribes the electromagnetic response of the topological
insulator when time-reversal symmetry is broken on the
surface.[16, 18] The TBT was first developed in the work
of Kane and Mele[19, 20], who proposed a Z2 topological
invariant within the non-interacting band theory. This
TBT was later generalized to 3D TRI TIs[21–23] and
more recently to all the ten symmetry classes[14, 24]. It
was also shown that TFT reduces to TBT in the non-
interacting limit for time-reversal invariant TIs[25].

Interestingly, in 1D it has been shown that the
non-interacting classifications are sometimes unstable to
interaction.[26]. Therefore, in order to define TSCs in
dimensions higher than 1, it is helpful to apply the topo-
logical field theory (TFT) approach of TIs[16, 17], since
the TFT describes physical response properties of the
system, which is applicable to interacting systems. All
topological insulators can be described in this way by
TFT[16], including the 2D and 3D TIs. An explicit ex-
pression of the topological invariant of these classes in
interacting systems are obtained in the form of Green’s
function[27]. However, there are some symmetry classes
in which this approach does not apply. For example, the
3D time-reversal invariant TSC. Due to the absence of
charge conservation symmetry, no TFT can be obtained
by the coupling to the electromagnetic field.

In this paper, we introduce two new approaches to
the classification of 3D interacting time-reversal invariant
TSCs. The general idea behind the TFT description is to
find the correct physical external field which can generate
a physical observable topological response of the system.
Such topological response can then be used to classify
the topological states. TIs and TSCs in different topo-
logical classes and different dimensions require different
external field to probe their topological response proper-
ties. We present two different approaches with different
probe field used, which applies to different physical set-
tings. The first approach is the gravitational TFT, which
describes the topological response of the TSC to a grav-
itational field. Since the coupling to gravitational field
does not require charge conservation, the gravitational
TFT can be applied to TSC similar to the electromag-
netic TFT approach of 3D TI[16]. The topological term
is the gravitational analogy of the θ-term for the gauge
field, which is the Pontryagin invariant of the spacetime
manifold[28]. However, similar to the electromagnetic θ
term for 3D TI, the gravitational TFT only provides a
Z2 classification of the 3D TSC. In the non-interacting
limit, the nontrivial class with θ = π corresponds to the
TSC states with odd topological quantum number, while
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the trivial class with θ = 0 corresponds to those with
even topological quantum number.
A natural question is whether this indicates that with

interaction only a Z2 classification is stable, or there are
other ways we can define the Z classification in interact-
ing TSC. To answer this question we propose the second
approach. We consider the proximity effect of the surface
of 3D TSC with an s-wave superconductor. The proxim-
ity effect introduce an s-wave pairing field to the surface
states. When the pairing field has a π phase domain wall
on the surface, there are N number of chiral Majorana
fermions propagating on the domain wall. Since the chi-
ral Majorana fermions are stable without any symmetry
requirement, and can be characterized by the thermal
current it carries, one can use the number of Majorana
zero mode as a generic definition of TSC in 3D. From this
approach we conclude that the integer classification of 3D
TSC remains robust when interaction is considered. This
approach also directly leads to an experimental proposal
for the measurement of the topological quantum number.
Moreover, the idea of defining interacting TIs and TSCs
by studying the defects obtained from some symmetry-
breaking field configuration can be generalized to generic
symmetry classes.
Gravitational topological field theory of 3D TSC First

we consider gravitational TFT of time-reversal invariant
(TRI) TSC in 3D. For simplicity, we first investigate con-
tinuous models using the example of the 3He-B phase as
a 3D TRI TSC.
In the flat space-time, the Hamiltonian of 3He-B phase

is given by[13, 29]

H(p) = m(p)τ3 +∆σ · pτ1 (1)

in the Nambu space ψ = (c↑, c↓, c
†
↓,−c

†
↑), where ↑, ↓ de-

note spin orientation. σ1,2,3 and τ1,2,3 labels the Pauli
matrices in spin and particle-hole indices, respectively.
m(p) = p2/2M −µ is the kinetic energy term. The weak
pairing phase M > 0, µ > 0 is topologically nontriv-
ial and corresponds to the physical He3B phase[13–15],
while the strong pairing phase µ < 0 is a trivial super-
fluid phase. After rescaling the momenta ∆pi → pi, the
corresponding Lagrangian can be written as

L = ψ[pµΓ
µ +m(pi)]ψ (2)

where µ = 0, 1, 2, 3(We use (0, 1, 2, 3) interchangeably
with (t, x, y, z)), Γ0 = τ3 and Γi = iσiτ2; i = 1, 2, 3. This
is exactly the Majorana-Dirac Lagrangian if m(pi) = m
is independent of pi.
Now we turn to Lagrangian of 3He-B in curved space-

time. It is convenient to take the space-time as a closed
4-manifolds M . To consistently define the Lagrangian
globally,M is required to be a spin manifold[30]. Locally
the low energy action is

Sψ =

∫

M

d4x
√
−gψ[iΓαeµα(∂µ +

1

2
iωβγµ Σβγ) +m]ψ (3)

where Σαβ ≡ 1
4
i[Γα,Γβ ] is the generator of Lorentz trans-

formation in the spinor representation, and eµα is the
vielbeins[28]. Physically we can interpret the gravita-
tional field as an external source coupling to the energy-
momentum tensor of the fluid. In a deeply insightful pa-
per, Volovik points out that the order parameter of the
3He-B phase also couples to fermions like a gravitational
vielbein[31]. Therefore, we can also interpret eµα as the
internal order parameter of the 3He-B phase.
Because the Majorana fermions are gapped, we can in-

tegrate out them to obtain a gravitational effective ac-
tion. The term we are interested is the gravitational
theta term, which can be easily obtained by calculating
chiral anomaly due to gravity. A chiral transformation
m → m exp(iΓ5θ) generates the topological term in the
effective action[32, 33] Sθ = θ

2

∫

M
Â(M) where Â(M) is

the Dirac genus of M [28]. Since the Hamiltonian with
positive mass m = −µ > 0 is adiabatically connected to
a trivial superconductor by taking µ → −∞, by a chiral
rotation of θ = π we can obtain the action of the He3B
phase with µ > 0 as Sθ =

π
2

∫

M
Â(M). It is worth noting

that Majorana fermion has a 1/2 coefficient compared to
Dirac fermion. Written explicitly, we obtain the following
Pontryagin invariant

Sθ = − θ

1536π2

∫

d4xǫµνρσRαβµνR
β
αρσ (4)

with θ = π. For a generic 4-manifold, Sθ = nπ/48 with
n integer. However, for spin manifolds the value of Dirac
genus is restricted to

∫

M
Â(M) = 2n with integer n[34],

so that Sθ = nπ, as is expected from TRI. On a domain
wall between θ = 0 and θ = π, we get the Chern-Simons
term from the theta term as

S2D =
1

384π

∫

d3xǫµνρTr(ωµ∂νωρ +
2

3
ωµωνωρ) (5)

which describes the surface of He3-B phase in the pres-
ence of surface magnetization.
For a generic TSC with a non-relativistic Hamilto-

nian, the direct coupling to gravity may be complicated.
However, physically one can always consider the non-
relativistic Hamiltonian as a low energy limit of a under-
lying relativistic theory, so that the coupling to gravity is
in principle always well-defined. The topological term (4)
is insensitive to an arbitrary deformation of the fermion
Hamiltonian as long as the fermions remains gapped, so
that the TFT description for a generic TSC can always
be obtained by deforming the Hamiltonian to several de-
coupled copies of the He3B model(1). For the TSC with
topological quantum number N ∈ Z, the resulting action
is Sθ in Eq. (4) with θ = Nπ. However, for even integer
N , exp(iSθ) = 1 so that Sθ has no physical effect. We
conclude from this fact that the gravitational TFT gives
a Z2 classification of 3D TRI TSC, which is weaker than
the integer classification of the non-interacting system.
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Surface state description. To understand such a dif-
ference between Z2 and Z classification, it is helpful to
study the topological surface states. For 3He-B phase,
the surface state is a single flavor of 2D massless Majo-
rana fermion[13, 29]. For our discussion here, it is most
convenient to use the Majorana basis in which the surface
state effective Hamiltonian is given by

H =
∑

k

ηT−kv (σzkx + σxky) ηk (6)

with ηk = η†−k
the two-component Majorana fermion

field. The two components carry opposite spin, and the
time-revesal operation is defined T−1ηkT = iσyη−k. It
should be noticed that only Pauli matrices σz and σx
are allowed in this Hamiltonian since the single particle
Hamiltonian h(k) = v (σzkx + σxky) satisfies the anti-
symmetry condition h(−k) = −hT (k). No mass term is
allowed by time-reversal symmetry since the only possi-
ble mass term iσy breaks time-reversal symmetry. More
generically for a topological superconductor with topo-
logical quantum number N , the surface state consists of
multiple copies of the Majorana fermions with different
chirality:

H =

N+
∑

s=1

∑

k

ηTs,−k
v (σzkx + σxky) ηs,k

+

N
−

∑

s=1

∑

k

ψTs,−k
v (σzkx − σxky)ψs,k (7)

where ηs,k and ψs,k are the “left-handed” and “right-
handed” Majorana fermions, and the integer N+−N− =
N is determined by the bulk topological invariant. Such a
definition of “chirality” for Majorana fermion is possible
because σy is not allowed to appear in the linear-k terms,
so that the two kinds of Majorana fermions ηk and ψk

cannot be deformed to each other. More rigorously, the
topological invariant N = N+ − N− can be defined by
the following formula:

N = −1

2
Ind

(

T
[

∂h(k)

∂kx
,
∂h(k)

∂ky

]∣

∣

∣

∣

k=0

)

(8)

with T = iσyI the time-reversal transformation matrix
for all Majorana fermions. Ind(M) for a Hermitian ma-
trix M is defined as the number of positive eigenvalues
minus the number of negative eigenvalues.

From the discussion above we have seen from the sur-
face state point of view why the topological classifica-
tion is Z for non-interacting theory. The relation of
this surface state picture to the gravitational TFT (4)
is similar to that between the Dirac surface state and the
topological electromagnetic action of 3D TI[16]. Con-
sider a generic T-breaking mass term of the surface states
Hm =

∑

smsη
T
s−k

σyηsk +
∑

sm
′
sψ

T
s−k

σyψsk. With the

mass terms the surface states are gapped but obtained a
quantized thermal Hall coefficient

κxy =
πk2BT

24h̄





N+
∑

s=1

sgn(ms)−
N

−

∑

s=1

sgn(m′
s)



 (9)

Each Majorana cone contributes half the thermal Hall
coefficient of that of a 2D (p+ip) superconductor[12, 35–
37]. Such a thermal Hall effect on the surface is consis-
tent with the description of the bulk TFT (4) since the
Pontryagin invariant can be reduced to a gravitational
Chern-Simons term on the boundary as eq. 5. How-
ever, due to the dependence on the sign of mass terms,
the thermal Hall coefficient is only determined by the

surface state theory (7) mod 2 × πk2
B
T

24h̄
. This is consis-

tent with the observation that the coefficient of the bulk
TFT (4) takes Z2 value 0 or π mod 2π. In other words,
only the topological superconductors with odd N neces-
sarily has thermal Hall effect on the surface, while those
with even N can have zero thermal Hall coefficient for

some choice of mass terms. It’s interesting to note that
the same gravitational TFT approach can be applied to
time-reversal invariant TI, for which the surface thermal
Hall conductivity will be doubled. Thus we see that the
gravitational TFT description is trivial for 3D TI.
Integer Z classification of 3D TRI superconductor by

topological defects The analysis above seems indicating
that only the topological superconductors with odd topo-
logical quantum number are stable. However, in the
following we will show that the Z classification is actu-
ally robust with interaction, although it cannot be cap-
tured by the gravitational TFT. As has been discussed
in the introduction part, a general philosophy of clas-
sifying interacting topological phases is by defining a
physical topological response of the system to a proper
external field. The gravitational TFT can only probe
the Z2 part of the topological invariant, but the full
Z can be probed by another physical field—an s-wave
pairing field. We consider the generic 3D time-reversal
invariant Majorana fermion system with a Hamiltonian
H =

∫

d3rd3r′ηT (r)h(r, r′)η(r′) + Hint. Here h is an
anti-symmetric Hermitian single-particle operator, and
Hint describes non-quadratic terms in Majorana fermion
η. The Hamiltonian is time-reversal invariant satisfying
T−1HT = H , with the anti-unitary time-reversal opera-
tor defined by T−1η(r)T = T η(r) and T 2 = −1. Now we
introduce the following perturbation term to the Hamil-
tonian

H∆ = −i
∫

d3r∆(r)ηT (r)
[

T−1η(r)T
]

=

∫

d3ri∆(r)ηT (r)T η(r) (10)

with ∆(r) being a real field. To see the physical mean-
ing of this term, we can take the He3B Hamiltonian (1)
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as an example. In the complex fermion basis H∆ =

−
∫

d3ri∆(r)
(

c†↑k(r)c
†
↓k(r)− h.c.

)

which is an s-wave

pairing term with imaginary pairing order parameter. It
is important to notice that such a T-breaking pairing
term (10) is completely determined by the representa-
tion of time-reversal transformation and is independent
from the basis choice and any other detail of the system.

Now we consider the time-reversal invariant TSC with
the perturbation (10) only near the surface. Physically,
such a field can be induced by the proximity effect be-
tween the TSC and an s-wave superconductor on top of it.
Since this term breaks time-reversal symmetry, the sur-
face states of the TSC can become gapped. The effect of
this s-wave pairing field to the surface state can be seen
straightforwardly from the surface effective theory (7).
Since T−1ηsT = iσyηs, T

−1ψtT = iσyψt for the surface
Majorana fermions, the s-wave pairing term (10) is re-
duced to H∆surf =

∫

d2r∆(r)
(
∑

s η
T
s σyηs +

∑

t ψ
T
t σyψt

)

on the surface. In other words, an uniform pairing field
∆(r) = ∆ > 0 corresponds to a uniform mass term
ms = m′

t = ∆ for all the surface Majorana fermions.
Consequently the thermal Hall conductivity given by Eq.

(9) is κxy = N
πk2

B
T

24h̄
with N the bulk topological invari-

ant, so that by introducing the pairing field, the topolog-
ical quantum number N can be obtained without ambi-
guity.

The statement above can be made more explicit by
consider a domain wall on the surface where ∆(r) changes
sign, as shown in Fig. 1. Physically, such a domain
wall is a π-Josephson junction of the s-wave supercon-
ductor on top of the time-reversal invariant TSC. For
the surface Majorana fermions, the mass term changes
sign across the domain wall, so that there are chiral Ma-
jorana fermion propagating along the domain wall[12].
Due to the uniform mass for all Majorana fermions, the
number of chiral Majorana fermion is given by N+ while
the number of anti-chiral Majorana fermion is given by
N−. Consequently there are N = N+ − N− copies of
chiral Majorana fermions which are robust gapless states
on the domain wall. It is important to notice that a chi-
ral Majorana fermion in 1D is well-defined and robust
even in an interacting system, since it has a chiral cen-
tral charge c = 1/2 and thus carries a chiral thermal

current IE =
πk2

B
T 2

24h̄
. Thus one can use the chiral ther-

mal current as a physical observable way to define chiral
Majorana fermions, so that the chiral Majorana fermions
on the domain wall can be used as a generic definition of
the bulk 3D TSC:

• For a generic 3D time-reversal invariant supercon-
ductor, apply a small pairing field in the form of
Eq. (10) with a domain wall of ∆(r), as shown in
Fig. 1. The superconductor is a TSC with topolog-
ical quantum number N ∈ Z if the thermal current
propagating along the domain wall at temperature

FIG. 1: Illustration of the experimental setting for the mea-
surement of the integer-valued topological quantum number
of 3D TSC. s-wave pairing is introduced on the surface by
proximity effect, with a π-Josephson junction. The topolog-
ical quantum number N of the bulk is characterized by the
number of chiral Majorana fermions propagating along the
junction illustrated by the red arrows, which carry a quantized

thermal current IE = N
πk

2
B
T

2

24h̄
for low temperature T → 0.

T is IE = N
πk2

B
T 2

24h̄
in the T → 0 limit.
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