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We test the usefulness of a generalized inverse participation ratio (GIPR) as a measure of Anderson
localization. The GIPR differs from the usual inverse participation ratio in that it depends on the
local density of states rather than on the single-electron wavefunctions. This makes it suitable for
application to many-body systems. We benchmark the GIPR by performing a finite-size scaling
analysis of a disordered, noninteracting, three-dimensional tight-binding lattice. We find values for
the critical disorder and critical exponents that are in agreement with published values.

PACS numbers: 71.23.An,71.55.Jb,72.15.Rn

I. INTRODUCTION

Anderson localization is a phenomenon in which quan-
tum particles may be localized due to a random potential,
even though the particles are classically unbound.1 The
theory for noninteracting particles is well-developed: in
one and two dimensions, particles are localized by ar-
bitrarily weak disorder, and in three dimensions states
may be localized or extended depending on the strength
of disorder.2

Most real particles are interacting, however, and there
has been an ongoing effort to understand how interac-
tions modify the noninteracting picture, either because
of screening of the disorder potential, or because of loss
of quantum coherence due to inelastic scattering.3 Until
recently, neither of these effects was believed sufficient to
change the noninteracting picture at zero temperature.
However, experiments4 in two dimensional semiconduc-
tor films identified a zero-temperature metal-insulator
transition (MIT) that appears to result from electron
interactions.5 More recently, it has been suggested that
weakly-interacting one and two-dimensional systems will
exhibit a finite-T Anderson MIT.6,7

There is also interest in Anderson localization in
strongly interacting systems.8 Many of the most interest-
ing strongly correlated materials are insulators, but can
have their electronic properties tuned by chemical dop-
ing. Of particular interest are materials, such as the high
temperature superconductors, whose parent compounds
have an interaction-driven Mott insulating phase. These
materials become superconductors when doped with a
few percent of electron or hole donor atoms, but pass
through various intermediate phases in which disorder
seems to play an important role. There is an abundancy
of questions about how the electronic properties of these
materials are modified by doping-related disorder. Of
particular relevance to this work, there have been recent
questions about how localization physics is altered near
the Mott MIT,9–14 and about the phase transition be-
tween the Anderson and Mott insulating phases.15–17

Finally, trapped atomic gases in random optical lat-

tices have now been experimentally realized.18,19 These
systems are interesting because the strength of the atom-
atom interactions can by tuned by application of an ex-
ternal magnetic field. There is therefore the prospect of
making a controlled study of Anderson localization as a
function of interaction strength.

Numerical calculations have played an important role
in understanding Anderson localization in noninteracting
systems. However, many of the techniques developed for
noninteracting systems cannot be extended to interact-
ing systems since they require knowledge of the single-

particle eigenstates of the system and, with the exception
of self-consistent field calculations, many-body wavefunc-
tions cannot generally be written as a simple product of
single-particle states. There is, therefore, an interest in
developing new numerical methods for studying the An-
derson MIT in interacting systems.

With this in mind, there have been several proposals
that the localization transition can be detected by study-
ing the statistical properties of the local density of states
(LDOS) ρ(r, ω). The geometric average of the LDOS,
ρg(ω), is an order parameter for the Anderson MIT in the
limit of infinite system size20,21 because it vanishes when
the local spectrum is discrete. In infinite systems, this oc-
curs only at energies at which the states are localized and
not at which the states are extended. A generalization
of dynamical mean field theory based on incorporating
ρg(ω) into the self-consistency cycle was developed to
study interacting disordered systems.15,16,21 As a prac-
tical measure of localization in finite systems, however,
ρg(ω) is problematic because the spectrum is always dis-
crete, and this can obscure the Anderson MIT.22,23 More
recently, several groups have suggested that the Anderson
transition can be detected by studying the distribution of
ρ(r, ω) values,16,24,25 and it has been shown that this dis-
tribution scales differently with system size for localized
and delocalized states.25

In this work, we consider a quantity, the generalized
inverse participation ratio (GIPR), that is related to the
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LDOS via

G2(ω) =

∑

i ρ(ri, ω)
2

[
∑

i ρ(ri, ω)]
2
. (1)

Equation (1) is defined for a lattice, so that ρ(ri, ω) is
the density of states projected onto the local Wannier
orbital at the ith site of the lattice. The GIPR was used
previously in finite size scaling studies,13 but a careful
examination of its scaling properties has not be made.
This is the purpose of this paper.
The GIPR is analogous to the usual inverse participa-

tion ratio (IPR) for noninteracting systems,

Iq,α =

∑

i |Ψα(ri)|
2q

[
∑

i |Ψα(ri)|2]q
, (2)

where Ψα(ri) is a single-particle wavefunction with quan-
tum number α in the basis of Wannier orbitals. The IPR
is conventionally defined with q = 2 and can be used to
distinguish Anderson localized and extended states. For
a finite d-dimensional system of linear size L, I2,α satis-
fies

lim
L→∞

I2,α =

{

1/Ld (extended states)
const. (localized states),

(3)

for states that are far from the Anderson MIT, and ex-
hibits multifractal scaling,20,26–28

lim
L→∞

I2,α = L−d2F̃ [(W −Wc)L
1/ν ], (4)

near the transition. Here, d2 is the fractal dimension for
q = 2, ν is a critical exponent, and W and Wc are the
disorder and critical disorder strengths respectively.
For noninteracting systems, G2(ω) reduces to the IPR

when ω is equal to one of the eigenenergies of the system.
This follows from substituting

ρ(ri, ω) =
∑

α

|Ψα(ri)|
2δ(ω − Eα), (5)

into Eq. (1), where Eα are the discrete eigenenergies of
the disordered lattice. However, for a general value of ω
not equal to one of the eigenenergies, G2(ω) is not well
defined if the δ-functions in Eq. (5) are infinitely sharp,
and the relationship between the IPR and the GIPR is
therefore ambiguous. In fact, we show that if one broad-
ens the δ-functions by an amount γ, there is no limiting
value of γ in which the GIPR reduces to the IPR. The
goal of this paper is to demonstrate that the GIPR can
nonetheless be used to detect the Anderson MIT and to
determine the critical parameters Wc, d2 and ν.
We benchmark the GIPR by performing finite size scal-

ing for a disordered noninteracting model, where the crit-
ical properties are well known. In Sec. II, we discuss how
the broadening of the δ-functions in Eq. (5) is expected
to affect the finite size scaling, and use this to select an
optimal broadening. In Sec. III, we show the results of
numerical finite size scaling, from which we extract values
for the critical disorder and critical exponents at the An-
derson MIT. We show that, with an appropriate choice
for γ, it is possible to extract critical properties.
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FIG. 1: (Color online) Local density of states for two well-
separated lattice sites, “A” and “B”, in a disordered lattice.
Panels show the LDOS at (a)-(c) A and (d)-(f) B. All spectra
are for the same configuration of disorder, but have different
values of γ. Results are for (a), (d) γ = 0.01W/Ns; (b), (e)
γ = W/Ns; (c), (f) γ = 2W/Ns, where the lattice has Ns = 43

sites and W = 13. Insets show expanded views of the LDOS
near ω = 1.

II. CALCULATIONS

The noninteracting Anderson model is

Ĥ = −t
∑

〈i,j〉

|i〉〈j|+
∑

i

|i〉ǫi〈i|. (6)

where |i〉 is the ket for a Wannier orbital at position i
on the lattice and 〈i, j〉 indicates that the sum is over
nearest-neighbour sites. The hopping matrix element is
taken to be t = 1, and it therefore sets the energy scale,
while the site energies ǫi are taken from a uniform dis-
tribution of random values ranging from −W/2 to W/2,
where W is the strength of disorder. Calculations are
performed for a three-dimensional (d = 3) cubic lattice
of linear size L and with Ns = L3 lattice points.
We use a recursion method29 to find the local Green’s

function G(ri, ω + iγ) at site i, where γ is a small but
finite shift off the real frequency axis. The LDOS is given
by the imaginary part of G(ri, ω + iγ). Formally, this is
equivalent to

ργ(ri, ω) =
1

π

∑

α

|Ψα(ri)|
2 γ

(ω − Eα)2 + γ2
(7)

where Eα are the eigenenergies for a particular disorder
realisation. Once ργ(ri, ω) is known, the GIPR is calcu-
lated from Eq. (1). In this work, we focus on the band
center (ω = 0), where the Anderson transition is well-
characterized. In particular, the Anderson MIT occurs
at a critical disorder Wc = 16.5t for the uniform disorder
distribution used here.30,31

One of the main issues we face is how to choose γ. In
the remainder of this section, we discuss how this choice
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affects both the LDOS and the scaling behavior of the
GIPR. The relevant energy scale for comparison is the
level spacing at the band center, ∆ = 1/ρ0Ns, where ρ0
is the system-averaged density of states at ω = 0. For
strongly disordered systems, ∆ ≈ W/Ns.
Figure 1 shows the dependence of the LDOS on γ.

When γ >
∼ ∆, the LDOS is an average over states with

|Eα| <∼ γ, with the consequence that the LDOS is more
spatially uniform than the individual eigenstates mak-
ing up the LDOS. Thus in Fig. 1, the sites A and B
are spatially separated, and both have broad peaks at
ω = 1. It is not possible to tell, based on the LDOS
for γ = W/Ns, whether these peaks indicate a single
extended eigenstate, or a cluster of localized eigenstates
that happen to be close in energy. It is only when γ ≪ ∆
that we see that the local spectrum is quite different at
the two sites [Figs. 1(a) and (d)]. This suggests that the
LDOS, and by extension the GIPR, should do a better
job of distinguishing localized and extended states as γ
is reduced.
However, the fact that the spectrum develops discrete

peaks when γ ≪ ∆ does not mean that LDOS samples
only individual eigenstate in this limit. When γ ≪ ∆,
the energy ω = 0 lies in the tails of these peaks and
Eq. (7) becomes

ργ(ri, 0) =
γ

π

∑

α

|Ψα(ri)|
2

E2
α

. (8)

This means that even in the limit γ → 0, ρ(ri, 0) is av-
eraged over a nonzero number of states. The LDOS at
ω = 0, and by extension the GIPR, does not change
qualitatively when γ is reduced much below ∆.
We can learn more about the GIPR scaling by substi-

tuting Eq. (7) into Eq. (1), from which we obtain

G2(0) =
∑

i

(

∑

α

wα|Ψα(ri)|
2

)2

(9)

where

wα =
(E2

α + γ2)−1

∑

β(E
2
β + γ2)−1

(10)

is a weighting factor satsifying
∑

α wα = 1. In the limit
of vanishing disorder, the wavefunctions are plane waves
with |Ψα(ri)|

2 = N−1
s , and Eq. (9) gives G2(0) = N−1

s ;
this result is independent of γ and is identical to the
scaling result for the IPR.
In the limit of large disorder, W ≫ Wc, it is useful to

rearrange Eq. (9) to obtain,

G2(0) =
∑

α

w2
αI2,α +

∑

α6=β

wαwβ

∑

i

|Ψα(ri)|
2|Ψβ(ri)|

2.

(11)

The first term on the right hand side is a weighted sum of
IPR values for eigenstates with |Eα| <∼ γ, while the sec-
ond term consists of cross terms between pairs of eigen-
states. The second term can be neglected when the dis-
tances between these localized states are large compared

to the localization length ξ. We can estimate the typical
distance between centers of localization of the states in
Eq. (11) for the case γ >

∼ ∆. In this case, there are of or-
der 2γ/∆ states with |Eα| < γ, and the mean separation
of these is

ℓ ∼ L(∆/2γ)1/d. (12)

The product |Ψα(ri)|
2|Ψβ(ri)|

2 for two states separated

by ℓ has a maximal value of order exp[−2L(∆/2γ)1/d/ξ],
at the midpoint between the centers of localization. It
follows that the second term in Eq. (11) vanishes for
L/ξ → ∞, in which limit the GIPR is expected to scale
like the IPR.
For finite L, however, the second term in Eq. (11) in-

troduces finite size corrections to the GIPR that make it
scale differently from the conventional IPR. In order to
minimize these corrections, we want to make ℓ as large as
possible, which is achieved by taking γ as small as possi-
ble. We emphasize, however, that Eq. (12) only holds for
γ >
∼ ∆, and that wα is independent of γ when γ ≪ ∆,

namely

lim
γ→0

wα =
E−2

α
∑

β E
−2
β

. (13)

In other words, ℓ ceases to increase when γ is much less
than ∆. Our analysis therefore suggests that one cannot
do much better at minimizing finite size effects than by
taking γ ∼ ∆.
Finally, having established that G2(0) is determined

by the first term in Eq. (11) when L/ξ ≫ 1, we show
that the weighting terms do not affect the GIPR scaling
in this limit. We write I2,α ≈ I2(Eα), where I2(E) is a
slowly varying function of E near E = 0, so that

G2(0) ≈ I2(0)
∑

α

w2
α. (14)

For γ >
∼ ∆, we may estimate the sum over eigenstates by

∑

α

w2
α ≈

∆−1
∫

dE(E2 + γ2)−2

[

∆−1
∫

dE(E2 + γ2)−1
]2

∝
∆

γ
. (15)

Taking γ ∝ N−1
s eliminates the L-dependence of the

weighting factors in Eq. (11).
In summary, we have shown that the GIPR will repro-

duce the scaling of the IPR in the limits of vanishingly
weak and strong disorder. Moreover, we have shown that
using smaller γ values to calculate the GIPR is prefer-
able, down to γ ∼ ∆. Many numerical methods converge
faster for larger γ and, for these, γ ∼ ∆ will be optimal.
In the next section, we examine whether the finite size
effects near Wc limit our ability to extract the critical
behaviour.

III. RESULTS

We plot, in Fig. 2, the probability distribution of the
logarithm of the LDOS at ω = 0 for different values of
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FIG. 2: (Color online) Probability distribution of the loga-
rithm of the local density of states at ω = 0. The effect of γ
on Pρ(ln ργ) is shown for (a) extended and (b) localized states
for a fixed system size. The effect of system size on Pρ(ln ρ̃γ) is
shown for (c) extended and (d) localized states for γ = W/Ns.
Here, ρ̃γ is the normalized LDOS, ρ̃γ ≡ ργ/〈ργ〉, where 〈ργ〉
is the system-averaged LDOS at ω = 0.

γ and for different system sizes. Figures 2(a) and (b)
show that γ affects both the peak position and shape of
the distribution. In particular, the peak position of the
distribution Pρ(ln ργ) is proportional to γ for γ <

∼ W/Ns,
in accordance with Eq. (8). For γ >

∼ W/Ns, the peak
position and width are weak functions of γ.

In Figs. 2(c) and (d), we show the L-dependence of the
distribution of the normalized LDOS, ρ̃γ ≡ ργ/〈ργ〉 with
〈ργ〉 the sample-averaged density of states. Schubert et
al.25 showed that the scaling of the distribution Pρ(ln ρ̃γ)
can be used to distinguish localized and extended states:
Pρ(ln ρ̃γ) shifts to the left with increasing L for localized
states, and is independent of L for extended states. Here,
we find that there is indeed a pronounced shift for the
localized case (W = 20), and that the distribution is
almost independent of L for the extended case (W =
13). The small leftward shift seen in the extended case
is presumably due to finite-size effects, which are more
pronounced here than in Ref. 25. Despite its smallness,
this leftward shift is problematic because it obscures the
signature of the Anderson transition in Pρ(ln ργ). This is
a potentially important issue for many-body calculations
where accessible system sizes tend to be severly limited.
It appears that, as with other measures of localization,
the usefulness of the LDOS distribution will depend on
the inclusion of finite-size corrections.

Figure 3 shows the probability distribution function
PG(lnG2) for the GIPR, obtained by calculating G2(ω)
at ω = 0 for 1500 distinct impurity configurations. This
figure shows that the width of the distribution depends
strongly on γ, and that PG(lnG2) is sharply peaked when
γ >
∼ ∆. Because the distribution of lnG2 is narrow, the

-6 -5 -4 -3 -2 -1
ln G

2

0

1

2

3

P
G

( 
ln

 G
2 )

-6 -5 -4 -3 -2 -1
ln G

2

0

1

2

3

γ=0.1W/N
s

γ=W/N
s

γ=2W/N
s

(a) (b)W=13 W=20

FIG. 3: (Color online) Effect of γ on the probability distri-
bution of the GIPR at ω = 0. Results are for (a) extended
(W = 13) and (b) localized (W = 20) states, and are for 1500
disorder configurations with L = 10.

mean and most probable values of the distribution are
close to each other. For this reason we study the finite
size scaling of the typical GIPR

Gtyp
2 (ω) = exp [〈lnG2(ω)〉] , (16)

where 〈. . .〉 refers to an average over disorder configura-
tions.
The top inset in Fig. 4 shows the dependence ofGtyp

2 (0)
on L for different strengths of disorder. For W = 13,
all states are extended and we expect, from Eq. (3) and
Eq. (4), to obtain a power law dependence on L with a
power somewhere between d and d2. The data is fitted
very well by a power law with exponent 2, in agreement
with our expectations. For W = 20, all states are local-
ized and, from Eq. (3), we expect the GIPR to saturate
at a constant value for large L. The upward curvature
in the W = 20 data is suggestive of the expected satu-
ration and, importantly, cannot be fitted to a power law
(which would indicate extended states). Thus, even for
the relatively small system sizes studied here, it appears
possible to distinguish localized and extended states us-
ing the GIPR.
We show that the GIPR displays the same critical be-

haviour as the IPR near Wc, namely that

Gtyp
2 = L−d2

(

F
[

(W −Wc)L
1/ν
]

+
A0

L
+

A1

L2
+ . . .

)

(17)
where Aj are finite size corrections. To understand the
effects of γ, we have taken two cases, γ = W/Ns and
γ = 2W/Ns. For the first case, we are able to obtain
good scaling behaviour for 4 ≤ L ≤ 17 with only A0

nonzero; for the second case, finite size effects are more
pronounced and we obtain a good fit (see below) only
for 6 ≤ L ≤ 17. In both cases, we have four fitting
parameters: d2, Wc, ν and A0.
We now describe the fitting procedure. Figure 4 shows

a plot of

Y2 ≡ Gtyp
2 Ld2 −

A0

L
(18)

versus W for fixed values of A0 and d2. Error bars on the
data are the root-mean-square uncertainty in Gtyp

2 due
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FIG. 4: (Color online) Scaling of the GIPR for γ = W/Ns.
Top inset: Plots of Gtyp

2 as a function of L. These show
a crossover from power-law behavior for small W to non-
power-law behavior for large W . Main panel: Y2, defined
by Eq. (18), for best fit values of A0, and d2. For these
parameters, the critical disorder at which all curves cross is
Wc = 16.5, corresponding to the optimized fitting parameters
A0 = 0.51 and d2 = 1.1. Lower inset: Plot of dY2/dW at
W = Wc (symbols), along with power law fits (solid lines) to
the data. The exponents in the fitted curves give ν−1, from
Eq. (20). The two outlying curves are for the extremal values
(d2,Wc) = (1.3, 16.2) and (0.9, 17.2) and are used to deter-
mine uncertainties for ν. The middle curve is for the best fit
(d2,Wc) = (1.1, 16.5), from which we obtain ν = 1.5. Results
are summarized in Table I.

to the finite width of the GIPR distributions (shown,
e.g., in Fig. 3). The solid curves in the main panel of
Fig. 4 are quadratic fits to the data points. Each pair of
curves crosses at a different disorder strength, denoted
Wj ± δWj , where j ∈ [1, Ncross] and Ncross is the the
number of such crossing points. (For the 11 curves shown
in Fig. 4, there are Ncross = 55 crossing points.) The
uncertainties δWj are calculated from the uncertainties
in the fitting parameters. If the scaling form Eq. (17)
holds and the critical parameters are correctly chosen,
all curves will cross at a single point, W = Wc. For each
A0 and d2, we find Wc(A0, d2) by minimizing

χ2 =

Ncross
∑

j=1

(

Wj −Wc

δWj

)2

. (19)

Plots of Wc(A0, d2) are shown in Fig. 5 for both values
of γ studied. The best-fit values for Wc are taken from
the global minima of χ2(A0, d2), and are shown as circles
in Fig. 5. A qualitative sense of the goodness-of-fit can
be obtained from the main plot in Fig. 4, which is based
on the best-fit parameters for γ = W/Ns. A quantita-
tive measure of goodness-of-fit can be obtained from the
reduced chi-square χ2

red ≡ χ2/(Nc − 1). Figure 5 shows
contours around the region of parameter space χ2

red < 1.
In this region, all Y2(W ) curves cross, within error, at a
common point.

FIG. 5: (Color online) Critical parameters for (a) γ = W/Ns

and (b) γ = 2W/Ns. Intensity scale shows the value of Wc

that minimizes χ2 locally for each d2 and A0. Circles indicate
best-fit values of d2 and A0, obtained from the global mini-
mum of χ2. Black contours bound the regions χ2

red < 1. The
left and right limits of these regions are used to estimate the
lower and upper bounds on critical parameters in Table I.

d2 Wc ν

γ = W/Ns 1.1 (0.9,1.3) 16.5 (16.2,17.1) 1.5 (1.3,1.7)

γ = 2W/Ns 1.1 (1.0,1.6) 16.6 (15.2,16.8) 1.4 (1.0,1.8)

published 1.3 16.54 1.57

TABLE I: Critical parameters from finite-size scaling. For
comparsion, previously published results from Ref. 31 and
Ref. 27 are shown. Numbers in parenthesis are estimated
bounds on parameters, and are based on the parameter re-
gions χ2

red ≤ 1 shown in Fig. 5.

The best-fit values for Wc and d2 are summarized in
Table I, along with previously published values. Quanti-
ties in brackets are parameter values at the left and right
edges of the region χ2

red < 1, and are used to estimate the
uncertainty in the critical parameters. The values for Wc

and d2 found from this analysis are within uncertainty of
the previously published results.
The next step is to obtain the critical exponent ν,

which is done by fitting a power law to

dY2

dW

∣

∣

∣

∣

W=Wc

= L1/νF ′(0). (20)

In the lower panel of Fig. 4, we show dY2/dW at W =
Wc, along with power law fits to the data. The three
curves correspond to the best-fit, minimal, and maximal
values of Wc and d2 shown in Table I. The fitted expo-
nents give three values of ν for each γ, and are shown in
the final column of Table I. Again, these results agree
within error with published values.
In summary, we have shown that it is possible to ex-

tract critical parameters from a scaling analysis of the
GIPR. The main issue which arises is how the broad-
ening γ influences the results. In Table I, we see that
the results for larger γ have larger uncertainties. When
we restrict the range of system sizes for γ = W/Ns to
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be the same as for γ = 2W/Ns (namely, L ≥ 6), we
obtain similar uncertainties. The larger uncertainties for
γ = 2W/Ns in Table I therefore appear to come just from
the more pronounced finite size effects that forced us to
use a restricted range of L values. It does not appear
from the two cases we have studied as if γ causes a sys-
tematic shift in the values of the critical parameters. It
thus seems likely that one could obtain accurate values
of critical exponents for any reasonable γ provided one
can study systems that are large enough.

IV. CONCLUSIONS

We have tested the usefulness of a generalized inverse
participation ratio as a measure of Anderson localization
by benchmarking it against the well-studied case of a dis-
ordered three-dimensional tight binding lattice. Because

the generalized inverse participation ratio depends on the
local density of states, and not the single particle wave-
functions, it is potentially useful for studying interacting
systems where single particle wavefunctions are not de-
fined. We have found that it is possible to extract critical
parameters for the Anderson MIT, and have shown that
finite size effects are not an impediment if the spectral
broadening γ used to calculate the local density of states
is of the same order as the level spacing ∆.
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